1
|
Shaikh S, Gupta S, Mishra A, Sheikh PA, Singh P, Kumar A. Laser-assisted synthesis of nano-hydroxyapatite and functionalization with bone active molecules for bone regeneration. Colloids Surf B Biointerfaces 2024; 237:113859. [PMID: 38547794 DOI: 10.1016/j.colsurfb.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
The main goal of bone tissue engineering research is to replace the allogenic and autologous bone graft substitutes that can promote bone repair. Owing to excellent biocompatibility and osteoconductivity, hydroxyapatite is in extensive research and high demand for both medical and non-medical applications. Although various methods have been developed for the synthesis of hydroxyapatite, in the present study we have shown the use of nanosecond laser energy in the wet precipitation method of nano-hydroxyapatite (nHAP) synthesis without using ammonium solution or any other chemicals for pH maintenance. Here, the present study aimed to fabricate the nanohydroxyapatite using a nanosecond laser. The X-ray diffraction and Fourier transform infrared spectroscopy have confirmed the hydroxyapatite formation under laser irradiation in less time without aging. A transmission electron microscopy confirmed the nano size of synthesized nHAP, which is comparable to conventional nHAP. The length and width of the laser-assisted nHAP were found to be in the range of 50-200 nm and 15-20 nm, respectively, at various laser parameters. The crystallite size obtained by Debye Scherrer formulae was found to be in the range of ∼ 16-36 nm. In addition, laser-assisted nHAP based composite cryogel (nanohydroxyapatite/gelatin/collagen I) was synthesized and impregnated with bioactive molecules (bone morphogenic protein and zoledronic acid) that demonstrated significant osteogenic potential both in vitro in cell experiment and in vivo rat muscle pouch model (abdomen and tibia muscles). Dual-energy X-ray analysis, micro-CT, and histological analysis confirmed ectopic bone regeneration. Micro-CT based histomorphometry showed a higher amount (more than 10-fold) of mineralization for animal groups implanted with composite cryogels loaded with bioactive molecules compared to only composite cryogels groups. Our findings thus demonstrate a controlled and rapid synthetic method for the synthesis of nHAP with various physical, chemical, and biological properties exhibited as comparable to conventionally synthesized nHAP.
Collapse
Affiliation(s)
- Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Parvaiz A Sheikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
2
|
Kim HJ, Choi JH, Lee S, Han GS, Jung HS. Facet-Controlled Growth of Hydroxyapatite for Effectively Removing Pb from Aqueous Solutions. ACS OMEGA 2024; 9:2730-2739. [PMID: 38250348 PMCID: PMC10795148 DOI: 10.1021/acsomega.3c07725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
To address the growing concerns regarding severe water pollution, effective and environmentally friendly adsorbents must be identified. In this study, we prepared hydroxyapatite (HAp, Ca10(PO4)6(OH)2) as an eco-friendly absorbent via simple precipitation and obtained rod- (r-HAp) and plate-shaped HAp (p-HAp). The approach to obtaining p-HAp involved a low pH titration rate, promoting growth along the c-axis due to the adsorption of OH- on the (110) facet. Conversely, r-HAp was obtained by maintaining a high concentration of OH- during the initial stage through rapid pH titration, leading to a stronger restrictive effect on the growth of positively charged a(b)-planes. p-HAp demonstrated superior adsorption capacity, removing Pb through dissolution and recrystallization, achieving an impressive 625 mg/g within a 60 min reaction time compared to r-HAp. Our findings afford insights into the Pb removal mechanisms of HAp with different morphologies and can aid in the development of water purification strategies against heavy metal contamination.
