1
|
Evgenidou Ε, Vasilopoulou K, Ioannidou E, Koronaiou L, Nannou C, Trikkaliotis D, Bikiaris D, Kyzas G, Lambropoulou D. Photocatalytic Degradation of the Antiviral Drug Abacavir Using Titania-Graphene Oxide Nanocomposites in Landfill Leachate. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
2
|
Purabgola A, Mayilswamy N, Kandasubramanian B. Graphene-based TiO 2 composites for photocatalysis & environmental remediation: synthesis and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32305-32325. [PMID: 35137316 DOI: 10.1007/s11356-022-18983-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Photoactive nanomaterials constitute an emerging field in nanotechnology, finding an extensive array of applications spanning diverse areas, including electronics and photovoltaic devices, solar fuel cells, wastewater treatment, etc. Titanium dioxide (TiO2), in its thin-film form, has been exhaustively surveyed as potential photocatalysts for environmental remediation owing to its innocuousness, stability, and photocatalytic characteristics when subjected to ultraviolet (UV) irradiation. However, TiO2 has some shortcomings associated with a large bandgap value of around 3.2 eV, making it less efficient in the visible spectral range. TiO2 is often consolidated with various carbon nanomaterials to overcome this limitation and enhance its efficiency. Graphene, a 2-dimensional allotrope of carbon with a bandgap tuned between 0 and 0.25 eV, exhibits unique properties, making it an attractive candidate to augment the photoactivity of semiconductor (SC) oxides. Encapsulating graphene oxide onto TiO2 nanospheres demonstrates intensified photocatalytic properties and exceptional recyclability for the degeneration of certain dyes, including Rhodamine B. This review encompasses various techniques to synthesize graphene-based TiO2 photoactive composites, emphasizing graphene capsulized hollow titania nanospheres, nanofibers, core/shell, and reduced graphene oxide-TiO2-based nanocomposites. It also consolidates the application of the aforestated nanocomposites for the disintegration of various synthetic dyes, proving efficacious for water decontamination and degradation of chemicals and pharmaceuticals. Furthermore, graphene-based TiO2 nanocomposites used as lithium (Li)-ion batteries manifesting substantial electrochemical performance and solar fuel cells for energy production are discussed here.
Collapse
Affiliation(s)
- Anushka Purabgola
- Centre for Converging Technologies, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Neelaambhigai Mayilswamy
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
3
|
Electrospun-based TiO2 nanofibers for organic pollutant photodegradation: a comprehensive review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Titanium dioxide (TiO2) is commonly used as a photocatalyst in the removal of organic pollutants. However, weaknesses of TiO2 such as fast charge recombination and low visible light usage limit its industrial application. Furthermore, photocatalysts that are lost during the treatment of pollutants create the problem of secondary pollutants. Electrospun-based TiO2 fiber is a promising alternative to immobilize TiO2 and to improve its performance in photodegradation. Some strategies have been employed in fabricating the photocatalytic fibers by producing hollow fibers, porous fibers, composite TiO2 with magnetic materials, graphene oxide, as well as doping TiO2 with metal. The modification of TiO2 can improve the absorption of TiO2 to the visible light area, act as an electron acceptor, provide large surface area, and promote the phase transformation of TiO2. The improvement of TiO2 properties can enhance carrier transfer rate which reduces the recombination and promotes the generation of radicals that potentially degrade organic pollutants. The recyclability of fibers, calcination effect, photocatalytic reactors used, operation parameters involved in photodegradation as well as the commercialization potential of TiO2 fibers are also discussed in this review.
Collapse
|
4
|
Electrodeposition-assisted formation of anodized TiO2–CuO heterojunctions for solar water splitting. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Chen Y, Qian J, Wang N, Xing J, Liu L. In-situ synthesis of CNT/TiO2 heterojunction nanocomposite and its efficient photocatalytic degradation of Rhodamine B dye. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kamran U, Park SJ. Functionalized titanate nanotubes for efficient lithium adsorption and recovery from aqueous media. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts 2019. [DOI: 10.3390/catal9100805] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The generation of photocatalytic hydrogen via water splitting under light irradiation is attracting much attention as an alternative to solve such problems as global warming and to increase interest in clean energy. However, due to the low efficiency and selectivity of photocatalytic hydrogen production under solar energy, a major challenge persists to improve the performance of photocatalytic hydrogen production through water splitting. In recent years, graphitic carbon nitride (g-C3N4), a non-metal photocatalyst, has emerged as an attractive material for photocatalytic hydrogen production. However, the fast recombination of photoexcited electron–hole pairs limits the rate of hydrogen evolution and various methods such as modification, heterojunctions with semiconductors, and metal and non-metal doping have been applied to solve this problem. In this review, we cover the rational design of g-C3N4-based photocatalysts achieved using methods such as modification, metal and non-metal doping, and heterojunctions, and we summarize recent achievements in their application as hydrogen production photocatalysts. In addition, future research and prospects of hydrogen-producing photocatalysts are also reviewed.
