1
|
Sahoo P, Jana P, Kundu S, Mishra S, Chattopadhyay K, Mukherjee A, Ghosh CK. Quercetin@Gd 3+ doped Prussian blue nanocubes induce the pyroptotic death of MDA-MB-231 cells: combinational targeted multimodal therapy, dual modal MRI, intuitive modelling of r1- r2 relaxivities. J Mater Chem B 2023. [PMID: 37366114 DOI: 10.1039/d3tb00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Quercetin (Qu), a potential bioflavonoid has gained considerable interest as a promising chemotherapeutic drug which can inhibit the proliferation of triple-negative breast cancer (TNBC) cells due to its regulation of the expression of tumor-suppressor gene metastasis and antioxidant property. Notably, Qu exhibits a very negligible cytotoxic effect on normal cells, even with high-dose treatment, while it is shows high affinity to TNBC. However, the efficiency of Qu is limited clinically due to its poor bioavailability, caused by its low aqueous solubility (2.15 μg mL-1 at 25 °C), rapid gastrointestinal digestion and chemical instability in alkaline and neutral media. Herein, polydopamine (PDA)-coated, NH2-PEG-NH2 and hyaluronic acid (HA)-functionalized Gd3+-doped Prussian blue nanocubes (GPBNC) are reported as a multifunctional platform for the codelivery of Qu as a chemotherapeutic agent and GPBNC as a photodynamic (PDT) and photothermal (PTT) agent with improved therapeutic efficiency to overcome theses barriers. PDA, NH2-PEG-NH2 and HA stabilize GPBNC@Qu and facilitate bioavailability and active-targeting, while absorption of near infrared (NIR) (808 nm; 1 W cm-2) induces PDT and PTT activities and dual T1-T2-weighted magnetic resonance imaging (MRI) with high relaxometric parameters (r1 10.06 mM-1 s-1 and r2 24.96 mM-1 s-1 at a magnetic field of 3 T). The designed platform shows a pH-responsive Qu release profile and NIR-induced therapeutic efficiency of ∼79% in 20 minutes of irradiation, wherein N-terminal gardermin D (N-GSDMD) and a P2X7-receptor-mediated pyroptosis pathway induces cell death, corroborating the up-regulation of NLRP3, caspase-1, caspase-5, N-GSDMD, IL-1β, cleaved Pannexin-1 and P2X7 proteins. More interestingly, the increasing relaxivity values of Prussian blue nanocubes with Gd3+ doping have been explained on the basis of Solomon-Bloembergen-Morgan theory, considering inner- and outer-sphere relaxivity, wherein crystal defects, coordinated water molecules, tumbling rate, metal to water proton distance, correlation time, magnetisation value etc. play a significant role. In summary, our study suggests that GPBNC could be a beneficial nanocarrier for theranostic purposes against TNBC, while our conceptual study clearly demonstrates the role of various factors in increasing relaxometric parameters.
Collapse
Affiliation(s)
- Panchanan Sahoo
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute, Giridih, Jharkhand, India.
| | - Pulak Jana
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Sudip Kundu
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Snehasis Mishra
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute, Giridih, Jharkhand, India.
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
2
|
Layered Gadolinium-Europium-Terbium Hydroxides Sensitised with 4-Sulfobenzoate as All Solid-State Luminescent Thermometers. INORGANICS 2022. [DOI: 10.3390/inorganics10120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Ternary layered gadolinium-europium-terbium basic chlorides were synthesised using a facile hydrothermal-microwave technique. A continuous series of solid solutions was obtained in a full range of rare earth concentrations. To sensitise the luminescence of Eu3+ and Tb3+, a 4-sulfobenzoate anion was intercalated in the ternary layered rare earth hydroxides using one of two methods—a high-temperature ion exchange or a single-stage synthesis. The luminescent colour of the materials was governed by the gadolinium content: at low and medium gadolinium concentrations (0–70%), layered Gd-Eu-Tb basic sulfobenzoate exhibited a bright red europium luminescence; at high gadolinium content (70–90%), a bright green terbium luminescence was observed. The colour coordinates of layered Gd-Eu-Tb basic sulfobenzoate luminescence depended on the temperature in the physiological range (20–50 °C). The relative thermal sensitivity of the obtained materials was up to 2.9%·K−1.
