1
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
2
|
Lai H, Li G. Recent progress on media for biological sample preparation. J Chromatogr A 2024; 1734:465293. [PMID: 39181092 DOI: 10.1016/j.chroma.2024.465293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The analysis of biological samples is highly valuable for disease diagnosis and treatment, forensic examination, and public safety. However, the serious matrix interference effect generated by biological samples severely affects the analysis of trace analytes. Sample preparation methods are introduced to address the limitation by extracting, separating, enriching, purifying trace target analytes from biological samples. With the raising demand of biological sample analysis, a review focuses on media for biological sample preparation and analysis over the last 5 years is presented. High-performance media in biological sample preparation are first reviewed, including porous organic frameworks, imprinted polymers, hydrogels, ionic liquids, and bioactive media. Then, application of media for different biological sample preparation and analysis is briefly introduced, including liquid samples of body fluids, solid samples (hair, feces, and tissues), and gas samples of exhale breath gas. Finally, conclusions and outlooks on media promoting biological sample preparation are presented.
Collapse
Affiliation(s)
- Huasheng Lai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China; School of chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Deng Y, Guo M, Zhou L, Huang Y, Srivastava S, Kumar A, Liu JQ. Prospects, advances and biological applications of MOF-based platform for the treatment of lung cancer. Biomater Sci 2024; 12:3725-3744. [PMID: 38958409 DOI: 10.1039/d4bm00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nowadays in our society, lung cancer is exhibiting a high mortality rate and threat to human health. Conventional diagnostic techniques used in the field of lung cancer often necessitate the use of extensive instrumentation, exhibit a tendency for false positives, and are not suitable for widespread early screening purposes. Conventional approaches to treat lung cancer primarily involve surgery, chemotherapy, and radiotherapy. However, these broad-spectrum treatments suffer from drawbacks such as imprecise targeting and significant side effects, which restrict their widespread use. Metal-organic frameworks (MOFs) have attracted significant attention in the diagnosis and treatment of lung cancer owing to their tunable electronic properties and structures and potential applications. These porous nanomaterials are formed through the intricate assembly of metal centers and organic ligands, resulting in highly versatile frameworks. Compared to traditional diagnostic and therapeutic modalities, MOFs can improve the sensitivity of lung cancer biomarker detection in the diagnosis of lung cancer. In terms of treatment, they can significantly reduce side effects and improve therapeutic efficacy. Hence, this perspective provides an overview concerning the advancements made in the field of MOFs as potent biosensors for lung cancer biomarkers. It also delves into the latest research dealing with the use of MOFs as carriers for drug delivery. Additionally, it explores the applications of MOFs in various therapeutic approaches, including chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Furthermore, this review comprehensively analyses potential applications of MOFs as biosensors in the field of lung cancer diagnosis and combines different therapeutic approaches aiming for enhanced therapeutic efficacy. It also presents a concise overview of the existing obstacles, aiming to pave the way for future advancements in lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Yong Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Shreya Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jian-Qiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
4
|
Ronaghi M, Hajibeygi R, Ghodsi R, Eidi A, Bakhtiari R. Preparation of UiO-66 loaded Letrozole nano-drug delivery system: enhanced anticancer and apoptosis activity. AMB Express 2024; 14:38. [PMID: 38622436 PMCID: PMC11018590 DOI: 10.1186/s13568-024-01689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