Collapse
Affiliation(s)
- Hee Jung Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jin Hyuk Choi
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - SangMyeong Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gill Sang Han
- Division
of Advanced Materials, Korea Research Institute
of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Hyun Suk Jung
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic
of Korea
| |
Collapse
|
3
|
Yook H, Hwang J, Yeo W, Bang J, Kim J, Kim TY, Choi JS, Han JW. Design Strategies for Hydroxyapatite-Based Materials to Enhance Their Catalytic Performance and Applicability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204938. [PMID: 35917488 DOI: 10.1002/adma.202204938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAP) is a green catalyst that has a wide range of applications in catalysis due to its high flexibility and multifunctionality. These properties allow HAP to accommodate a large number of catalyst modifications that can selectively improve the catalytic performance in target reactions. To date, many studies have been conducted to elucidate the effect of HAP modification on the catalytic activities for various reactions. However, systematic design strategies for HAP catalysts are not established yet due to an incomplete understanding of underlying structure-activity relationships. In this review, tuning methods of HAP for improving the catalytic performance are discussed: 1) ionic composition change, 2) morphology control, 3) incorporation of other metal species, and 4) catalytic support engineering. Detailed mechanisms and effects of structural modulations on the catalytic performances for attaining the design insights of HAP catalysts are investigated. In addition, computational studies to understand catalytic reactions on HAP materials are also introduced. Finally, important areas for future research are highlighted.
Collapse
Affiliation(s)
- Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinwoo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woonsuk Yeo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jungup Bang
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jaeyoung Kim
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jae-Soon Choi
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jeong Woo Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
4
|
Yan Y, Du M, Jing L, Zhang X, Li Q, Yang J. Green synthesized hydroxyapatite for efficient immobilization of cadmium in weakly alkaline environment. ENVIRONMENTAL RESEARCH 2023; 223:115445. [PMID: 36758915 DOI: 10.1016/j.envres.2023.115445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The development of cost-effective passivators for the remediation of heavy metal-contaminated soils has been a research hotspot and an unsolved challenge. Herein, a novel hydroxyapatite (GSCH) was synthesized by co-precipitating distiller effluent-derived Ca with (NH4)2HPO4 using straw-derived dissolved organic matter (S-DOM) as the dispersant. Batch adsorption experiments and soil incubation tests were performed to assess the immobilization efficiency of GSCH for Cd in weakly alkaline environments. As a result, GSCH showed an excellent adsorption efficiency to Cd with a maximum adsorption amount of ∼222 mg g-1, which was fairly competitive compared to other similar previously materials reported. The kinetic data indicated that the adsorption of Cd on GSCH was a chemical and irreversible process, while the thermodynamic data revealed a spontaneous (ΔG° < 0) and endothermic (ΔH° > 0) adsorption process. Based on mechanism analysis, both physisorption (e.g., electrostatic attraction and pore filling) and chemisorption (e.g., ion exchange and complexation) were responsible for Cd adsorption on GSCH. Particularly, the incorporated S-DOM and hydroxyapatite phase in GSCH acted synergistically in the adsorption process. The incubation results showed that GSCH application could significantly reduce the bioavailability, phytoavailability and bioaccessibility of Cd in soil by 48.4%-57.8%, 20.4%-28.6% and 12.6%-24.0%, respectively. Moreover, GSCH application also improved soil bacterial communities and enhanced soil nutrient availability. Overall, this is the first study to demonstrate the potential application value of GSCH in Cd immobilization, providing promising insights into the development of green and cost-effective hydroxyapatite-based passivators for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Yubo Yan
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Meng Du
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Liquan Jing
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Jianjun Yang
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
5
|
Sihan Yao, Wei L, Liu X, Ding A, Yao C. Study on Crystallization Behavior of Hydroxyapatite Regulated by Surfactant and Different Phosphorus Sources. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Gruselle M, Tõnsuaadu K, Gredin P, Len C. Apatites based catalysts: A tentative classification. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Mukherjee S, Iyyappan E, Satheesh K, Maria Jordi E, Saranya S, Samuel Justin SJ, Reuben Jonathan D, Vijay Solomon R, Wilson P. Hydroxyapatite as a bifunctional nanocatalyst for solventless Henry reaction: a demonstration of morphology-dependent catalysis. NEW J CHEM 2022. [DOI: 10.1039/d1nj04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite nanorods are catalytically active while nanoplates are inactive towards Henry reaction due to the differences in the exposed surfaces.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - E. Iyyappan
