1
|
Kikuno M, Ueno Y. Overview and Future Direction of Embolic Stroke of Undetermined Source from the Insights of CHALLENGE ESUS/CS Registry. J Atheroscler Thromb 2024; 31:1641-1651. [PMID: 39343604 PMCID: PMC11620840 DOI: 10.5551/jat.rv22026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024] Open
Abstract
Cryptogenic stroke (CS) accounts for approximately one-fourth of acute ischemic strokes, with most cases derived from embolic etiologies. In 2014, embolic stroke of undetermined source (ESUS) was advocated and the efficacy of anticoagulant therapy was anticipated. However, 3 large-scale clinical trials failed to demonstrate the superiority of direct oral anticoagulants (DOACs) over aspirin, potentially due to the heterogeneous and diverse pathologies of ESUS, including paroxysmal atrial fibrillation (AF), arteriogenic sources such as nonstenotic carotid plaque and aortic complicated lesion (ACL), patent foramen oval (PFO), and nonbacterial thrombotic endocarditis (NBTE) related to active cancer.Transesophageal echocardiography (TEE) is one of the most effective imaging modalities for assessing embolic sources in ESUS and CS. The Mechanisms of Embolic Stroke Clarified by Transesophageal Echocardiography for Embolic Stroke of Undetermined Source/Cryptogenic Stroke (CHALLENGE ESUS/CS) registry is a multicenter registry that enrolled consecutive patients with CS who underwent TEE at 8 hospitals in Japan between April 2014 and December 2016. Their mean age was 68.7±12.8 years, and 455 patients (67.2%) were male. The median National Institutes of Health Stroke Scale (NIHSS) score was 2. Since 7 analyses have been conducted from each institution to date, novel and significant insights regarding embolic origins and pathophysiologies of ESUS and CS were elucidated from this multicenter registry. This review discusses the diagnosis and treatment of ESUS and CS, tracing their past and future directions. Meaningful insights from the CHALLENGE ESUS/CS registry are also referenced and analyzed.
Collapse
Affiliation(s)
- Muneaki Kikuno
- Depratment of Neurology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yuji Ueno
- Department of Neurology, University of Yamanashi Hospital, Yamanashi, Japan
| |
Collapse
|
2
|
Shahjouei S, Chaudhary D, Sadighi A, Khan A, Romeo A, Cabrera F, Ishaq F, Aghayari Sheikh Neshin S, Bayan N, Abedi V, Zand R. Prevalence and associated factors of cerebral microbleeds in a rural population of the United States. J Stroke Cerebrovasc Dis 2024; 33:107527. [PMID: 38183963 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Cerebral microbleeds (CMBs) can carry an advanced risk for the development and burden of cerebrovascular and cognitive disorders. Large-scale population-based studies are required to identify the at-risk population. METHOD Ten percent (N = 3,056) of the Geisinger DiscovEHR Initiative Cohort participants who had brain magnetic resonance imaging (MRI) for any indication were randomly selected. Patients with CMBs were compared to an age-, gender-, body mass index-, and hypertension-matched cohort of patients without CMB. The prevalence of comorbidities and use of anticoagulation therapy was investigated in association with CMB presence (binary logistic regression), quantity (ordinal regression), and topography (multinomial regression). RESULTS Among 3,056 selected participants, 477 (15.6 %) had CMBs in their MRI. Patients with CMBs were older and were more prevalently hypertensive, with ischemic stroke, arrhythmia, dyslipidemia, coronary artery disease, and the use of warfarin. After propensity-score matching, 477 patients with CMBs and 974 without were included for further analyses. Predictors of ≥5 CMBs were ischemic stroke (OR, 1.6; 95 % CI, 1.2 -2.0), peripheral vascular disease (OR, 1.6; 95 % CI, 1.1-2.3), and thrombocytopenia (OR, 1.9; 95 % CI, 1.2-2.9). Ischemic stroke was associated with strictly lobar CMBs more strongly than deep/infra-tentorial CMBs (OR, 2.1; 95 % CI, 1.5-3.1; vs. OR, 1.4; CI, 1.1-1.8). CONCLUSIONS CMBs were prevalent in our white population. Old age, hypertension, anticoagulant treatment, thrombocytopenia, and a history of vascular diseases including stroke, were associated with CMBs.
Collapse
Affiliation(s)
- Shima Shahjouei
- Department of Neurology, Milton S. Hershey Medical Center, Penn State Health, Hershey, PA, USA; Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA
| | - Durgesh Chaudhary
- Department of Neurology, Milton S. Hershey Medical Center, Penn State Health, Hershey, PA, USA; Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA
| | - Alireza Sadighi
- Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA
| | - Ayesha Khan
- Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA
| | - Alexander Romeo
- Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA
| | - Fedor Cabrera
- Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA
| | - Farhan Ishaq
- Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA
| | | | - Nikoo Bayan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Abedi
- Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA; Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Ramin Zand
- Department of Neurology, Milton S. Hershey Medical Center, Penn State Health, Hershey, PA, USA; Neurology Department, Neuroscience Institute, Geisinger Health System, PA, USA.
| |
Collapse
|
3
|
Gao Y, Wang S, Xin H, Feng M, Zhang Q, Sui C, Guo L, Liang C, Wen H. Disrupted Gray Matter Networks Associated with Cognitive Dysfunction in Cerebral Small Vessel Disease. Brain Sci 2023; 13:1359. [PMID: 37891728 PMCID: PMC10605932 DOI: 10.3390/brainsci13101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to investigate the disrupted topological organization of gray matter (GM) structural networks in cerebral small vessel disease (CSVD) patients with cerebral microbleeds (CMBs). Subject-wise structural networks were constructed from GM volumetric features of 49 CSVD patients with CMBs (CSVD-c), 121 CSVD patients without CMBs (CSVD-n), and 74 healthy controls. The study used graph theory to analyze the global and regional properties of the network and their correlation with cognitive performance. We found that both the control and CSVD groups exhibited efficient small-world organization in GM networks. However, compared to controls, CSVD-c and CSVD-n patients exhibited increased global and local efficiency (Eglob/Eloc) and decreased shortest path lengths (Lp), indicating increased global integration and local specialization in structural networks. Although there was no significant global topology change, partially reorganized hub distributions were found between CSVD-c and CSVD-n patients. Importantly, regional topology in nonhub regions was significantly altered between CSVD-c and CSVD-n patients, including the bilateral anterior cingulate gyrus, left superior parietal gyrus, dorsolateral superior frontal gyrus, and right MTG, which are involved in the default mode network (DMN) and sensorimotor functional modules. Intriguingly, the global metrics (Eglob, Eloc, and Lp) were significantly correlated with MoCA, AVLT, and SCWT scores in the control group but not in the CSVD-c and CSVD-n groups. In contrast, the global metrics were significantly correlated with the SDMT score in the CSVD-s and CSVD-n groups but not in the control group. Patients with CSVD show a disrupted balance between local specialization and global integration in their GM structural networks. The altered regional topology between CSVD-c and CSVD-n patients may be due to different etiological contributions, which may offer a novel understanding of the neurobiological processes involved in CSVD with CMBs.