The use of drug delivery systems in targeting and achieving the targeting of drugs in treating diseases, especially cancer, has attracted the attention of researchers. Letrozole is one of the drugs for the treatment of breast cancer. In this study, the organic-metallic pharmaceutical porous nanostructure based on zirconium UiO-66 loaded letrozole was synthesized. Its cytotoxicity and effect on apoptosis and migration against breast cancer cell line were investigated. In this experimental study, the UiO-66 nanoparticle-loaded letrozole was synthesized using zirconium chloride (ZrCl4), dimethylformamide (DMF), and HCl. Its characteristics were determined by scanning electron microscopy, and its average size was determined by the DLS method. Also, the rate of letrozole drug release from the nanoparticle was investigated in 24, 48, and 72 h. In addition, its cytotoxicity effects were investigated using the MTT colorimetric method at concentrations of 3.125-100 µg/ml against the breast cancer cell line (MCF-7) in the periods of 48 and 72 h. Also, the expression level of apoptotic genes Bax and Bcl2 was investigated by the Real-Time PCR method. Also, the amount of cell migration was done by the migration assay method. The results showed that UiO-66 bound to letrozole had a spherical morphology and an average size of 9.2 ± 160.1. Also, the letrozole drug was loaded by 62.21 ± 1.80% in UiO-66 nanoparticles and had a slower release pattern than free letrozole in the drug release test, so within 72 h, 99.99% of free letrozole was released in If in UiO-66 containing letrozole, 57.55% of the drug has been released. Also, the cytotoxicity results showed that UiO-66 bound to letrozole has more significant cytotoxic effects than free letrozole (p < 0.05). Also, the results of Bax and Bcl2 gene expression showed that the treatment of MCF-7 cells with UiO-66 nanoparticles attached to letrozole increased the expression of Bax and Bcl2 genes compared to the reference gene Beta-actin in MCF-7 cell line, respectively. (p < 0.05) increased by 3.71 ± 0.42 and (p < 0.01) decreased by 0.636 ± 0.034 (p < 0.05). Cell migration results showed that the concentration of 50 µg/ml of UiO-66 bound to letrozole decreased the migration of MCF-7 cells. Generally, the results of this study showed that UiO-66 loaded letrozole can be used as a suitable drug carrier for cellular purposes, as it has increased the effects of cytotoxicity and the rate of apoptosis in breast cancer cell line (MCF-7), so it can be used with more studies used nanocarriers as a drug delivery system.
Collapse
Affiliation(s)
- Maryam Ronaghi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Hajibeygi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Reza Ghodsi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li H, Han S, Niu X, Wang K. Revelation of the Electrochemical Chiral Recognition of l-Proline-Tuned Zr-MOFs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44127-44136. [PMID: 37731221 DOI: 10.1021/acsami.3c10543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chirality plays an extremely important role in nature. In this work, a highly ordered and non-clustered crystalline material UiO-88-LP was synthesized by using l-proline (l-Pro)-tuning Zr-MOF and the solvothermal method, which was then modified on the glassy carbon electrode (GCE) to construct an electrochemical chiral interface for the recognition of tryptophan (Trp) configuration. UiO-88-LP composites were characterized by scanning electron microscopy, X-ray transmission diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. After optimization of the experimental conditions, redox peaks for l-Trp and d-Trp were clearly observed at the UiO-88-LP/GCE electrochemical sensing interface with a peak-to-current ratio (IL/ID) of 2.47. The peak current was positively correlated with the concentration of Trp. The electrochemical recognition behavior of l-Trp and d-Trp was investigated by differential pulse voltammetry. The electrochemical characterization showed that UiO-88-LP/GCE had an enantiomeric resolution of amino acids. The recognition mechanism showed that l-Pro entering the UiO-66 molecular cage provided a site for the system to be recognized, so the purpose of recognition was achieved. The relevant data provide theoretical support for the practical application of UiO-88-LP in electrochemical sensors.