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - Keerthi Satheesh
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - Elsa Maria Jordi
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - S. Saranya
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - S. J. Samuel Justin
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - D. Reuben Jonathan
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| | - P. Wilson
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai – 600 059, India
| |
Collapse
|
8
|
García Domínguez G, Diaz De La Torre S, Chávez Güitrón L, Vergara Hernández E, Reyes Miranda J, Quezada Cruz M, Garrido Hernández A. Effect of the Structural and Morphological Properties of Surfactant-Assisted Hydroxyapatite on Dermal Irritation and Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6522. [PMID: 34772043 PMCID: PMC8585225 DOI: 10.3390/ma14216522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Hydroxyapatite (HAp) nanoparticles with a homogeneous rod morphology were successfully synthesized using the hydrothermal method. The powders were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The antibacterial and dermal irritation analyses of the samples were performed and discussed. The use of cationic and anionic surfactants, namely, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), respectively, at a low concentration (2.5 mol%) modified the length/diameter (L/D) ratio of the HAp rods. Structural characterizations of hydroxyapatite synthesized without surfactant (HA), with 2.5 and 5 mol% of SDS (SDS- and SDS+, respectively), and with 2.5 and 5 mol% of CTAB (CTAB- and CTAB+, respectively) revealed well-crystallized samples in the hexagonal phase. The CTAB- sample presented antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Streptococcus anginosus, Staphylococcus aureus, Micrococcus luteus, and Klebsiella pneumoniae, suggesting that antimicrobial susceptibility was promoted by the bacterial nature and the use of the surfactant. Dermal irritation showed no clinical signs of disease in rabbits during the study, where there was neither erythema nor necrosis at the inoculation sites.
Collapse
Affiliation(s)
- Giovanni García Domínguez
- Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N, Col. Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico; (G.G.D.); (S.D.D.L.T.)
| | - Sebastián Diaz De La Torre
- Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N, Col. Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico; (G.G.D.); (S.D.D.L.T.)
| | - Lorena Chávez Güitrón
- Universidad Tecnológica de México—UNITEC MÉXICO–Campus Ecatepec, Ecatepec de Morelos 55107, Estado de México, Mexico;
- Universidad Tecnológica de Tecámac, UTTEC, Carretera Federal México–Pachuca Km 37.5, Col. Sierra Hermosa, Tecámac 55740, Estado de México, Mexico;
| | - Erasto Vergara Hernández
- Instituto Politécnico Nacional, UPIIH, Carretera Pachuca—Actopan Kilómetro 1+500 Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42162, Hidalgo, Mexico;
| | - Joan Reyes Miranda
- Universidad Autónoma Metropolitana, UAM, Av. San Pablo Xalpa 180, Col. Reynosa-Tamaulipas, Azcapotzalco, Ciudad de México 02200, Mexico;
| | - Maribel Quezada Cruz
- Universidad Tecnológica de Tecámac, UTTEC, Carretera Federal México–Pachuca Km 37.5, Col. Sierra Hermosa, Tecámac 55740, Estado de México, Mexico;
| | - Aristeo Garrido Hernández
- Universidad Tecnológica de Tecámac, UTTEC, Carretera Federal México–Pachuca Km 37.5, Col. Sierra Hermosa, Tecámac 55740, Estado de México, Mexico;
| |
Collapse
|
9
|
Balu SK, Andra S, Jeevanandam J, S MV, V S. Emerging marine derived nanohydroxyapatite and their composites for implant and biomedical applications. J Mech Behav Biomed Mater 2021; 119:104523. [PMID: 33940538 DOI: 10.1016/j.jmbbm.2021.104523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 01/30/2023]
Abstract
Implant materials must mimic natural human bones with biocompatibility, osteoconductivity and mechanical stability to successfully replace damaged or disease-affected bones. Synthetic hydroxyapatite was incorporated with bioglass to mimic natural bones for replacing conventional implant materials which has led to certain toxicity issues. Hence, hydroxyapatite (HAp) are recently gaining applicational importance as they are resembling the structure and function of natural bones. Further, nanosized HAp is under extensive research to utilize them as a potential replacement for traditional implants with several exclusive properties. However, chemical synthesis of nano-HAp exhibited toxicity towards normal and healthy cells. Recently, biogenic Hap synthesis from marine and animal sources are introduced as a next generation implant materials, due to their mineral ion and significant porous architecture mediated biocompatibility and bone bonding ability, compared to synthetic HAp. Thus, the purpose of the paper is to give a bird's eye view into the conventional approaches for fabricating nano-HAp, its limitations and the significance of using marine organisms and marine food wastes as a precursor for biogenic nano-Hap production. Moreover, in vivo and in vitro analyses of marine source derived nano-HAp and their potential biomedical applications were also discussed.