Collapse
Affiliation(s)
- Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Shengpei Wang
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100040, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Mengmeng Feng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York. 407 East 61st Street, New York, NY 10044, USA;
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-Wu Road No. 324, Jinan 250021, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Takei J, Higuchi Y, Ando M, Yoshimura A, Yuan JH, Fujisaki N, Tokashiki T, Kanzato N, Jonosono M, Sueyoshi T, Kanda N, Matsuoka H, Okubo R, Suehara M, Matsuura E, Takashima H. Microbleed clustering in thalamus sign in CADASIL patients with NOTCH3 R75P mutation. Front Neurol 2023; 14:1241678. [PMID: 37681004 PMCID: PMC10480842 DOI: 10.3389/fneur.2023.1241678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Background and objective Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited cerebral microvascular disease characterized by the development of vascular dementia and lacunar infarctions. This study aimed to identify the genetic and clinical features of CADASIL in Japan. Methods We conducted genetic analysis on a case series of patients clinically diagnosed with CADASIL. Clinical and imaging analyses were performed on 32 patients with pathogenic mutations in the NOTCH3 gene. To assess the presence of cerebral microbleeds (CMBs), we utilized several established rating scales including the Fazekas scale, Scheltens rating scale, and Microbleed Anatomical Rating Scale, based on brain MRI images. Results Among the 32 CADASIL patients, 24 cases were found carrying the R75P mutation in NOTCH3, whereas the remaining eight cases had other NOTCH3 mutations (R75Q, R110C, C134F, C144F, R169C, and R607C). The haplotype analysis of the R75P mutation uncovered the presence of a founder effect. A brain MRI analysis revealed that cases with the R75P mutation had a significantly higher total number of CMBs, particularly in the thalamus when compared to patients with other NOTCH3 mutations. Among 15 out of 24 cases with the R75P mutation, we observed a notable clustering of CMBs in the thalamus, termed microbleed clustering in thalamus sign (MCT sign). Conclusion We propose that the MCT sign observed in NOTCH3 R75P-related CADASIL patients may serve as a potentially characteristic imaging feature. This finding offers further insights into the interactions between genotypes and phenotypes between NOTCH3 and CADASIL.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Natsumi Fujisaki
- Department of Neurology, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Takashi Tokashiki
- Department of Neurology, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Naomi Kanzato
- Department of Neurology, Okinawa Prefectural Southern Medical Center & Children's Medical Center, Okinawa, Japan
| | - Manabu Jonosono
- Department of Neurology, Okinawa Chubu Hospital, Okinawa, Japan
| | | | - Naoaki Kanda
- Department of Neurology, Imamura General Hospital, Kagoshima, Japan
| | - Hideki Matsuoka
- Department of Cerebrovascular Medicine, Stroke Center, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Ryuichi Okubo
- Department of Neurology, Fujimoto General Hospital, Miyazaki, Japan
| | - Masahito Suehara
- Department of Neurology, Fujimoto General Hospital, Miyazaki, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
5
|
Liu R, Shi X, Feng J, Piao J, Yang Z, Zhao Y, Yin H, Chen X. Ischemic Stroke and Cerebral Microbleeds: A Two-Sample Bidirectional Mendelian Randomization Study. Neurol Ther 2023; 12:1299-1308. [PMID: 37270442 PMCID: PMC10310681 DOI: 10.1007/s40120-023-00500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
INTRODUCTION Recent observational studies have reported the association between ischemic stroke (IS) and cerebral microbleeds (CMBs). Whether this reflects a causal association remains to be established. Herein, we adopted a two-sample bidirectional Mendelian randomization (MR) analysis to comprehensively evaluate the causal association of IS and CMBs. METHODS The summary-level genome-wide association studies (GWASs) data of IS were obtained from the GIGASTROKE consortium (62,100 European ancestry cases and 1,234,808 European ancestry controls). All IS cases could be further divided into large-vessel atherosclerosis stroke (LVS, n = 6399), cardio-embolic stroke (CES, n = 10,804) and small-vessel occlusion stroke (SVS, n = 6811). Meanwhile, we used publicly available summary statistics from published GWASs of CMBs (3556 of the 25,862 European participants across 2 large initiatives). A bidirectional MR analysis was conducted using inverse-variance weighting (IVW) as the major outcome, whereas MR-Egger and weighted median (WM) were used to complement the IVW estimates as they can provide more robust estimates in a broader set of scenarios but are less efficient (wider CIs). A Bonferroni-corrected threshold of p < 0.0125 was considered significant, and p values between 0.0125 and 0.05 were considered suggestive of evidence for a potential association. RESULTS We detected that higher risk of IS [IVW odds ratio (OR) 1.47, 95% confidence interval (CI) 1.04-2.07, p = 0.03] and SVS (IVW OR 1.62, 95% CI 1.07-2.47, p = 0.02) were significantly associated with CMBs. Reverse MR analyses found no significant evidence for a causal effect of CMBs on IS and its subtypes. CONCLUSIONS Our study provides potential evidence that IS and SVS are causally linked to increased risk of CMBs. Further research is needed to determine the mechanisms of association between IS and CMBs.
Collapse
Affiliation(s)
- Renjie Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xin Shi
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jiahui Feng
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jianmin Piao
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhongxi Yang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yuhao Zhao
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Haoyuan Yin
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Xuan Chen
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
6
|
Bae SB, Kim S. Imaging features of hyperacute intracerebral hemorrhage on multiple MRI sequences within 1 minute from onset during MRI examination: A case report. Medicine (Baltimore) 2023; 102:e33350. [PMID: 37000090 PMCID: PMC10063255 DOI: 10.1097/md.0000000000033350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
RATIONALE Acute stroke requires accurate imaging to ensure appropriate treatment decisions and favorable clinical outcomes. Computed tomography has long been used as an exclusive imaging technique to assess intracerebral hemorrhage, owing to its rapid scanning time and widespread availability. Several recent studies have reported the reliable detection of hyperacute hemorrhage using magnetic resonance imaging (MRI). PATIENT CONCERNS An 88-year-old woman with a history of hypertension presented with mild, acute dysarthria. The National Institutes of Health Stroke Scale score was 1. DIAGNOSES Non contrast head computed tomography revealed the absence of acute cerebral hemorrhage. The patient underwent magnetic resonance, revealed hyperacute intracerebral hemorrhage within a few minutes of its occurrence on multiple MRI sequences. INTERVENTIONS AND OUTCOMES In this patient, hemorrhage developed during MRI for acute ischemic stroke. Hemorrhage was initially misdiagnosed, and inappropriate treatment severely affected the patient's health. LESSONS Clinicians in the Department of Neurological Emergency should be familiar with imaging findings of hyperacute hemorrhage on multiple MRI sequences.
Collapse
Affiliation(s)
- Sang Bin Bae
- Department of Radiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Sanghyeon Kim
- Department of Radiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| |
Collapse
|
7
|
Komatsu T, Kida H, Ozawa M, Mimori M, Kokubu T, Takahashi J, Kurihara S, Maku T, Motegi H, Takahashi M, Shiraishi T, Nakada R, Kitagawa T, Sato T, Takatsu H, Sakai K, Umehara T, Omoto S, Murakami H, Mitsumura H, Yokoo T, Iguchi Y. Urinary Immunoglobulin G Is Associated with Deep and Infratentorial Cerebral Microbleeds in Stroke Patients. Cerebrovasc Dis 2022; 52:417-426. [PMID: 36349751 DOI: 10.1159/000527019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/03/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Cerebral microbleeds (CMBs) detected on susceptibility-weighted imaging (SWI) are associated with cerebral small vessel disease. Chronic kidney disease and microalbuminuria have been associated with the presence of CMBs in stroke patients. Urinary immunoglobulin G (IgG) is measured to document glomerular injury; however, the relationship between urinary IgG and CMBs is unknown. METHODS We retrospectively enrolled consecutive patients who had been admitted with transient ischemic attack (TIA) or ischemic stroke and identified those who had undergone SWI and a spot urine test. The location of CMBs was classified on magnetic resonance imaging as strictly lobar, deep/infratentorial (D/I), or mixed areas. We analyzed the association between urinary IgG and the presence and location of CMBs. RESULTS We included 298 patients (86 female, median age 70 years, median eGFR 65.8 mL/min/1.73 m2). Positive urinary IgG and CMB results were found in 58 (19%) and 160 patients (54%), respectively. Urinary IgG positivity was significantly associated with CMBs compared with non-CMBs (28% vs. 9%, p < 0.001), and with D/I or mixed CMBs compared with non-D/I or mixed CMBs (34% vs. 10%, p < 0.001). Multivariate analysis revealed that urinary IgG and hypertension positivity were strongly associated with D/I or mixed CMBs (OR 3.479, 95% CI: 1.776-6.818, p < 0.001; OR 3.415, 95% CI: 1.863-6.258, p < 0.001). CONCLUSIONS Urinary IgG was associated with the prevalence of D/I or mixed location CMBs in TIA or ischemic stroke patients. Our findings provide new insights into the association between urinary IgG and the distribution of CMBs.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Kida
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masakazu Ozawa
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Mimori
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsushi Kokubu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Junichiro Takahashi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sumire Kurihara
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Maku
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Maki Takahashi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomotaka Shiraishi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoji Nakada
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeo Sato
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Takatsu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichiro Sakai
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Umehara
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shusaku Omoto
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetomo Murakami
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetaka Mitsumura
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Hou M, Hou X, Qiu Y, Wang J, Zhang M, Mao X, Wu X. Characteristics of Cognitive Impairment and Their Relationship With Total Cerebral Small Vascular Disease Score in Parkinson's Disease. Front Aging Neurosci 2022; 14:884506. [PMID: 35875803 PMCID: PMC9301002 DOI: 10.3389/fnagi.2022.884506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Background This study aimed to investigate the characteristics of cognitive dysfunctions and their relationship with total cerebral small vascular disease (CSVD) in Parkinson’s disease (PD). Methods A total of 174 idiopathic PD patients who underwent brain magnetic resonance imaging (MRI) were recruited. Demographic information, vascular disease risk factors, motor function (MDS-UPDRS III score), and cognitive level (MoCA, MMSE) were collected for these patients. The total CSVD burden was scored based on lacunes, enlarged perivascular spaces (EPVS), high-grade white matter hyperintensities (WMH), and cerebral microbleeds (CMBs) for each subject. Results Cognitive scores on MoCA for language, delayed recall, and orientation were significantly reduced in PD patients with CSVD burden ≥ 1 than in those with CSVD burden = 0. Educational level, PDQ 39, and CSVD burden were significantly associated with MoCA scores in individuals with PD. For the whole group, the full model accounted for 33.6% variation in total MoCA scores. In which, CSVD burden explained 2.7% of the results, and the detection of lacunes, WMH, EPVS, and strictly lobar CMBs were significantly correlated with MoCA scores. The stability of the outcomes was confirmed by sensitivity analysis. Conclusion CSVD can independently contribute to cognitive decline in PD and cause damage in specific cognitive domains. Promoting neurovascular health may help preserve cognitive functions in PD.
