1
|
Sanders LM, Nguyen Sorenson AHT, Sultan JA, Hall SB, Anderson HC, Asplund MC, Stowers KJ. Inherent Redox Activity of Titania Support Enhances Catalytic Activity of Highly Dispersed Cu Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lindsey M. Sanders
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | | | - Jack A. Sultan
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | - Seth B. Hall
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | - Hans C. Anderson
- Principal Research Scientist Northrop Grumman R&D Motor Health Management 9160 N. Hwy 83 Promontory Utah 84307 USA
| | - Matthew C. Asplund
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | - Kara J. Stowers
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| |
Collapse
|
4
|
Facile synthesis of green and efficient magnetic nanocomposites of carrageenan/copper for the reduction of nitrophenol derivatives. Int J Biol Macromol 2022; 220:954-963. [PMID: 36007698 DOI: 10.1016/j.ijbiomac.2022.08.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022]
Abstract
A green and facile method for preparation of Kappa-Carrageenan or Iota-Carrageenan grafted N,N'-methylenebisacrylamide/Fe3O4/Cu nanoparticles (κC-g-MBA/MNPs/Cu and ιC-g-MBA/MNPs/Cu) catalysts was developed to place copper on a magnetic carrageenan surface. The structure and morphology of the prepared catalysts were identified using FT-IR, XRD, BET, VSM, TGA, EDX, mapping, FE-SEM, TEM, and ICP-OES analyses. The catalytic activity of the catalysts was investigated to reduce 4-nitrophenol, 2-nitrophenol, 3-nitroaniline, and 4-nitroaniline compounds using the UV-Vis spectrum. To reduce 4-nitrophenol using κC-g-MBA/MNPs/Cu and ιC-g-MBA/MNPs/Cu, the rate constants (Kapp) obtained were 0.37 and 0.25 min-1, and the activity factors (k') were 134 and 193 s-1 g-1, respectively. The catalysts had a good performance in reducing the nitrophenol compounds and due to the magnetic properties of the catalysts, they could easily be separated and used multiple times.
Collapse
|
5
|
Ali HM, Ibrahim SM, Abo Zeid EF, Al-Hossainy AF, El-Aal MA. A comparative study of Cu-anchored 0D and 1D ZnO nanostructures for the reduction of organic pollutants in water. RSC Adv 2022; 12:16496-16509. [PMID: 35754865 PMCID: PMC9168830 DOI: 10.1039/d2ra02515a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, Cu NPs were loaded at a fixed percentage (5 wt%) on 1D, (1D + 0D) and 0D ZnO nanostructures to investigate the effect of the support morphology on the reduction of organic pollutants in water. The synthesized materials were characterized by high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The results reveal that the loading of Cu NPs decreases the optical band gap, and a slight change in the crystallite sizes increases the specific surface area value of the nanocomposites. The TEM images reveal that 1D ZnO has an average width of 44.7 nm and an average length of 211 nm, while 0D ZnO has an average diameter of 54.5 nm. The HR-TEM and XPS data confirm the loading of metallic Cu NPs on the surface of the ZnO nanostructures. The pure ZnO and nanocomposites were tested for 4-nitrophenol (4-NP) reduction in the presence of NaBH4 at room temperature. The obtained results show that pure ZnO nanostructures have no catalytic performance, while the nanocomposites showed good catalytic activities. The catalytic reduction efficiency of 4-NP was found to follow the order of Cu/0DZnO > Cu/(1D + 0D)ZnO > Cu/1DZnO. The complete reduction of 4-NP has been observed to be achievable within 60 s using the Cu/0DZnO nanocomposite, with a k app value of 8.42 min-1 and good recyclability of up to five cycles. This nanocomposite was then applied in the reduction of organic dyes in water; it was found that the reduction rate constants for the methylene blue, Congo red, and acriflavine hydrochloride dyes were 1.4 min-1, 1.2 min-1, and 3.81 min-1, respectively. The high catalytic performance of this nanocomposite may be due to the small particle size, high specific surface area, and the high dispersion of Cu NPs on the surface of ZnO.
Collapse
Affiliation(s)
- Hazim M Ali
- Department of Chemistry, College of Science, Jouf University P.O. Box 2014 Sakaka Aljouf Saudi Arabia
| | - Samia M Ibrahim
- Chemistry Department, Faculty of Science, New Valley University El-Kharga 72511 New Valley Egypt
| | - Essam F Abo Zeid
- Physics Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Ahmed F Al-Hossainy
- Chemistry Department, Faculty of Science, New Valley University El-Kharga 72511 New Valley Egypt
| | - Mohamed Abd El-Aal
- Catalysis and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
10
|
Machałowski T, Wysokowski M, Żółtowska-Aksamitowska S, Bechmann N, Binnewerg B, Schubert M, Guan K, Bornstein SR, Czaczyk K, Pokrovsky O, Kraft M, Bertau M, Schimpf C, Rafaja D, Tsurkan M, Galli R, Meissner H, Petrenko I, Fursov A, Voronkina A, Figlerowicz M, Joseph Y, Jesionowski T, Ehrlich H. Spider Chitin. The biomimetic potential and applications of Caribena versicolor tubular chitin. Carbohydr Polym 2019; 226:115301. [PMID: 31582063 DOI: 10.1016/j.carbpol.2019.115301] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Diverse fields of modern technology and biomedicine can benefit from the application of ready-to-use chitin-based scaffolds. In this work we show for the first time the applicability of tubular and porous chitin from Caribena versicolor spiders as a scaffold for the development of an effective CuO/Cu(OH)2 catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AM), and as a scaffold for the tissue engineering of selected cells. The formation of CuO/Cu(OH)2 phases on and within the chitinous tubes leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol. On the other hand, experimental results provide for the first time strong evidence for the biocompatibility of spider chitin with different cell types, a human progenitor cell line (hPheo1), as well as cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) that were cultured on a tube-like scaffold.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden 01307, Germany
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden 01307, Germany
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan 60637, Poland
| | - Oleg Pokrovsky
- Geoscience and Environment Toulouse, UMR 5563 CNRS, Toulouse 31400, France; BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - Michael Kraft
- Institute of Chemical Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Martin Bertau
- Institute of Chemical Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Mikhail Tsurkan
- Leibnitz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsia 21018, Ukraine
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61704, Poland
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg 09599, Germany.
| |
Collapse
|