1
|
Tan H, Chen H, Yan H, Li F, Yao Y, Li Y, Feng Q. Mediators of the causal associations between protein ratios and ischemic stroke: a two-step Mendelian randomization study. Neurol Res 2025:1-12. [PMID: 40181221 DOI: 10.1080/01616412.2025.2487867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Proteomics has revealed links between plasma proteins and ischemic stroke (IS), but the relationship between protein ratios, IS, and the effects of blood cells and serum uric acid (SUA) is underexplored. METHODS Using two-sample Mendelian randomization (MR), we assessed causal relationships between 2,821 protein ratios, 91 blood phenotypes, SUA, and IS subtypes. FDR correction was applied specifically to protein ratio analyses to account for multiple comparisons in the primary MR step. Significant associations were further validated through co-localization analysis, which assessed shared genetic architecture between exposure and outcome loci. This analysis used GWAS data from MEGASTROKE, GISCOME, minimizing confounding bias and reverse causation. Additionally, the total effects of protein ratio levels on IS were decomposed into direct and indirect effects mediated through multiple pathways. Sensitivity analyses ensured robustness. RESULTS The CD34/ITGAV ratio exhibited distinct effects on stroke risk, showing 34.9% increased odds of LAS (OR=1.349, 95% CI=1.097-1.658) while demonstrating protective effects against IS outcome progression (OR=0.564, 95% CI=0.380-0.838). Bayesian co-localization analysis revealed complete genetic overlap (PPH4 = 1) for key protein ratio-stroke subtype pairs: AIS with TGFBR2/THBD ratio, LAS with LGALS8/VWF ratio, CES with BST2/CEACAM1 and CD209/CLEC4G ratios. In mediation pathways, neutrophil parameters accounted for 54.4% of the prognosis effect in the ABHD14B/STAMBP-IS association, whereas SUA mediated only 1.3% of the PODXL2/SDC1 ratio-IS relationship. CONCLUSIONS Our MR study combined with co-localization analysis identifies causal links between protein interactions and IS, highlighting potential targets to disrupt pathways connecting protein ratio changes to IS incidence and outcomes, offering promising intervention avenues.
Collapse
Affiliation(s)
- Haozhou Tan
- Clinical Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Yan
- College of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fangfang Li
- College of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Yao
- College of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- Clinical Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Feng
- Clinical Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhang J, Li R, Yu Y, Sun W, Zhang C, Wang H. Network pharmacology-and molecular docking-based investigation of Danggui blood-supplementing decoction in ischaemic stroke. Growth Factors 2024; 42:13-23. [PMID: 37932893 DOI: 10.1080/08977194.2023.2277755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Danggui blood-supplementing decoction (DBsD) is an herbal preparation treating several diseases including stroke. The present study sought to investigate the potential mechanism of DBsD in ischaemic stroke (IS) using network pharmacology, molecular docking, and cell experiment. Based on the protein-protein (PPI) network analysis, MAPK1 (0.51, 12), KNG1 (0.57, 28), and TNF (0.64, 39) were found with relatively good performance in degree and closeness centrality. The functional enrichment analysis revealed that DBsD contributed to IS-related biological processes, molecule function, and presynaptic/postsynaptic cellular components. Pathway enrichment indicated that DBsD might protect IS by modulating multi-signalling pathways including the sphingolipid signalling pathway. Molecular docking verified the stigmasterol-KNG1, bifendate-TNF, and formononetin-MAPK1 pairs. Cell experiments confirmed the involvement of KNG1 and sphingolipid signalling pathway in hippocampal neuronal cell apoptosis. This study showed that DBsD can protect neuronal cell injury after IS through multiple components, multiple targets, and multiple pathways.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Ruiqing Li
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Yang Yu
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Weijia Sun
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Chengshi Zhang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Haijun Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| |
Collapse
|
3
|
Temprano‐Sagrera G, Sitlani CM, Bone WP, Martin‐Bornez M, Voight BF, Morrison AC, Damrauer SM, de Vries PS, Smith NL, Sabater‐Lleal M. Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations. J Thromb Haemost 2022; 20:1331-1349. [PMID: 35285134 PMCID: PMC9314075 DOI: 10.1111/jth.15698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes. OBJECTIVES To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events. METHODS Summary statistics from genome wide-association studies (GWAS) from seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor [VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were combined in 27 multi-trait combinations using metaUSAT. Genetic correlations between phenotypes were calculated using Linkage Disequilibrium Score Regression (LDSC). Newly associated loci were investigated for colocalization. We considered a significance threshold of 1.85 × 10-9 obtained after applying Bonferroni correction for the number of multi-trait combinations performed (n = 27). RESULTS Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual datasets, were not described in previous GWAS for the individual traits, and that presented a common associated variant between the studied phenotypes. CONCLUSIONS The discovery of four novel loci contributes to the understanding of the relationship between hemostasis and CV events and elucidate common genetic factors between these traits.