Collapse
Affiliation(s)
- Miaomiao Hou
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Hou
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yiqing Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiali Wang
- Department of Neurosurgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mingyang Zhang
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Xiaowei Mao
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Balzano RF, Mannatrizio D, Castorani G, Perri M, Pennelli AM, Izzo R, Popolizio T, Guglielmi G. Imaging of Cerebral Microbleeds: Primary Patterns and Differential Diagnosis. CURRENT RADIOLOGY REPORTS 2021. [DOI: 10.1007/s40134-021-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Myung MJ, Lee KM, Kim HG, Oh J, Lee JY, Shin I, Kim EJ, Lee JS. Novel Approaches to Detection of Cerebral Microbleeds: Single Deep Learning Model to Achieve a Balanced Performance. J Stroke Cerebrovasc Dis 2021; 30:105886. [PMID: 34175642 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Cerebral microbleeds (CMBs) are considered essential indicators for the diagnosis of cerebrovascular disease and cognitive disorders. Traditionally, CMBs are manually interpreted based on criteria including the shape, diameter, and signal characteristics after an MR examination, such as susceptibility-weighted imaging or gradient echo imaging (GRE). In this paper, an efficient method for CMB detection in GRE scans is presented. MATERIALS AND METHODS The proposed framework consists of the following phases: (1) pre-processing (skull extraction), (2) the first training with the ground truth labeled using CMB, (3) the second training with the ground truth labeled with CMB mimicking the same subjects, and (4) post-processing (cerebrospinal fluid (CSF) filtering). The proposed technique was validated on a dataset of 1133 CBMs that consisted of 5284 images for training and 1737 images for testing. We applied a two-stage approach using a region-based CNN method based on You Only Look Once (YOLO) to investigate a novel CMB detection technique. RESULTS The sensitivity, precision, F1-score and false positive per person (FPavg) were evaluated as 80.96, 60.98, 69.57 and 6.57, 59.69, 62.70, 61.16 and 4.5, 66.90, 79.75, 72.76 and 2.15 for YOLO with a single label, YOLO with double labels, and YOLO + CSF filtering, respectively, and YOLO + CSF filtering showed the highest precision performance, F1-score and lowest FPavg. CONCLUSIONS Using proposed framework, we developed an optimized CMB learning model with low false positives and a balanced performance in clinical practice.
Collapse
Affiliation(s)
- Min Jae Myung
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Janghoon Oh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji Young Lee
- Department of Medicine, Graduate School, Kyung Hee University, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ilah Shin
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eui Jong Kim
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Scheumann V, Schreiber F, Perosa V, Assmann A, Mawrin C, Garz C, Heinze HJ, Görtler M, Düzel E, Vielhaber S, Charidimou A, Schreiber S. MRI phenotyping of underlying cerebral small vessel disease in mixed hemorrhage patients. J Neurol Sci 2020; 419:117173. [PMID: 33068905 DOI: 10.1016/j.jns.2020.117173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate underlying cerebral small vessel disease (CSVD) in patients with mixed cerebral hemorrhages patterns and phenotype them according to the contribution of the two most common sporadic CSVD subtypes: cerebral amyloid angiopathy (CAA) vs. hypertensive arteriopathy (HA). METHODS Brain MRIs of patients with intracerebral hemorrhages (ICHs) and/or cerebral microbleeds (CMBs) were assessed for the full spectrum of CSVD markers using validated scales: ICHs, CMBs, cortical superficial siderosis (cSS), white matter hyperintensities, MRI-visible perivascular spaces (PVS). PVS predominance pattern was grouped as centrum-semiovale (CSO)-PVS predominance, basal-ganglia (BG)-PVS predominance, CSO-PVS and BG-PVS equality. Patients with mixed cerebral hemorrhages were classified into mixed CAA-pattern or mixed HA-pattern according to the existence of cSS and/or a CSO-PVS predominance pattern and comparisons were performed. RESULTS We included 110 patients with CAA (strictly lobar ICHs/CMBs), 33 with HA (strictly deep ICHs/CMBs) and 97 with mixed lobar/deep ICHs/CMBs. Mixed patients were more similar to HA with respect to their MRI-CSVD markers, vascular risk profile and cerebrospinal fluid (CSF) measures. In the mixed patients, 33 (34%) had cSS, a CSO-PVS predominance pattern, or both, and were defined as mixed CAA-pattern cases. The mixed CAA-pattern patients were more alike CAA patients regarding their MRI-CSVD markers, CSF and genetic profile. CONCLUSION Our findings suggest that the heterogeneous group of patients with mixed cerebral hemorrhages distribution can be further phenotyped according to the predominant underlying CSVD. cSS presence and a CSO-PVS predominance pattern could serve as strongly suggestive markers of a contribution from CAA among patients with mixed hemorrhages.
Collapse
Affiliation(s)
- Vincent Scheumann
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Frank Schreiber
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Valentina Perosa
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA.
| | - Anne Assmann
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Cornelia Garz
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology (LIN), Brenneckestraße, 39118 Magdeburg, Germany.
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology (LIN), Brenneckestraße, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Michael Görtler
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology (LIN), Brenneckestraße, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Andreas Charidimou
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
12
|
Jensen-Kondering UR, Weiler C, Langguth P, Larsen N, Flüh C, Kuhlenbäumer G, Jansen O, Margraf NG. Clinical and radiological differences between patients with probable cerebral amyloid angiopathy and mixed cerebral microbleeds. J Neurol 2020; 267:3602-3608. [PMID: 32638111 PMCID: PMC7674181 DOI: 10.1007/s00415-020-10038-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The key imaging features of cerebral amyloid angiopathy (CAA) are lobar, cortical, or cortico-subcortical microbleeds, macrohaemorrhages and cortical superficial siderosis (cSS). In contrast, hypertensive angiopathy is characterized by (micro) haemorrhages in the basal ganglia, thalami, periventricular white matter or the brain stem. Another distinct form of haemorrhagic microangiopathy is mixed cerebral microbleeds (mixed CMB) with features of both CAA and hypertensive angiopathy. The distinction between the two entities (CAA and mixed CMB) is clinically relevant because the risk of haemorrhage and stroke should be well balanced if oral anticoagulation is indicated in CAA patients. We aimed to comprehensively compare these two entities. METHODS Patients with probable CAA according to the modified Boston criteria and mixed CMB without macrohaemorrhage were retrospectively identified from our database. Comprehensive comparison regarding clinical and radiological parameters was performed between the two cohorts. RESULTS Patients with CAA were older (78 ± 8 vs. 74 ± 9 years, p = 0.036) and had a higher prevalence of cSS (19% vs. 4%, p = 0.027) but a lower prevalence of lacunes (73% vs. 50%, p = 0.018) and deep lacunes (23% vs. 51%, p = 0.0003) compared to patients with mixed CMB. Logistic regression revealed an association between the presence of deep lacunes and mixed CMB. The other collected parameters did not reveal a significant difference between the two groups. CONCLUSIONS CAA and mixed CMB demonstrate radiological differences in the absence of macrohaemorrhages. However, more clinically available biomarkers are needed to elucidate the contribution of CAA and hypertensive angiopathy in mixed CMB patients.
Collapse
Affiliation(s)
- Ulf R Jensen-Kondering
- Department of Radiology and Neuroradiology, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany.
| | - Caroline Weiler
- Department of Neurology, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Patrick Langguth
- Department of Radiology and Neuroradiology, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Nils G Margraf
- Department of Neurology, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| |
Collapse
|
13
|
Elkhatib TH, Elsaid AF, Al-Molla RM, Khamis ME, Fahmi RM. Prevalence and Associated Risk Factors of Cerebral Microbleeds in Egyptian Patients with Acute Ischemic Stroke and Atrial Fibrillation. J Stroke Cerebrovasc Dis 2020; 29:104703. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 11/29/2022] Open
|
14
|
Kikuno M, Ueno Y, Shimizu T, Kuriki A, Tateishi Y, Doijiri R, Shimada Y, Takekawa H, Yamaguchi E, Koga M, Kamiya Y, Ihara M, Tsujino A, Hirata K, Toyoda K, Hasegawa Y, Aizawa H, Hattori N, Urabe T. Underlying embolic and pathologic differentiation by cerebral microbleeds in cryptogenic stroke. J Neurol 2020; 267:1482-1490. [PMID: 32016623 DOI: 10.1007/s00415-020-09732-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cryptogenic stroke encompasses diverse emboligenic mechanisms and pathogeneses. Cerebral microbleeds (CMBs) occur differently among stroke subtypes. The association of CMBs with cryptogenic stroke is essentially unknown. METHODS CHALLENGE ESUS/CS (Mechanisms of Embolic Stroke Clarified by Transesophageal Echocardiography for ESUS/CS) is a multicenter registry with comprehensive data including gradient-echo T2*-weighted magnetic resonance imaging of cryptogenic stroke patients who underwent transesophageal echocardiography. Patients' clinical characteristics were compared according to the presence and location of CMBs. RESULTS A total of 661 patients (68.7 ± 12.7 years; 445 males) were enrolled, and 209 (32%) had CMBs. Age (odds ratio [OR] 1.02, 95% confidence interval [CI] 1.00-1.04, p = 0.020), male sex (OR 1.85, 95% CI 1.18-2.91, p = 0.007), hypertension (OR 1.71, 95% CI 1.03-2.86, p = 0.039), chronic kidney disease (OR 1.64, 95% CI 1.11-2.43, p = 0.013), deep and subcortical white matter hyperintensity (OR 1.82, 95% CI 1.16-2.85, p = 0.009), and periventricular hyperintensity (OR 2.18, 95% CI 1.37-3.46, p = 0.001) were independently associated with the presence of CMBs. Aortic complicated lesions (OR 1.78, 95% CI 1.12-2.84, p = 0.015) were associated with deep and diffuse CMBs, whereas prior anticoagulant therapy (OR 7.88, 95% CI, 1.83-33.9, p = 0.006) was related to lobar CMBs. CONCLUSIONS CMBs were common, and age, male sex, hypertension, chronic kidney disease, and cerebral white matter diseases were related to CMBs in cryptogenic stroke. Aortic complicated lesions were associated with deep and diffuse CMBs, while prior anticoagulant therapy was related to lobar CMBs.