Collapse
Affiliation(s)
- Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Swetha Andra
- Center for Nanoscience and Technology, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
| | - Jaison Jeevanandam
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Manisha Vidyavathy S
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sampath V
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
10
|
The Role of the Surface Acid-Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion. NANOMATERIALS 2021; 11:nano11030659. [PMID: 33800336 PMCID: PMC8000547 DOI: 10.3390/nano11030659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite is known to have excellent catalytic properties for ethanol conversion and lactic acid conversion, and their properties are influenced by the elemental composition, such as Ca/P ratio and sodium content. However, few reports have been examined for the surface acid–base nature of hydroxyapatites containing sodium ions. We prepared nanocrystalline hydroxyapatite (Ca-HAP) catalysts with various Ca/P ratios and sodium contents by the hydrothermal method. The adsorption and desorption experiments using NH3 and CO2 molecules and the catalytic reactions for 2-propenol conversion revealed that the surface acid–base natures changed continuously with the bulk Ca/P ratios. Furthermore, the new catalytic properties of hydroxyapatite were exhibited for 1,6-hexanediol conversion. The non-stoichiometric Ca-HAP(1.54) catalyst with sodium ions of 2.3 wt% and a Ca/P molar ratio of 1.54 gave a high 5-hexen-1-ol yield of 68%. In contrast, the Ca-HAP(1.72) catalyst, with a Ca/P molar ratio of 1.72, gave a high cyclopentanemethanol yield of 42%. Both yields were the highest ever reported in the relevant literature. It was shown that hydroxyapatite also has excellent catalytic properties for alkanediol conversion because the surface acid–base properties can be continuously controlled by the elemental compositions, such as bulk Ca/P ratios and sodium contents.
Collapse
|
11
|
Sobczyk-Guzenda A, Boniecka P, Laska-Lesniewicz A, Makowka M, Szymanowski H. Micro- and Nanoparticulate Hydroxyapatite Powders as Fillers in Polyacrylate Bone Cement-A Comparative Study. MATERIALS 2020; 13:ma13122736. [PMID: 32560293 PMCID: PMC7344484 DOI: 10.3390/ma13122736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 11/16/2022]
Abstract
Acrylate polymer-based bone cements constitute the most popular bonding agents used in regenerative surgery. Due to their inferior biocompatibility, however, these materials are often enriched with ceramic additives including hydroxyapatite (HAp). The aim of this paper was to perform a comparative study of the acrylate cements filled with different content (3–21%) of nano- and microscale hydroxyapatite. The work concerns a comparison of times and temperatures of the cross-linking reaction, as well as morphology, glass transition temperature, and principal mechanical properties of the resulting composites. Before being used as a filler, both HAp forms were subjected to an in-depth characterization of their morphology, specific surface area, pore size distribution, and wettability as well as chemical composition and structure. For that purpose, such analytical techniques as scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, tensiometry, Brunauer–Emmett–Teller surface area analysis, differential scanning calorimetry, Shore D hardness test, and Charpy impact test were used. The results indicated a drop of cross-linking temperature and an extension of setting time with the addition of µHAp. The µHAp-filled acrylate composites were characterized by a globular surface morphology, higher glass transition temperature, and lower hardness and impact strength compared to nHAp-filled materials. This relationship was evident at higher nHAp concentrations.
Collapse
|