Collapse
|
8
|
Shi X, Zhang X, Ma L, Xiang C, Li L. TiO 2-Doped Chitosan Microspheres Supported on Cellulose Acetate Fibers for Adsorption and Photocatalytic Degradation of Methyl Orange. Polymers (Basel) 2019; 11:E1293. [PMID: 31382392 PMCID: PMC6723085 DOI: 10.3390/polym11081293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/06/2023] Open
Abstract
Chitosan/cellulose acetate (CS/CA) used as a biopolymer systema, with the addition of TiO2 as photocatalyst (C-T/CA) were fabricated by alternating electrospinning/electrospraying technology. The uniform dispersion of TiO2 and its recovery after the removal of methyl orange (MO) was achieved by incorporating TiO2 in CS electrosprayed hemispheres. The effects of pH values, contact time, and the amount of TiO2 on adsorption and photocatalytic degradation for MO of the C-T/CA were investigated in detail. When TiO2 content was 3 wt %, the highest MO removal amount for fiber membranes (C-T-3/CA) reached 98% at pH value 4 and MO concentration of 40 mg/L. According to the data analysis, the pseudo-second-order kinetic and Freundlich isotherm model were well fitted to kinetic and equilibrium data of MO removal. Especially for C-T-3/CA, the fiber membrane exhibited multiple layers of adsorption. All these results indicated that adsorption caused by electrostatic interaction and photocatalytic degradation were involved in the MO removal process. This work provides a potential method for developing a novel photocatalyst with excellent catalytic activity, adsorbing capability and recycling use.
Collapse
Affiliation(s)
- Xuejuan Shi
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xiaoxiao Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Liang Ma
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chunhui Xiang
- Department of Apparel, Events and Hospitality Management, 31 MacKay Hall, Iowa State University, Ames, IA 50011, USA
| | - Lili Li
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
9
|
Ge J, Zhang Y, Park SJ. Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1916. [PMID: 31200594 PMCID: PMC6631926 DOI: 10.3390/ma12121916] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022]
Abstract
Photocatalytic processes based on various semiconductors have been widely utilized in different applications, with great potential for use in environmental pollution remediation and sustainable energy generation. However, critical issues, including low light adsorption capability, wide energy bandgap, and unsatisfactory physicochemical stability still seriously limit the practical applications of photocatalysts. As a solution, the introduction of carbonaceous materials with different structures and properties into a photocatalyst system to further increase the activity has attracted much research attention. This mini review surveys the related literatures and highlights recent progress in the development of carbonaceous photocatalysts, which include various metal semiconductors with activated carbon, carbon dots, carbon nanotubes/nanofibers, graphene, fullerene, and carbon sponges/aerogels. Moreover, graphitic carbon nitride is also discussed as a carbon-rich and metal-free photocatalyst. The recently developed synthesis strategies and proposed mechanisms underlying the photocatalytic activity enhancement for different applications are summarized and discussed. Finally, ongoing challenges and the developmental direction for carbonaceous photocatalysts are proposed.
Collapse
Affiliation(s)
- Jianlong Ge
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inharo, Incheon 22212, Korea.
| | - Yifan Zhang
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inharo, Incheon 22212, Korea.
| | - Soo-Jin Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inharo, Incheon 22212, Korea.
| |
Collapse
|
10
|
Riaz S, Park SJ. Thermal and Mechanical Interfacial Behaviors of Graphene Oxide-Reinforced Epoxy Composites Cured by Thermal Latent Catalyst. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1354. [PMID: 31027254 PMCID: PMC6515424 DOI: 10.3390/ma12081354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
A series of composites was prepared from a diglycidyl ether of bisphenol A (DGEBA) with different graphene filler contents to improve their mechanical performance and thermal stability. Graphene oxide (GO) and GO modified with hexamethylene tetraamine (HMTA) were selected as reinforcing agents. As a latent cationic initiator and curing agent, N-benzylepyrizinium hexafluoroantimonate (N-BPH) was used. The effect of fillers and their contents on the mechanical properties and thermal stability of the composites were studied. Fracture toughness improved by 23% and 40%, and fracture energy was enhanced by 1.94- and 2.27-fold, for the composites containing 0.04 wt.% GO and HMTA-GO, respectively. The gradual increase in fracture toughness at higher filler contents was attributed to both crack deflection and pinning mechanisms. Maximum thermal stability in the composites was achieved by using up to 0.1 wt.% graphene fillers.
Collapse
Affiliation(s)
- Shahina Riaz
- Department of Chemistry, Inha University, Incheon 402-751, Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 402-751, Korea.
| |
Collapse
|
11
|
Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review. Catalysts 2019. [DOI: 10.3390/catal9020122] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Serious water pollution and the exhausting of fossil resources have become worldwide urgent issues yet to be solved. Solar energy driving photocatalysis processes based on semiconductor catalysts is considered to be the most promising technique for the remediation of wastewater. However, the relatively low photocatalytic efficiency remains a critical limitation for the practical use of the photocatalysts. To solve this problem, numerous strategies have been developed for the preparation of advanced photocatalysts. Particularly, incorporating a semiconductor with various functional components from atoms to individual semiconductors or metals to form a composite catalyst have become a facile approach for the design of high-efficiency catalysts. Herein, the recent progress in the development of novel photocatalysts for wastewater treatment via various methods in the sight of composite techniques are systematically discussed. Moreover, a brief summary of the current challenges and an outlook for the development of composite photocatalysts in the area of wastewater treatment are provided.
Collapse
|