Collapse
Affiliation(s)
- Muneaki Kikuno
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Neurology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Takahiro Shimizu
- Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Ayako Kuriki
- Department of Neurology, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Yohei Tateishi
- Department of Neurology and Strokology, Nagasaki University Hospital, Nagasaki, Japan
| | - Ryosuke Doijiri
- Department of Neurology, Iwate Prefectural Central Hospital, Iwate, Japan
| | - Yoshiaki Shimada
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | | | - Eriko Yamaguchi
- Department of Neurology, Iwate Prefectural Central Hospital, Iwate, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuki Kamiya
- Department of Neurology, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akira Tsujino
- Department of Neurology and Strokology, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yasuhiro Hasegawa
- Department of Neurology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| |
Collapse
|
15
|
Gyanwali B, Shaik MA, Tan CS, Vrooman H, Venketasubramanian N, Chen C, Hilal S. Mixed-location cerebral microbleeds as a biomarker of neurodegeneration in a memory clinic population. Aging (Albany NY) 2019; 11:10581-10596. [PMID: 31767809 PMCID: PMC6914397 DOI: 10.18632/aging.102478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
Abstract
Cerebral microbleeds (CMBs) in the lobar and deep locations are associated with two distinct pathologies: cerebral amyloid angiopathy and hypertensive arteriopathy. However, the role of mixed-location CMBs in neurodegeneration remains unexplored. We investigated the associations between strictly lobar, strictly deep and mixed-location CMBs with markers of neurodegeneration. This study recruited 477 patients from a memory clinic who underwent 3T MRI scans. CMBs were categorized into strictly lobar, strictly deep and mixed-location. Cortical thickness, white matter volume and subcortical structural volumes were quantified using Free-Surfer. Linear regression models were performed to assess the association between CMBs and cerebral atrophy, and the mean difference (β) and 95% confidence intervals (CIs) were reported. In the regression analyses, mixed-location CMBs were associated with smaller cortical thickness of limbic region [β= -0.01; 95% CI= -0.02, -0.00, p=0.007) as well as with smaller accumbens volume [β= -0.01; 95% CI= -0.02, -0.00, p=0.004) and presubiculum region of hippocampus [β= -0.01; 95% CI= -0.02, -0.00, p=0.002). Strictly lobar CMBs were associated with smaller total white matter volume [β= -0.03; 95% CI= -0.04, -0.01, p<0.001] and with region specific white matter volumes. The underlying mechanism requires further research and may involve shared mechanisms of vascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Muhammad Amin Shaik
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Henri Vrooman
- Departments of Radiology and Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Blanc C, Viguier A, Calviere L, Planton M, Albucher JF, Rousseau V, Sommet A, Bonneville F, Pariente J, Olivot JM, Raposo N. Underlying Small Vessel Disease Associated With Mixed Cerebral Microbleeds. Front Neurol 2019; 10:1126. [PMID: 31708859 PMCID: PMC6819505 DOI: 10.3389/fneur.2019.01126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose: Whether patients with both lobar and deep cerebral microbleeds (mixed CMB) have advanced cerebral amyloid angiopathy (CAA), hypertensive angiopathy (HA) or both is uncertain. To get insight into the underlying small vessel disease (SVD) associated with mixed CMB, we explored its association with cortical superficial siderosis (cSS), a key marker of CAA and other MRI markers of SVD in patients with intracerebral hemorrhage (ICH). Methods: Of 425 consecutive patients with acute ICH who had received brain MRIs, 260 had ≥1 CMB and were included in the analysis. They were categorized as strictly lobar CMB (suggesting CAA), strictly deep CMB (suggesting HA) or mixed CMB. Clinical and imaging characteristics were compared (1) between the three CMB groups and (2) within mixed CMB patients according to the symptomatic ICH location. Results: Overall, 111 (26%) patients had mixed CMB. Compared to strictly lobar CMB (n = 111) and strictly deep CMB (n = 38), patients with mixed CMB had a more severe burden of lacune, white matter hyperintensities and CMB. cSS was observed in 24.3% of patients with mixed CMB compared to 44.1% in strictly lobar CMB and 10.5% in strictly deep CMB (p < 0.0001). Among patients with mixed CMB, 44 (39.6%) had a lobar symptomatic ICH and 67 (60.4%) had a non-lobar ICH. Patients with non-lobar ICH were more likely to have hypertension, whereas those with lobar ICH were more likely to have cSS and chronic lobar ICH and had higher ratio lobar CMB count/total CMB count. Conclusions: Mixed CMB is frequently encountered in patients with ICH and appears as a heterogeneous group, suggesting that both CAA and HA may be contributing to mixed CMB. Neuroimaging markers including ICH location, cSS, and CMB distribution may indicate the predominant underlying vasculopathy, with potential prognostic implications.
Collapse
Affiliation(s)
- Clemence Blanc
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Alain Viguier
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Lionel Calviere
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Mélanie Planton
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean François Albucher
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Vanessa Rousseau
- Epidemiology Department, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Agnès Sommet
- Epidemiology Department, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Department of Clinical Pharmacology, CIC1436, USMR, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Fabrice Bonneville
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Neuroradiology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean Marc Olivot
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Nicolas Raposo
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
17
|
Gyanwali B, Shaik MA, Venketasubramanian N, Chen C, Hilal S. Mixed-Location Cerebral Microbleeds: An Imaging Biomarker for Cerebrovascular Pathology in Cognitive Impairment and Dementia in a Memory Clinic Population. J Alzheimers Dis 2019; 71:1309-1320. [DOI: 10.3233/jad-190540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Bibek Gyanwali
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Muhammad Amin Shaik
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore, Singapore
| | | | - Christopher Chen
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Saima Hilal
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Department of Radiology and Nuclear medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Valdés Hernández MDC, Case T, Chappell FM, Glatz A, Makin S, Doubal F, Wardlaw JM. Association between Striatal Brain Iron Deposition, Microbleeds and Cognition 1 Year After a Minor Ischaemic Stroke. Int J Mol Sci 2019; 20:ijms20061293. [PMID: 30875807 PMCID: PMC6470500 DOI: 10.3390/ijms20061293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/02/2023] Open
Abstract
Brain iron deposits (IDs) are inversely associated with cognitive function in community-dwelling older people, but their association with cognition after ischemic stroke, and whether that differs from microbleeds, is unknown. We quantified basal ganglia IDs (BGID) and microbleeds (BMBs) semi-automatically on brain magnetic resonance images from patients with minor stroke (NIHSS < 7), at presentation and 12 months after stroke. We administered the National Adult Reading Test (NART, estimates premorbid or peak adult cognition) and the Revised Addenbrooke's Cognitive Examination (ACE-R; current cognition) at 1 and 12 months after stroke. We adjusted analyses for baseline cognition, age, gender, white matter hyperintensity (WMH) volume and vascular risk factors. In 200 patients, mean age 65 years, striatal IDs and BMBs volumes did not change over the 12 months. Baseline BGID volumes correlated positively with NART scores at both times (ρ = 0.19, p < 0.01). Baseline and follow-up BGID volumes correlated positively with age (ρ = 0.248, p < 0.001 and ρ = 0.271, p < 0.001 respectively), but only baseline (and not follow-up) BMB volume correlated with age (ρ = 0.129, p < 0.05). Both smoking and baseline WMH burden predicted verbal fluency and visuospatial abilities scores (B = -1.13, p < 0.02 and B = -0.22, p = 0.001 respectively) at 12 months after stroke. BGIDs and BMBs are associated differently with cognition post-stroke; studies of imaging and post-stroke cognition should adjust for premorbid cognition. The positive correlation of BGID with NART may reflect the lower premorbid cognition in patients with stroke at younger vs older ages.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK.
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
- Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Tessa Case
- Row Fogo Centre for Ageing and the Brain, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Francesca M Chappell
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK.
- Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Andreas Glatz
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Stephen Makin
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Fergus Doubal
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Joanna M Wardlaw
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK.