Collapse
|
3
|
Ismail A, Raya NR, Orabi A, Ali AM, Abo-zeid Y. Investigating the Antibacterial Activity and Safety of Zinc Oxide Nanoparticles versus a Commercial Alcohol-Based Hand-Sanitizer: Can Zinc Oxide Nanoparticles Be Useful for Hand Sanitation? Antibiotics (Basel) 2022; 11:antibiotics11111606. [PMID: 36421249 PMCID: PMC9686634 DOI: 10.3390/antibiotics11111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Hand hygiene is the key factor to control and prevent the spread of infections, for example, hospital-acquired infections (HAIs). People commonly use alcohol-based hand sanitizers to assure hand hygiene. However, frequent use of alcohol-based hand sanitizers in a pandemic situation (e.g., COVID-19) was associated with serious drawbacks such as skin toxicity including irritation, skin dermatitis, and skin dryness or cracking, along with peeling, redness, or itching with higher possibility of infection. This demands the development of alternative novel products that are effective as alcohol-based hand sanitizers but have no hazardous effects. Zinc oxide nanoparticles (ZnO-NPs) are known to have broad-spectrum antimicrobial activity, be compatible with the biological system and the environment, and have applicable and economic industrial-scale production. Thus, ZnO-NPs might be a good candidate for hand sanitation. To the best of our knowledge, the antibacterial activity of ZnO-NPs in comparison to alcohol-based hand sanitizers has not yet been studied. In the present work, a comparative study of the antibacterial activity of ZnO-NPs vs. Sterillium, a commercial alcohol-based hand sanitizer that is commonly used in Egyptian hospitals, was performed against common microorganisms known to cause HAIs in Egypt, including Acinetobacter baumannii, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus aureus. The safety profiles of ZnO-NPs and Sterillium were also assessed. The obtained results demonstrated the superior antibacterial activity and safety of ZnO-NPs compared to Sterillium. Therefore, ZnO-NPs could be a promising candidate for hand sanitation in comparison to alcohol-based hand sanitizers; however, several studies related to long-term toxicity and stability of ZnO-NPs and investigations into their antimicrobial activity and safety in healthcare settings are still required in the future to ascertain their antimicrobial activity and safety.
Collapse
Affiliation(s)
- Aliaa Ismail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Nermeen R. Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Ahmed Orabi
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Alaa M. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
- Correspondence: ; Tel.: +20-1092792846
| |
Collapse
|
4
|
Ali AM, Hill HJ, Elkhouly GE, Bakkar MR, Raya NR, Stamataki Z, Abo-Zeid Y. Rhamnolipid Nano-Micelles Inhibit SARS-CoV-2 Infection and Have No Dermal or Eye Toxic Effects in Rabbits. Antibiotics (Basel) 2022; 11:1556. [PMID: 36358211 PMCID: PMC9686650 DOI: 10.3390/antibiotics11111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Hand hygiene is considered to be the key factor in controlling and preventing infection, either in hospital care settings or in the community. Alcohol-based hand sanitizers are commonly used due to their rapid action and broad spectrum of microbicidal activity, offering protection against bacteria and viruses. However, their frequent administration during COVID-19 pandemic was associated with serious hazards, such as skin toxicity, including irritation, skin dermatitis, skin dryness or cracking, along with peeling redness or itching, with the higher possibility of getting infections. Thus, there is a need to find alternative and novel approaches for hand sanitation. In our previous publications, we reported that rhamnolipids nano-micelles had a comparable antibacterial activity to alcohol-based hand sanitizer and a lower cytotoxicity against human dermal fibroblast cells. In the current study, we investigated the antiviral activity of rhamnolipids nano-micelles against SARS-CoV-2. There was no cytotoxic effect on Vero cells noted at the tested concentrations of rhamnolipids nano-micelles. The rhamnolipids nano-micelles solution at 20, 78, and 312 µg/mL all demonstrated a significant (p < 0.05) decrease of virus infectivity compared to the virus only and the blank vehicle sample. In addition, an acute irritation test was performed on rabbits to further ascertain the biosafety of rhamnolipids nano-micelles. In the eye and skin irritation tests, no degree of irritation was recorded after topical application of rhamnolipids nano-micelles. In addition, histopathological, biomarker, and hematological analyses from animals treated with rhamnolipids nano-micelles were identical to those recorded for untreated animal. From the above, we can conclude that rhamnolipids nano-micelles are a good candidate to be used as a hand sanitizer instead of alcohol-based hand sanitizers. However, they must still be tested in the future among healthcare workers (HCW) in a health care setting to ascertain their antimicrobial efficacy and safety compared to alcohol-based hand sanitizers.