Collapse
Affiliation(s)
- Gerard Temprano‐Sagrera
- Genomics of Complex Disease UnitSant Pau Biomedical Research Institute. IIB‐Sant PauBarcelonaSpain
| | - Colleen M. Sitlani
- Cardiovascular Health Research UnitDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - William P. Bone
- Genomics and Computational Biology Graduate GroupPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Miguel Martin‐Bornez
- Genomics of Complex Disease UnitSant Pau Biomedical Research Institute. IIB‐Sant PauBarcelonaSpain
| | - Benjamin F. Voight
- Department of Systems Pharmacology and Translational Therapeutics and Department of GeneticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Institute of Translational Medicine and TherapeuticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alanna C. Morrison
- Human Genetics CenterDepartment of EpidemiologyHuman Genetics, and Environmental SciencesSchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Scott M. Damrauer
- Department of Surgery and Department of GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Paul S. de Vries
- Human Genetics CenterDepartment of EpidemiologyHuman Genetics, and Environmental SciencesSchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Nicholas L. Smith
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Kaiser Permanente Washington Health Research InstituteKaiser PermanenteSeattleWashingtonUSA
- Seattle Epidemiologic Research and Information CenterDepartment of Veterans Affairs Office of Research and DevelopmentSeattleWashingtonUSA
| | - Maria Sabater‐Lleal
- Genomics of Complex Disease UnitSant Pau Biomedical Research Institute. IIB‐Sant PauBarcelonaSpain
- Cardiovascular Medicine UnitDepartment of MedicineCenter for Molecular MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
4
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
5
|
Salomi BSB, Solomon R, Turaka VP, Aaron S, Christudass CS. Cryptogenic Stroke in the Young: Role of Candidate Gene Polymorphisms in Indian Patients with Ischemic Etiology. Neurol India 2021; 69:1655-1662. [PMID: 34979665 DOI: 10.4103/0028-3886.333441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CONTEXT Strokes that remain without a definite cause even after an extensive workup, termed cryptogenic strokes, constitute up to 30-40% of ischemic strokes (ISs) in the young. Some of them can have a genetic basis. However, the well-established genetic causes account for only a small percentage of these cases. AIM To evaluate the association of cryptogenic young IS with 16 candidate gene polymorphisms. SETTINGS AND DESIGN A case-control study with cryptogenic young IS patients (South and North Indians; n = 105) and age, sex, and ethnicity-matched controls (n = 215). SUBJECTS AND METHODS Genotyping was carried out by PCR-RFLP method using DNA extracted from the blood. STATISTICAL ANALYSIS USED Association of the genotypes with the disease was studied using Chi-square test. RESULTS MTHFR rs1801133 and KNG1 rs710446 showed significant statistical association with cryptogenic young IS (P = 0.0261 and 0.0157, respectively) in the Indian population. Significant association of KNG1 rs710446 (P 0.0036) and FXII rs1801020 (P 0.0376) with cryptogenic young stroke in South Indian males, SERPINC1 rs2227589 in South Indian female patients (P = 0.0374), and CYP4V2 rs13146272 in North Indian males (P = 0.0293) was observed. CONCLUSIONS Our study indicates that in the Indian population MTHFR rs1801133, KNG rs710446, FXII rs1801020, SERPINC1 rs2227589, CYP4V2 rs13146272, and FXIII V34L may be significant risk factors for cryptogenic IS in the young. In addition, ethnicity and gender play a significant role. Further studies with larger sample size are required to completely establish these polymorphisms as risk factors for cryptogenic IS in young Indians.