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
- Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
19
|
Ge L, Ouyang X, Ban C, Yu H, Wu Q, Wu H, Liang J. Cerebral microbleeds in patients with ischemic cerebrovascular disease taking aspirin or clopidogrel. Medicine (Baltimore) 2019; 98:e14685. [PMID: 30817601 PMCID: PMC6831427 DOI: 10.1097/md.0000000000014685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cerebral microbleeds (CMBs) may be markers of intracerebral bleeding risk in patients receiving antithrombotic drugs. This study aimed to analyze CMBs and white matter hyperintensities (WMHs) in patients taking aspirin or clopidogrel.This retrospective study included patients with ischemic cardiovascular disease administered 75 mg/day aspirin (n = 150) or clopidogrel (n = 150, matched for age and gender) for >1 year (Affiliated Hospital of Inner Mongolia Medical University, China, from July, 2010 to July, 2015). Patients underwent T2-weighted imaging, T1-weighted imaging, diffusion-weighted imaging (DWI) and enhanced T2*-weighted angiography (ESWAN) imaging (3.0-Tesla scanner). Baseline vascular risk factors for CMBs and macroscopic bleeding (MB) were evaluated using univariate and multivariate analyses.The aspirin and clopidogrel groups did not differ significantly in baseline characteristics or prevalences of CMBs or MB. The odds of MB were higher in patients with CMBs than in patients without CMBs in both the aspirin (odds ratio, 95% confidence interval: 4.09, 1.93-8.68; P < .001) and clopidogrel (6.42, 2.83-14.57; P < .001) groups. The odds of WMHs were also higher in patients with CMBs in both the aspirin (3.28, 1.60-6.71; P = .001) and clopidogrel (4.09, 1.91-8.75; P < .001) groups. Patients receiving treatment for >5 years showed elevated risk of CMBs in the aspirin (0.17; 0.09-0.36; P < .001) and clopidogrel (0.15, 0.07-0.33; P < .001) groups as well as higher odds of MB in the aspirin (0.34, 0.16-0.71; P = .004) and clopidogrel (0.37, 0.17-0.80; P = .010) groups.The WMHs and MB were associated with CMBs in patients taking aspirin or clopidogrel for >1 year, and long-term use increased the risks of CMB and bleeding.
Collapse
Affiliation(s)
| | - Xuehui Ouyang
- Department of Magnetic Resonance, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Chao Ban
- Department of Magnetic Resonance
| | | | - Qiong Wu
- Department of Magnetic Resonance
| | - Hui Wu
- Department of Magnetic Resonance
| | - Junguo Liang
- Department of Thoracic Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| |
Collapse
|
20
|
Tsai HH, Pasi M, Tsai LK, Chen YF, Lee BC, Tang SC, Fotiadis P, Huang CY, Yen RF, Jeng JS, Gurol ME. Microangiopathy underlying mixed-location intracerebral hemorrhages/microbleeds: A PiB-PET study. Neurology 2019; 92:e774-e781. [PMID: 30674594 PMCID: PMC6396971 DOI: 10.1212/wnl.0000000000006953] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/17/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that patients with concomitant lobar and deep intracerebral hemorrhages/microbleeds (mixed ICH) have predominantly hypertensive small vessel disease (HTN-SVD) rather than cerebral amyloid angiopathy (CAA), using in vivo amyloid imaging. METHODS Eighty Asian patients with primary ICH without dementia were included in this cross-sectional study. All patients underwent brain MRI and 11C-Pittsburgh compound B (PiB)-PET imaging. The mean cortical standardized uptake value ratio (SUVR) was calculated using cerebellum as reference. Forty-six patients (57.5%) had mixed ICH. Their demographic and clinical profile as well as amyloid deposition patterns were compared to those of 13 patients with CAA-ICH and 21 patients with strictly deep microbleeds and ICH (HTN-ICH). RESULTS Patients with mixed ICH were younger (62.8 ± 11.7 vs 73.3 ± 11.9 years in CAA, p = 0.006) and showed a higher rate of hypertension than patients with CAA-ICH (p < 0.001). Patients with mixed ICH had lower PiB SUVR than patients with CAA (1.06 [1.01-1.13] vs 1.43 [1.06-1.58], p = 0.003). In a multivariable logistic regression model, mixed ICH was associated with hypertension (odds ratio 8.9, 95% confidence interval 1.4-58.4, p = 0.02) and lower PiB SUVR (odds ratio 0.03, 95% confidence interval 0.001-0.87, p = 0.04) compared to CAA after adjustment for age. Compared to HTN-ICH, mixed ICH showed a similar mean age (62.8 ± 11.7 vs 60.1 ± 14.5 years in HTN-ICH) and risk factor profile (all p > 0.1). Furthermore, PiB SUVR did not differ between mixed ICH (values presented above) and HTN-ICH (1.10 [1.00-1.16], p = 0.45). CONCLUSIONS Patients with mixed ICH have much lower amyloid load than patients with CAA-ICH, while being similar to HTN-ICH. Overall, mixed ICH is probably caused by HTN-SVD, an important finding with clinical relevance.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei.
| | - Marco Pasi
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - Li-Kai Tsai
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei.
| | - Ya-Fang Chen
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - Bo-Ching Lee
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - Sung-Chun Tang
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - Panagiotis Fotiadis
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - Chen-Yu Huang
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - Ruoh-Fang Yen
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - Jiann-Shing Jeng
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei
| | - M Edip Gurol
- From the Department of Neurology (H.H.T.), National Taiwan University Hospital Bei-Hu Branch, Taipei; Departments of Neurology (H.H.T., L.-K.T., S.-C.T., J.-S.J.), Medical Imaging (Y.-F.C., B.-C.L.), and Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei; Department of Neurology (M.P., P.F., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA; Graduate Institute of Clinical Medicine (H.H.T.) and Division of Cardiology (C.-Y.H.), Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei.
| |
Collapse
|
21
|
Yakushiji Y, Wilson D, Ambler G, Charidimou A, Beiser A, van Buchem MA, DeCarli C, Ding D, Gudnason V, Hara H, Imaizumi T, Kohara K, Kwon HM, Launer LJ, Mok V, Phan T, Preis SR, Romero JR, Seshadri S, Srikanth V, Takashima Y, Tsushima Y, Wang Z, Wolf PA, Xiong Y, Yamaguchi S, Werring DJ. Distribution of cerebral microbleeds in the East and West: Individual participant meta-analysis. Neurology 2019; 92:e1086-e1097. [PMID: 30709966 DOI: 10.1212/wnl.0000000000007039] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We investigated differences in the anatomical distribution of cerebral microbleeds (CMBs) on MRI, hypothesized to indicate the type of underlying cerebral small vessel disease (SVD), between Eastern and Western general populations. METHODS We analyzed data from 11 studies identified by a PubMed search between 1996 and April 2014 according to the Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data. Study quality measures indicated low or medium risk of bias. We included stroke-free participants from populations aged between 55 and 75 years, categorized by geographic location (Eastern or Western). We categorized CMB distribution (strictly lobar, deep and/or infratentorial [D/I], or mixed [i.e., CMBs located in both lobar and D/I regions]). We tested the hypothesis that Eastern and Western populations have different anatomical distributions of CMBs using multivariable mixed effects logistic regression analyses adjusted for age, sex, and hypertension and clustering by institution. RESULTS Among 8,595 stroke-free individuals (mean age [SD] 66.7 [5.6] years; 48% male; 42% from a Western population), 624 (7.3%) had CMBs (strictly lobar in 3.1%; D/I or mixed in 4.2%). In multivariable mixed effects models, Eastern populations had higher odds of D/I or mixed CMBs (adjusted odds ratio 2.78, 95% confidence interval [CI] 1.77-4.35) compared to Western populations. Eastern populations had a higher number of D/I or mixed CMBs (adjusted prevalence ratio 2.83, 95% CI 1.27-6.31). CONCLUSIONS Eastern and Western general populations have different anatomical distributions of CMBs, suggesting differences in the spectrum of predominant underlying SVDs, with potential implications for SVD diagnosis and treatment.
Collapse
Affiliation(s)
- Yusuke Yakushiji
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Duncan Wilson
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Gareth Ambler
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Andreas Charidimou
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Alexa Beiser
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Mark A van Buchem
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Charles DeCarli
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ding Ding
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Villi Gudnason
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hideo Hara
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Toshio Imaizumi
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Katsuhiko Kohara
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hyung-Min Kwon
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Lenore J Launer
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Vincent Mok
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Thanh Phan
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sarah R Preis
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - José Rafael Romero
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sudha Seshadri
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Velandai Srikanth
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuki Takashima
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yoshito Tsushima
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Zhaolu Wang
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Philip A Wolf
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yunyun Xiong
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shuhei Yamaguchi
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan
| | - David J Werring
- From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan.
| |
Collapse
|
22
|
Zand R, Shahjouei S, Tsivgoulis G, Singh M, McCormack M, Noorbakhsh-Sabet N, Goyal N, Alexandrov AV. Cerebral Microbleeds are Associated with Higher Mortality Among Ischemic Stroke Patients. J Stroke Cerebrovasc Dis 2018; 27:3036-3042. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/31/2023] Open
|
23
|
Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral Microbleeds: Imaging and Clinical Significance. Radiology 2018; 287:11-28. [PMID: 29558307 DOI: 10.1148/radiol.2018170803] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cerebral microbleeds (CMBs), also referred to as microhemorrhages, appear on magnetic resonance (MR) images as hypointense foci notably at T2*-weighted or susceptibility-weighted (SW) imaging. CMBs are detected with increasing frequency because of the more widespread use of high magnetic field strength and of newer dedicated MR imaging techniques such as three-dimensional gradient-echo T2*-weighted and SW imaging. The imaging appearance of CMBs is mainly because of changes in local magnetic susceptibility and reflects the pathologic iron accumulation, most often in perivascular macrophages, because of vasculopathy. CMBs are depicted with a true-positive rate of 48%-89% at 1.5 T or 3.0 T and T2*-weighted or SW imaging across a wide range of diseases. False-positive "mimics" of CMBs occur at a rate of 11%-24% and include microdissections, microaneurysms, and microcalcifications; the latter can be differentiated by using phase images. Compared with postmortem histopathologic analysis, at least half of CMBs are missed with premortem clinical MR imaging. In general, CMB detection rate increases with field strength, with the use of three-dimensional sequences, and with postprocessing methods that use local perturbations of the MR phase to enhance T2* contrast. Because of the more widespread availability of high-field-strength MR imaging systems and growing use of SW imaging, CMBs are increasingly recognized in normal aging, and are even more common in various disorders such as Alzheimer dementia, cerebral amyloid angiopathy, stroke, and trauma. Rare causes include endocarditis, cerebral autosomal dominant arteriopathy with subcortical infarcts, leukoencephalopathy, and radiation therapy. The presence of CMBs in patients with stroke is increasingly recognized as a marker of worse outcome. Finally, guidelines for adjustment of anticoagulant therapy in patients with CMBs are under development. © RSNA, 2018.