Collapse
Affiliation(s)
- Alaa M Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Harriet J Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Gehad E Elkhouly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Marwa Reda Bakkar
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Nermeen R Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Yasmin Abo-Zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| |
Collapse
|
5
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
6
|
Abo-zeid Y, Bakkar MR, Elkhouly GE, Raya NR, Zaafar D. Rhamnolipid Nano-Micelles versus Alcohol-Based Hand Sanitizer: A Comparative Study for Antibacterial Activity against Hospital-Acquired Infections and Toxicity Concerns. Antibiotics (Basel) 2022; 11:antibiotics11050605. [PMID: 35625249 PMCID: PMC9137935 DOI: 10.3390/antibiotics11050605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Hospital-acquired infections (HAIs) are considered to be a major global healthcare challenge, in large part because of the development of microbial resistance to currently approved antimicrobial drugs. HAIs are frequently preventable through infection prevention and control measures, with hand hygiene as a key activity. Improving hand hygiene was reported to reduce the transmission of healthcare-associated pathogens and HAIs. Alcohol-based hand sanitizers are commonly used due to their rapid action and broad spectrum of microbicidal activity, offering protection against bacteria and viruses. However, their frequent administration has been reported to be associated with many side effects, such as skin sensitivity, skin drying, and cracks, which promote further skin infections. Thus, there is an essential need to find alternative approaches to hand sanitation. Rhamnolipids are glycolipids produced by Pseudomonas aeruginosa, and were shown to have broad antimicrobial activity as biosurfactants. We have previously demonstrated the antimicrobial activity of rhamnolipid nano-micelles against selected drug-resistant Gram-negative (Salmonella Montevideo and Salmonella Typhimurium) and Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae). To the best of our knowledge, the antimicrobial activity of rhamnolipid nano-micelles in comparison to alcohol-based hand sanitizers against microorganisms commonly causing HAIs in Egypt—such as Acinetobacter baumannii and Staphylococcus aureus—has not yet been studied. In the present work, a comparative study of the antibacterial activity of rhamnolipid nano-micelles versus alcohol-based hand sanitizers was performed, and their safety profiles were also assessed. It was demonstrated that rhamnolipid nano-micelles had a comparable antibacterial activity to alcohol-based hand sanitizer, with a better safety profile, i.e., rhamnolipid nano-micelles are unlikely to cause any harmful effects on the skin. Thus, rhamnolipid nano-micelles could be recommended to replace alcohol-based hand sanitizers; however, they must still be tested by healthcare workers in healthcare settings to ascertain their antimicrobial activity and safety.
Collapse
Affiliation(s)
- Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
- Correspondence: ; Tel.: +20-10-92792846
| | - Marwa Reda Bakkar
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Gehad E. Elkhouly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Nermeen R. Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Modern University for Technology and Information, Cairo 12055, Egypt;
| |
Collapse
|
7
|
Zhang Z, Wells CJR, Liang R, Davies GL, Williams GR. Gadolinium Doped Layered Double Hydroxides for Simultaneous Drug Delivery and Magnetic Resonance Imaging. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn this study, gadolinium (Gd) doped MgAl layered double hydroxides (LDHs) were synthesized via a ‘bottom-up’ method and fully characterized by X-ray diffraction, infrared spectroscopy and relaxivity measurements. Two cytotoxic agents were then intercalated via ion-exchange. X-ray diffraction patterns exhibit expanded interlayer spacings as a result of successful drug intercalation. Infrared spectra also showed characteristic peaks of the incorporated methotrexate (MTX) or 5-fluorouracil (5-FU). The LDHs were found to be highly stable under physiological conditions, while in acidic conditions a small proportion of Gd was freed into the immersion medium. Dissolution tests revealed that both 5FU and MTX were rapidly released from the LDH carrier. The longitudinal relaxivity of Gd-LDHs remains largely stable during drug release over 24 h, and was higher in acidic environments. Overall, the drug-loaded Gd-LDH systems prepared in this study could serve as pH-sensitive theranostic platforms for MRI-guided anti-cancer therapy.