Collapse
Affiliation(s)
- Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Sha Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
6
|
Zhang Z, Liu L, Zhang T, Tang H. Efficient Eu 3+-Integrated UiO-66 Probe for Ratiometric Fluorescence Sensing of Styrene and Cyclohexanone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18982-18991. [PMID: 37027140 DOI: 10.1021/acsami.3c01204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The development of probes with sensitive and prompt detection of volatile organic compounds (VOCs) is of great importance for protecting human health and public security. Herein, we successfully prepared a series of bimetallic lanthanide metal-organic framework (Eu/Zr-UiO-66) by incorporating Eu3+ for fluorescence sensing of VOCs (especially styrene and cyclohexanone) using a one-pot method. Based on the multiple fluorescence signal responses of Eu/Zr-UiO-66 toward styrene and cyclohexanone, a ratiometric fluorescence probe using (I617/I320) and (I617/I330) as output signals was developed to recognize styrene and cyclohexanone, respectively. Benefitting from the multiple fluorescence response, the limits of detection (LODs) of Eu/Zr-UiO-66 (1:9) for styrene and cyclohexanone were 1.5 and 2.5 ppm, respectively. These are among the lowest reported levels for MOF-based sensors, and this is the first known material for fluorescence sensing of cyclohexanone. Fluorescence quenching by styrene was mainly owing to the large electronegativity of styrene and fluorescence resonance energy transfer (FRET). However, FRET was accounted for fluorescence quenching by cyclohexanone. Moreover, Eu/Zr-UiO-66 (1:9) exhibited good anti-interference ability and recycling performance for styrene and cyclohexanone. More importantly, the visual recognition of styrene and EB vapor can be directly realized with the naked eyes using Eu/Zr-UiO-66 (1:9) test strips. This strategy provides a sensitive, selective, and reliable method for the visual sensing of styrene and cyclohexanone.
Collapse
Affiliation(s)
- Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Luping Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Teng Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
7
|
Pourmadadi M, Eshaghi MM, Ostovar S, Shamsabadipour A, Safakhah S, Mousavi MS, Rahdar A, Pandey S. UiO-66 metal-organic framework nanoparticles as gifted MOFs to the biomedical application: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zheng Y, Zhao Y, Bai M, Gu H, Li X. Metal-organic frameworks as a therapeutic strategy for lung diseases. J Mater Chem B 2022; 10:5666-5695. [PMID: 35848605 DOI: 10.1039/d2tb00690a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lung diseases remain a global burden today. Lower respiratory tract infections alone cause more than 3 million deaths worldwide each year and are on the rise every year. In particular, with coronavirus disease raging worldwide since 2019, we urgently require a treatment for lung disease. Metal organic frameworks (MOFs) have a broad application prospect in the biomedical field due to their remarkable properties. The unique properties of MOFs allow them to be applied as delivery materials for different drugs; diversified structural design endows MOFs with diverse functions; and they can be designed as various MOF-drug synergistic systems. This review concentrates on the synthesis design and applications of MOF based drugs against lung diseases, and discusses the possibility of preparing MOF-based inhalable formulations. Finally, we discuss the chances and challenges of using MOFs for targeting lung diseases in clinical practice.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengting Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Huang Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Preparation of Au@ZnO Nanofilms by Combining Magnetron Sputtering and Post-Annealing for Selective Detection of Isopropanol. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate the highly sensitive and fast response/recovery gas sensors for detecting isopropanol (IPA), in which the Au-nanoparticles-modified ZnO (Au@ZnO) nanofilms act as the active layers. The data confirm that both the response and the response/recovery speed for the detection of IPA are significantly improved by adding Au nanoparticles on the surface of ZnO nanofilms. The gas sensor with an Optimum Au@ZnO nanofilm exhibits the highest responses of 160 and 7 to the 100 and 1 ppm IPA at 300 °C, which indicates high sensitivity and a very low detecting limit. The sensor also exhibits a very short response/recovery time of 4/15 s on the optimized Au@ZnO nanofilm, which is much shorter than that of the sensor with a pure ZnO nanofilm. The mechanisms of the performance improvement in the sensors are discussed in detail. Both the electronic sensitization and the chemical sensitization of the ZnO nanofilms are improved by the modified Au nanoparticles, which not only regulate the thickness of the depletion layer but also increase the amount of adsorbed oxygen species on the surfaces. This work proposes a strategy to develop a highly sensitive gas sensor for real-time monitoring of IPA.
Collapse
|