Collapse
Affiliation(s)
- Sven Haller
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Meike W Vernooij
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Joost P A Kuijer
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Elna-Marie Larsson
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Hans Rolf Jäger
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Frederik Barkhof
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| |
Collapse
|
24
|
Tsai HH, Pasi M, Tsai LK, Chen YF, Lee BC, Tang SC, Fotiadis P, Huang CY, Yen RF, Gurol ME, Jeng JS. Distribution of Lacunar Infarcts in Asians With Intracerebral Hemorrhage: A Magnetic Resonance Imaging and Amyloid Positron Emission Tomography Study. Stroke 2018; 49:1515-1517. [PMID: 29695464 DOI: 10.1161/strokeaha.118.021539] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We evaluated whether lacunes in centrum semiovale (lobar lacunes) were associated with cerebral amyloid angiopathy (CAA) markers in an Asian intracerebral hemorrhage (ICH) population. METHODS One hundred ten patients with primary ICH were classified as CAA-ICH (n=24; mean age, 70.9±13.9) or hypertensive ICH (n=86; mean age, 59.3±13.0) according to the presence of strictly lobar (per modified Boston criteria) or strictly deep bleeds (both ICH and cerebral microbleeds), respectively. Lacunes were evaluated in the supratentorial area and classified as lobar or classical deep based on the location. A subgroup of 36 patients also underwent Pittsburgh Compound B positron emission tomography to measure cerebral amyloid deposition and global standardized uptake value ratio were calculated. RESULTS Lobar lacunes were more frequent in CAA-ICH than hypertensive ICH (29.2 versus 11.6%; P=0.036). In multivariable models, lobar lacunes were associated with lobar cerebral microbleed (odds ratio, 6.8; 95% confidence interval, 1.6-29.9; P=0.011) after adjustment for age, sex, hypertension, and white matter hyperintensity. In 15 CAA-ICH and 21 hypertensive ICH patients with Pittsburgh Compound B positron emission tomography, correlation analyses between lobar lacune counts and global standardized uptake value ratio showed positive association (ρ=0.40; P=0.02) and remained significant after adjustment for age (r=0.34; P=0.04). CONCLUSIONS Our findings expand on recent work showing that lobar lacunes are more frequent in CAA-ICH than hypertensive ICH. Their independent association with lobar cerebral microbleeds and brain amyloid deposition suggests a relationship with CAA even in an Asian cohort with overall higher hypertensive load.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- From the Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei (H.-H.T.).,Department of Neurology (H.-H.T., L.-K.T., S.-C.T., J.-S.J.)
| | - Marco Pasi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (M.P., P.F., M.E.G.)
| | - Li-Kai Tsai
- Department of Neurology (H.-H.T., L.-K.T., S.-C.T., J.-S.J.)
| | - Ya-Fang Chen
- Department of Medical Imaging (Y.-F.C., B.-C.L.)
| | - Bo-Ching Lee
- Department of Medical Imaging (Y.-F.C., B.-C.L.)
| | - Sung-Chun Tang
- Department of Neurology (H.-H.T., L.-K.T., S.-C.T., J.-S.J.)
| | - Panagiotis Fotiadis
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (M.P., P.F., M.E.G.)
| | - Chen-Yu Huang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei (C.-Y.H.)
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine (R.-F.Y.), National Taiwan University Hospital, Taipei
| | - M Edip Gurol
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (M.P., P.F., M.E.G.)
| | | |
Collapse
|
25
|
Yakushiji Y, Charidimou A, Noguchi T, Nishihara M, Eriguchi M, Nanri Y, Kawaguchi A, Hirotsu T, Werring DJ, Hara H. Total Small Vessel Disease Score in Neurologically Healthy Japanese Adults in the Kashima Scan Study. Intern Med 2018; 57:189-196. [PMID: 29033410 PMCID: PMC5820035 DOI: 10.2169/internalmedicine.8393-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective We explored the association between the total small vessel disease (SVD) score obtained with magnetic resonance imaging and risk factors and outcomes in the Japanese population. Methods The presence of SVD features, including lacunes, cerebral microbleeds, white matter changes, and basal ganglia perivascular spaces on MRI, was summed to obtain a "total SVD score" (range 0-4). Ordinal and multinomial logistic regression analyses were performed to investigate the association of higher total SVD scores with vascular risk factors, the Mini-Mental State Examination (MMSE) score, and cerebral atrophy. Results We included 1,451 neurologically healthy adults (mean age, 57.1 years; 47% male). A multivariate ordinal logistic regression analysis showed that the total SVD score was associated with aging, hypertension, blood pressure (BP), diabetes mellitus, MMSE score, and deep cerebral atrophy, but the equal slopes assumption between scores did not hold. A multivariate multinomial logistic regression analysis (total SVD score 0=reference) showed that aging, hypertension, and BP were positively associated with scores of 1, 2, or ≥3. These effects, presented as odds ratios (ORs), increased as the score increased and were strongest with a score of ≥3 [aging (per 10-year increment), OR 4.00, 95% confidence interval (CI) 2.47-6.46; hypertension, OR 5.68, 95% CI 2.52-12.80; systolic BP (per standard deviation increase), OR 1.96, 95% CI 1.41-2.74, respectively]. Diabetes mellitus and deep cerebral atrophy tended to be associated with the SVD scores. The MMSE score showed no consistent associations. Conclusion The total SVD score may be a promising tool for indexing SVD, even in the Japanese population.
Collapse
Affiliation(s)
- Yusuke Yakushiji
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Japan
| | - Andreas Charidimou
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, USA
| | - Tomoyuki Noguchi
- Department of Radiology, Saga University Faculty of Medicine, Japan
| | | | - Makoto Eriguchi
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Japan
| | - Yusuke Nanri
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Saga University Faculty of Medicine, Japan
| | | | - David J Werring
- Stroke Research Group, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, UK
| | - Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Japan
| |
Collapse
|
26
|
Pasi M, Charidimou A, Boulouis G, Auriel E, Ayres A, Schwab KM, Goldstein JN, Rosand J, Viswanathan A, Pantoni L, Greenberg SM, Gurol ME. Mixed-location cerebral hemorrhage/microbleeds: Underlying microangiopathy and recurrence risk. Neurology 2018; 90:e119-e126. [PMID: 29247070 PMCID: PMC5772153 DOI: 10.1212/wnl.0000000000004797] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/10/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the predominant type of cerebral small vessel disease (SVD) and recurrence risk in patients who present with a combination of lobar and deep intracerebral hemorrhage (ICH)/microbleed locations (mixed ICH). METHODS Of 391 consecutive patients with primary ICH enrolled in a prospective registry, 75 (19%) had mixed ICH. Their demographics, clinical/laboratory features, and SVD neuroimaging markers were compared to those of 191 patients with probable cerebral amyloid angiopathy (CAA-ICH) and 125 with hypertensive strictly deep microbleeds and ICH (HTN-ICH). ICH recurrence and case fatality were also analyzed. RESULTS Patients with mixed ICH showed a higher burden of vascular risk factors reflected by a higher rate of left ventricular hypertrophy, higher creatinine values, and more lacunes and severe basal ganglia (BG) enlarged perivascular spaces (EPVS) than patients with CAA-ICH (all p < 0.05). In multivariable models mixed ICH diagnosis was associated with higher creatinine levels (odds ratio [OR] 2.5, 95% confidence interval [CI] 1.2-5.0, p = 0.010), more lacunes (OR 3.4, 95% CI 1.7-6.8), and more severe BG EPVS (OR 5.8, 95% CI 1.7-19.7) than patients with CAA-ICH. Conversely, when patients with mixed ICH were compared to patients with HTN-ICH, they were independently associated with older age (OR 1.03, 95% CI 1.02-1.1), more lacunes (OR 2.4, 95% CI 1.1-5.3), and higher microbleed count (OR 1.6, 95% CI 1.3-2.0). Among 90-day survivors, adjusted case fatality rates were similar for all 3 categories. Annual risk of ICH recurrence was 5.1% for mixed ICH, higher than for HTN-ICH but lower than for CAA-ICH (1.6% and 10.4%, respectively). CONCLUSIONS Mixed ICH, commonly seen on MRI obtained during etiologic workup, appears to be driven mostly by vascular risk factors similar to HTN-ICH but demonstrates more severe parenchymal damage and higher ICH recurrence risk.