Collapse
|
8
|
Zhang Z, Wang Y, Rizk MM, Liang R, Wells CJ, Gurnani P, Zhou F, Davies GL, Williams GR. Thermo-responsive nano-in-micro particles for MRI-guided chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112716. [DOI: 10.1016/j.msec.2022.112716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
|
9
|
Magnetic and Highly Luminescent Heterostructures of Gd 3+/ZnO Conjugated to GCIS/ZnS Quantum Dots for Multimodal Imaging. NANOMATERIALS 2021; 11:nano11071817. [PMID: 34361202 PMCID: PMC8308360 DOI: 10.3390/nano11071817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
In recent years, the use of quantum dots (Qdots) to obtain biological images has attracted attention due to their excellent luminescent properties and the possibility of their association with contrast agents for magnetic resonance imaging (MRI). In this study, Gd3+/ZnO (ZnOGd) were conjugated with Qdots composed of a gadolinium-copper-indium-sulphur core covered with a ZnS shell (GCIS/ZnS Qdots). This conjugation is an innovation that has not yet been described in the literature, and which aims to improve Qdot photoluminescent properties. Structural and morphological Qdots features were obtained by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analyses (TGA). The photoluminescent properties were examined by emission (PL) and excitation (PLE) spectra. A new ZnOGd and GCIS/ZnS (ZnOGd-GCIS/ZnS) nanomaterial was synthesized with tunable optical properties depending on the ratio between the two native Qdots. A hydrophilic or lipophilic coating, using 3-glycidyloxypropyltrimethoxysilane (GPTMS) or hexadecyltrimethoxysilane (HTMS) on the surface of ZnOGd-GCIS/ZnS Qdots, was carried out before assessing their efficiency as magnetic resonance contrast agents. ZnOGd-GCIS/ZnS had excellent luminescence and MRI properties. The new Qdots developed ZnOGd-GCIS/ZnS, mostly constituted of ZnOGd (75%), which had less cytotoxicity when compared to ZnOGd, as well as greater cellular uptake.
Collapse
|
10
|
Bakkar MR, Faraag AHI, Soliman ERS, Fouda MS, Sarguos AMM, McLean GR, Hebishy AMS, Elkhouly GE, Raya NR, Abo-zeid Y. Rhamnolipids Nano-Micelles as a Potential Hand Sanitizer. Antibiotics (Basel) 2021; 10:751. [PMID: 34206211 PMCID: PMC8300634 DOI: 10.3390/antibiotics10070751] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a pandemic disease caused by the SARS-CoV-2, which continues to cause global health and economic problems since emerging in China in late 2019. Until now, there are no standard antiviral treatments. Thus, several strategies were adopted to minimize virus transmission, such as social distancing, face covering protection and hand hygiene. Rhamnolipids are glycolipids produced formally by Pseudomonas aeruginosa and as biosurfactants, they were shown to have broad antimicrobial activity. In this study, we investigated the antimicrobial activity of rhamnolipids against selected multidrug resistant bacteria and SARS-CoV-2. Rhamnolipids were produced by growing Pseudomonas aeruginosa strain LeS3 in a new medium formulated from chicken carcass soup. The isolated rhamnolipids were characterized for their molecular composition, formulated into nano-micelles, and the antibacterial activity of the nano-micelles was demonstrated in vitro against both Gram-negative and Gram-positive drug resistant bacteria. In silico studies docking rhamnolipids to structural and non-structural proteins of SARS-CoV-2 was also performed. We demonstrated the efficient and specific interaction of rhamnolipids with the active sites of these proteins. Additionally, the computational studies suggested that rhamnolipids have membrane permeability activity. Thus, the obtained results indicate that SARS-CoV-2 could be another target of rhamnolipids and could find utility in the fight against COVID-19, a future perspective to be considered.
Collapse
Affiliation(s)
- Marwa Reda Bakkar
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt; (M.R.B.); (A.H.I.F.)
| | - Ahmed Hassan Ibrahim Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt; (M.R.B.); (A.H.I.F.)
- Bioinformatics Center, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Elham R. S. Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt;
| | - Manar S. Fouda
- Biochemistry and Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt;
| | | | - Gary R. McLean
- Cellular and Molecular Immunology Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK;
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Ali M. S. Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Gehad E. Elkhouly
- Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Helwan, Cairo 11795, Egypt
| | - Nermeen R. Raya
- Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Helwan, Cairo 11795, Egypt
| | - Yasmin Abo-zeid
- Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Helwan, Cairo 11795, Egypt
| |
Collapse
|