1
|
The construct of a novel threefold interpenetrating uranium-organic framework as a sensor for detecting Ru3+. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Zhang X, Yang S, Lu W, Tian Y, Liu Z, Zhao Y, Liu A. One-Dimensional Co-Carbonate Hydroxide@Ni-MOFs Composite with Super Uniform Core-Shell Heterostructure for Ultrahigh Rate Performance Supercapacitor Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200656. [PMID: 35466571 DOI: 10.1002/smll.202200656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The insufficient contact between two phases in the heterostructure weakens the coupling interaction effect, which makes it difficult to effectively improve the electrochemical performance. Herein, a Co-carbonate hydroxide@ Ni-metal organic frameworks (Co-CH@Ni-MOFs) composite with super uniform core-shell heterostructure is fabricated by adopting 1D Co-CH nanowires as structuredirecting agents to induce the coating of Ni-MOFs. Both experimental and theoretical calculation results demonstrate that the heterostructure plays a vital role in the high performance of the as-prepared materials. On the one hand, the construction of super uniform core-shell heterostructure can create a large number of interfacial active sites and take advantages of the electrochemical characteristics of each component. On the other hand, the heterostructure can increase the adsorption energy of OH- ions and promote the electrochemical activity for improving the reversible redox reaction kinetics. Based on the aforementioned advantages, the as-fabricated Co-CH@Ni-MOFs electrode exhibits a high specific capacity of 173.1 mAh g-1 (1246 F g-1 ) at 1 A g-1 , an ultrahigh rate capability of 70.3% at 150 A g-1 and excellent cycling stability with 90.1% capacity retention after 10 000 cycles at 10 A g-1 . This study may offer a versatile design for fabricating a MOFs-based heterostructure as energy storage electrodes.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Shixuan Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Wang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Yuhan Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Zhiqing Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Yingyuan Zhao
- College of Chemical Engineering and Safety, Binzhou University, Binzhou, Shandong, 256603, China
| | - Anmin Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning, 124221, China
| |
Collapse
|