Collapse
Affiliation(s)
- Marco Pasi
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Andreas Charidimou
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gregoire Boulouis
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eitan Auriel
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alison Ayres
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kristin M Schwab
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Joshua N Goldstein
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan Rosand
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Leonardo Pantoni
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - M Edip Gurol
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
27
|
Racial Difference in Cerebral Microbleed Burden among Ischemic Stroke Patients. J Stroke Cerebrovasc Dis 2017; 26:2680-2685. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 12/13/2022] Open
|
28
|
Correlation of Cerebral Microbleed Distribution to Amyloid Burden in Patients with Primary Intracerebral Hemorrhage. Sci Rep 2017; 7:44715. [PMID: 28303922 PMCID: PMC5356186 DOI: 10.1038/srep44715] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
The underlying pathology of cerebral microbleeds (CMBs) with mixed lobar and deep distribution remains contentious. The aim of this study was to correlate CMBs distribution to β-amyloid burden in patients with primary intracerebral hemorrhage (ICH). Fourty-seven ICH patients underwent magnetic resonance susceptibility-weighted imaging and 11C-Pittsburgh Compound B positron emission tomography. The amyloid burden was expressed as standardized uptake value ratio with reference to cerebellum, and presented as median (interquartile range). Patients were categorized into the lobar, mixed (both lobar and deep regions), and deep types of CMB. Comparing the lobar (17%), mixed (59.6%) and deep (23.4%) CMB types, the global amyloid burden was significantly higher in the mixed type than the deep type (1.10 [1.03–1.25] vs 1.00 [0.97–1.09], p = 0.011), but lower than in the lobar type (1.48 [1.18–1.50], p = 0.048). On multivariable analysis, the ratio of lobar to deep CMB number was positively correlated with global (p = 0.028) and occipital (p = 0.031) amyloid burden. In primary ICH, patients with lobar and mixed CMB types are associated with increased amyloid burden than patients with deep type. The ratio of lobar to deep CMB number is an independent indicator of cerebral β-amyloid deposition.
Collapse
|
29
|
Barnaure I, Montandon ML, Rodriguez C, Herrmann F, Lövblad KO, Giannakopoulos P, Haller S. Clinicoradiologic Correlations of Cerebral Microbleeds in Advanced Age. AJNR Am J Neuroradiol 2017; 38:39-45. [PMID: 27686485 DOI: 10.3174/ajnr.a4956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE The presence of cerebral microbleeds has been associated with dementia and cognitive decline, although studies report conflicting results. Our aim was to determine the potential role of the presence and location of cerebral microbleeds in early stages of cognitive decline. MATERIALS AND METHODS Baseline 3T MR imaging examinations including SWI sequences of 328 cognitively intact community-dwelling controls and 72 subjects with mild cognitive impairment were analyzed with respect to the presence and distribution of cerebral microbleeds. A neuropsychological follow-up of controls was performed at 18 months post inclusion and identified cases with subtle cognitive deficits were referred to as controls with a deteriorating condition. Group differences in radiologic parameters were studied by using nonparametric tests, 1-way analysis of variance, and Spearman correlation coefficients. RESULTS Cerebral microbleed prevalence was similar in subjects with mild cognitive impairment and controls with stable and cognitively deteriorating conditions (25%-31.9%). In all diagnostic groups, lobar cerebral microbleeds were more common. They occurred in 20.1% of all cases compared with 6.5% of cases with deep cerebral microbleeds. None of the investigated variables (age, sex, microbleed number, location and depth, baseline Mini-Mental State Examination score, and the Fazekas score) were significantly associated with cognitive deterioration with the exception of education of >12 years showing a slight but significant protective effect (OR, 0.44; 95% CI, 0.22-0.92; P = .028). The Mini-Mental State Examination and the Buschke total score were correlated with neither the total number nor lobar-versus-deep location of cerebral microbleeds. CONCLUSIONS Cerebral microbleed presence, location, and severity are not related to the early stages of cognitive decline in advanced age.
Collapse
Affiliation(s)
- I Barnaure
- From the Division of Neuroradiology (I.B., K.O.L.)
| | - M-L Montandon
- Department of Mental Health and Psychiatry (M.-L.M., C.R., P.G.)
| | - C Rodriguez
- Department of Mental Health and Psychiatry (M.-L.M., C.R., P.G.)
| | - F Herrmann
- Departments of Internal Medicine, Rehabilitation, and Geriatrics (F.H.), Geneva University Hospitals, Geneva, Switzerland
| | - K O Lövblad
- From the Division of Neuroradiology (I.B., K.O.L.)
| | - P Giannakopoulos
- Department of Mental Health and Psychiatry (M.-L.M., C.R., P.G.)
| | - S Haller
- Affidea Centre de Diagnostique Radiologique de Carouge CDRC (S.H.), Geneva, Switzerland
- Departments of Surgical Sciences and Radiology (S.H.), Uppsala University, Uppsala, Sweden
- Department of Neuroradiology (S.H.), University Hospital Freiburg, Germany
- Faculty of Medicine (S.H.), University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Raman MR, Kantarci K, Murray ME, Jack CR, Vemuri P. Imaging markers of cerebrovascular pathologies: Pathophysiology, clinical presentation, and risk factors. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 5:5-14. [PMID: 28054023 PMCID: PMC5198884 DOI: 10.1016/j.dadm.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrovascular pathologies (CVPs) are common pathologies associated with age-related cognitive decline along with Alzheimer disease pathologies. The impact of CVP on the prevalence of dementia is increasingly being recognized. The goal of this review is to improve our understanding of the pathophysiological underpinnings and the multimodal magnetic resonance imaging and positron emission tomography imaging changes that are associated with the hallmarks of CVP. This knowledge will facilitate the development of early detection, intervention, and prevention strategies that may contribute to lowering the risk of dementia. In this review, we will first discuss currently known risk factors of CVPs including cardiovascular, lifestyle, genetic, sex differences, and head injury. Next, we will focus on the pathophysiology of CVPs and their impact on neurodegeneration and downstream cognitive impairment. Specifically, we will discuss three of the most common cerebrovascular lesions seen on MRI: white-matter hyperintensity, microbleeds, and infarcts. Finally, we will discuss the unanswered open questions in this field.
Collapse
Affiliation(s)
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
31
|
Hashimoto T, Yokota C, Koshino K, Shimomura R, Hino T, Moriguchi T, Hori Y, Uehara T, Minematsu K, Iida H, Toyoda K. Cerebral blood flow and metabolism associated with cerebral microbleeds in small vessel disease. Ann Nucl Med 2016; 30:494-500. [PMID: 27246951 DOI: 10.1007/s12149-016-1086-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Cerebral microbleeds (CMBs), probably reflecting microangiopathy, have not yet sufficiently been examined in association with cerebral blood flow (CBF) and metabolism. We investigated the relationships between CMBs, and CBF and metabolism in symptomatic small vessel disease. METHODS We enrolled 22 patients with symptomatic small vessel disease without severe stenosis (>50 %) in major cerebral arteries. Volumes of white matter lesions (WMLs) and number of CMBs were assessed on images of fluid-attenuated inversion recovery and gradient-echo T2*-weighted magnetic resonance imaging, respectively. Patients were divided into two groups according to the median number of CMBs (group I <5, n = 10; group II ≥5, n = 12). Parametric images of CBF, cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction and cerebral blood volume were estimated using positron emission tomography and (15)O-labeled gases. The functional values in the cortex-subcortex, basal ganglia, and centrum semiovale were compared between the two groups. RESULTS Volumes of WMLs of group II were larger than those of group I (median: 38.4; range: 25.1-91.5 mL vs. median: 11.3; range: 4.2-73.4 mL, p = 0.01). In the centrum semiovale, the mean CBF of group II was significantly lower than that of group I (12.6 ± 2.6 vs. 15.6 ± 3.3 mL/100 g/min, p = 0.04). In the other regions, there were no significant differences in either CBF or CMRO2 between the two groups. CONCLUSIONS Our study indicated that increases in the number of CMBs with larger volumes of WMLs were associated with cerebral ischemia in the deep white matter in patients with symptomatic small vessel disease.
Collapse
Affiliation(s)
- Tetsuya Hashimoto
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Chiaki Yokota
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| | - Kazuhiro Koshino
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ryo Shimomura
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Tenyu Hino
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Tetsuaki Moriguchi
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuki Hori
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshiyuki Uehara
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Kazuo Minematsu
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Hidehiro Iida
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
32
|
Nonaka T, Yakushiji Y, Ide T, Ito H, Kawamoto K, Hara H. Pre-critical MRI findings of an Alzheimer's disease patient with pathologically proven cerebral amyloid angiopathy related lobar hemorrhage. Rinsho Shinkeigaku 2016; 56:338-43. [PMID: 27151228 DOI: 10.5692/clinicalneurol.cn-000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An 85-year-old woman with untreated hypertension was admitted with a disturbance of consciousness. On admission, brain CT revealed a lobar intracerebral hemorrhage with a midline shift. An intracranial hematoma was evacuated via a life-saving craniotomy. Definite pathological findings of amyloid-β deposition in the excised hematoma (strong in anti-amyloid β40 immunostain, but weak in anti- amyloid β42) indicated cerebral amyloid angiopathy (CAA). She had been diagnosed with Alzheimer's disease at a regional memory clinic one month before symptom onset based on MRI findings of medial temporal lobe atrophy as well as CAA-related features of multiple strictly lobar cerebral microbleeds in the occipital lobe, cortical superficial siderosis and >20 enlarged perivascular spaces in the centrum semiovale. This experience suggests that comprehensive interpretation of such CAA-related findings on MRI might help to improve the management of cardiovascular risk factors for Alzheimer's disease.
Collapse
Affiliation(s)
- Toshihiro Nonaka
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine
| | | | | | | | | | | |
Collapse
|
33
|
Nagasawa J, Kiyozaka T, Ikeda K. Prevalence and clinicoradiological analyses of patients with Alzheimer disease coexisting multiple microbleeds. J Stroke Cerebrovasc Dis 2014; 23:2444-9. [PMID: 25174565 DOI: 10.1016/j.jstrokecerebrovasdis.2014.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pathologic findings of cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) coexist frequently. Both diseases are associated with β-amyloid deposition and dementia. We aimed to evaluate frequency and clinicoradiological profile of AD patients with multiple microbleeds (MBs). METHODS We reviewed clinical records and magnetic resonance imaging (MRI) findings in patients with probable AD diagnosed by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), and National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria from 2009 to 2012. Brain MRI was performed at 1.5-T superconducting system, including T2*-weighted gradient-echo imaging. MBs were defined as rounded, hypointense foci less than or equal to 10 mm in size in the brain parenchyma. MBs topography was divided into the lobar (L) and the deep/infratentorial (D/I) region. Multiple MBs were defined as the number greater than or equal to 8 in the L and the D/I territory, respectively. White matter hyperintensities (WMHs) were assessed using the age-related white matter changes scale. Clinicoradiological findings were examined for 1 year. Prevalence and clinicoradiological profiles were studied in patients with multiple L or D/I MBs. RESULTS Five hundred fifty patients (238 men and 312 women) participated in the present study. Mean age (standard deviation) was 78.4 (7.7) years, 78.3 (8.1) years in men and 78.6 (7.5) years in women. A total of 132 patients (55 men and 78 women) had at least 1 MB. Prevalence of MB ≥ 1 was 24%, 23 in men and 25 in women. The ratio of L and D/I MBs were 1.1, .6 in men and 1.8 in women. Multiple MBs were detected in 93 patients (17%), 38 (16%) men and 55 (17%) in women. L distribution was found in 49 patients (9%), 15 men (6%) and 34 women (11%), and D/I distribution in 44 patients (8%), 23 men (10%) and 21 women (7%). Multiple L MBs was associated with faster progression of dementia, cerebral hemorrhage, and increased number of MBs. Multiple D/I MBs were linked to hypertension and WMH scores. CONCLUSIONS The present study indicated that the prevalence of multiple MBs was 17% in Japanese AD patients. The clinicoradiological profile suggested severe degree of CAA in patients with multiple L MBs (9%) and hypertension and aged changes in patients with multiple D/I MBs (8%). T2*-weighted imaging is a useful tool for evaluating degree of CAA and hypertensive vascular changes. We should pay more attention to management and care in AD patients with multiple MBs.
Collapse
Affiliation(s)
- Junpei Nagasawa
- Department of Neurology, Toho University Omori Medical Center, Tokyo, Japan
| | | | - Ken Ikeda
- Department of Neurology, Toho University Omori Medical Center, Tokyo, Japan.
| |
Collapse
|
34
|
Wilson D, Charidimou A, Werring DJ. Advances in understanding spontaneous intracerebral hemorrhage: insights from neuroimaging. Expert Rev Neurother 2014; 14:661-78. [DOI: 10.1586/14737175.2014.918506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol 2014; 4:205. [PMID: 24432010 PMCID: PMC3881231 DOI: 10.3389/fneur.2013.00205] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
Cerebral microbleeds (microbleeds) are small, punctuate hypointense lesions seen in T2* Gradient-Recall Echo (GRE) and Susceptibility-Weighted (SWI) Magnetic Resonance Imaging (MRI) sequences, corresponding to areas of hemosiderin breakdown products from prior microscopic hemorrhages. They occur in the setting of impaired small vessel integrity, commonly due to either hypertensive vasculopathy or cerebral amyloid angiopathy. Microbleeds are more prevalent in individuals with Alzheimer’s disease (AD) dementia and in those with both ischemic and hemorrhagic stroke. However they are also found in asymptomatic individuals, with increasing prevalence with age, particularly in carriers of the Apolipoprotein (APOE) ε4 allele. Other neuroimaging findings that have been linked with microbleeds include lacunar infarcts and white matter hyperintensities on MRI, and increased cerebral β-amyloid burden using 11C-PiB Positron Emission Tomography. The presence of microbleeds has been suggested to confer increased risk of incident intracerebral hemorrhage – particularly in the setting of anticoagulation – and of complications of immunotherapy for AD. Prospective data regarding the natural history and sequelae of microbleeds are currently limited, however there is a growing evidence base that will serve to inform clinical decision-making in the future.
Collapse
Affiliation(s)
- Paul A Yates
- Department of Nuclear Medicine and Centre for PET, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, The University of Melbourne , Parkville, VIC , Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| | - Kathryn A Ellis
- Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| | - Patricia M Desmond
- Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Department of Radiology, Royal Melbourne Hospital , Parkville, VIC , Australia
| | - Colin L Masters
- Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
36
|
Hypertension Increases the Risk of Cerebral Microbleed in the Territory of Posterior Cerebral Artery: A Study of the Association of Microbleeds Categorized on a Basis of Vascular Territories and Cardiovascular Risk Factors. J Stroke Cerebrovasc Dis 2014; 23:e5-11. [DOI: 10.1016/j.jstrokecerebrovasdis.2012.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/16/2012] [Accepted: 12/25/2012] [Indexed: 11/22/2022] Open
|
37
|
Deep cerebral microbleeds are negatively associated with HDL-C in elderly first-time ischemic stroke patients. J Neurol Sci 2013; 325:137-41. [DOI: 10.1016/j.jns.2012.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 11/17/2022]
|
38
|
Itabashi R, Yokota C, Yakushiji Y, Minematsu K, Yamada N. Predictors of an increase in the number of cerebral microbleeds after a first-ever stroke. Eur J Intern Med 2012; 23:e208-9. [PMID: 22999124 DOI: 10.1016/j.ejim.2012.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 11/30/2022]
|
39
|
Yakushiji Y, Noguchi T, Hara M, Nishihara M, Eriguchi M, Nanri Y, Nishiyama M, Hirotsu T, Nakajima J, Kuroda Y, Hara H. Distributional Impact of Brain Microbleeds on Global Cognitive Function in Adults Without Neurological Disorder. Stroke 2012; 43:1800-5. [DOI: 10.1161/strokeaha.111.647065] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yusuke Yakushiji
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Tomoyuki Noguchi
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Megumi Hara
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Masashi Nishihara
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Makoto Eriguchi
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Yusuke Nanri
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Masanori Nishiyama
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Tatsumi Hirotsu
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Junko Nakajima
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Yasuo Kuroda
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| | - Hideo Hara
- From the Division of Neurology, Department of Internal Medicine (Y.Y., M.E., Y.N., Y.K., H.H.), Department of Radiology (T.N., M.N.), Department of Preventive Medicine (M.H.), Saga University Faculty of Medicine, Saga, Japan; and Yuai-Kai Oda Hospital (M.N., T.H., J.N.), Kashima, Japan
| |
Collapse
|
40
|
Liebeskind DS, Sanossian N, Sapo ML, Saver JL. Cerebral microbleeds after use of extracorporeal membrane oxygenation in children. J Neuroimaging 2012; 23:75-8. [PMID: 22606942 DOI: 10.1111/j.1552-6569.2012.00723.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cerebral microbleeds (CMB) on gradient-recalled echo (GRE) magnetic resonance imaging (MRI) are rarely seen in children, yet have been described following vascular procedures in adults. Extracorporeal membrane oxygenation (ECMO) has been associated with vascular injury and neurological events in children, but there have been no reports to date of GRE MRI findings in children treated with ECMO. We reviewed MRI scans for all vascular neurology consultations in children treated with ECMO at an academic medical center over a 5-year period. In 6 of 12 cases, GRE was acquired as others were unstable or had contraindications to MRI. All 6 of 6 (100%) GRE cases (mean age 2.1 years, 7 female, 5 male) demonstrated CMB. CMB were multiple (>3 lesions), situated in cortical or lobar regions, with a striking predominance (5/6 cases) for the right carotid distribution. Other than CMB, no cases demonstrated intracranial hemorrhage. CMB may be noted on GRE MRI after ECMO and may reflect vascular damage from gaseous emboli.
Collapse
Affiliation(s)
- David S Liebeskind
- UCLA Stroke Center, University of California Los Angeles, Los Angeles, CA 90095-1769, USA.
| | | | | | | |
Collapse
|