Collapse
Affiliation(s)
- Bodda S B Salomi
- Department of Neurological Sciences, Christian Medical College - Vellore, Vellore, Tamil Nadu, India
| | - Raja Solomon
- Department of Neurological Sciences, Christian Medical College - Vellore, Vellore, Tamil Nadu, India
| | - Vijay Prakash Turaka
- Department of General Medicine, Christian Medical College - Vellore, Vellore, Tamil Nadu, India
| | - Sanjith Aaron
- Department of Neurological Sciences, Christian Medical College - Vellore, Vellore, Tamil Nadu, India
| | | |
Collapse
|
6
|
Kolur V, Vastrad B, Vastrad C, Kotturshetti S, Tengli A. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. BMC Cardiovasc Disord 2021; 21:329. [PMID: 34218797 PMCID: PMC8256614 DOI: 10.1186/s12872-021-02146-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Heart failure (HF) is a heterogeneous clinical syndrome and affects millions of people all over the world. HF occurs when the cardiac overload and injury, which is a worldwide complaint. The aim of this study was to screen and verify hub genes involved in developmental HF as well as to explore active drug molecules. METHODS The expression profiling by high throughput sequencing of GSE141910 dataset was downloaded from the Gene Expression Omnibus (GEO) database, which contained 366 samples, including 200 heart failure samples and 166 non heart failure samples. The raw data was integrated to find differentially expressed genes (DEGs) and were further analyzed with bioinformatics analysis. Gene ontology (GO) and REACTOME enrichment analyses were performed via ToppGene; protein-protein interaction (PPI) networks of the DEGs was constructed based on data from the HiPPIE interactome database; modules analysis was performed; target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed; hub genes were validated; molecular docking studies was performed. RESULTS A total of 881 DEGs, including 442 up regulated genes and 439 down regulated genes were observed. Most of the DEGs were significantly enriched in biological adhesion, extracellular matrix, signaling receptor binding, secretion, intrinsic component of plasma membrane, signaling receptor activity, extracellular matrix organization and neutrophil degranulation. The top hub genes ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 were identified from the PPI network. Module analysis revealed that HF was associated with adaptive immune system and neutrophil degranulation. The target genes, miRNAs and TFs were identified from the target gene-miRNA regulatory network and target gene-TF regulatory network. Furthermore, receiver operating characteristic (ROC) curve analysis and RT-PCR analysis revealed that ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 might serve as prognostic, diagnostic biomarkers and therapeutic target for HF. The predicted targets of these active molecules were then confirmed. CONCLUSION The current investigation identified a series of key genes and pathways that might be involved in the progression of HF, providing a new understanding of the underlying molecular mechanisms of HF.
Collapse
Affiliation(s)
- Vijayakrishna Kolur
- Vihaan Heart Care & Super Specialty Centre, Vivekananda General Hospital, Deshpande Nagar, Hubli, Karnataka, 580029, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
7
|
Pan Y, Wang L, Xie Y, Tan Y, Chang C, Qiu X, Li X. Characterization of differentially expressed plasma proteins in patients with acute myocardial infarction. J Proteomics 2020; 227:103923. [PMID: 32736138 DOI: 10.1016/j.jprot.2020.103923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. Novel biomarkers are needed to identify NSTEMI in AMI patients. The study objective was to use proteomics to identify novel plasma biomarkers for STEMI and NSTEMI patients. iTRAQ analysis was performed on pooled samples from 8 healthy controls and 12 STEMI and 12 NSTEMI patients. Bioinformatics analysis identified 95 differentially expressed proteins that were differentially expressed in the plasma of AMI patients and healthy controls; 28 of these proteins were found in STEMI/Con (22 upregulated and 6 downregulated), 48 in NSTEMI/Con (12 upregulated and 36 downregulated), and 44 in NSTEMI/STEMI (11 upregulated and 33 downregulated). Protein network analysis was then performed using STRING software. Functional analysis revealed that the identified plasma proteins were mainly involved with carbon metabolism, toll-like receptor signaling pathway, and hypertrophic cardiomyopathy. Nine of the proteins (SSA1, MDH1, FCN2, GPI, S100A8, LBP, vinculin, VDBP, and RBP4) that changed levels during AMI progression were further validated by ELISA. The constructed plasma proteome could reflect the AMI pathogenesis molecular mechanisms and provide a method for the early identification of NSTEMI in AMI patients. SIGNIFICANCE: The aim of this study was to use proteomics to identify novel predictive plasma biomarkers for patients with acute myocardial infarction (AMI), which would allow for either identification of individuals at risk of an infarction, and early identification of NSTEMI in patients with AMI. Using an approach that combined iTRAQ with LC-MS/MS, we found 95 proteins that showed significant differences in expression levels among the AMI patients and healthy controls. The proteins SSA1, MDH1, FCN2, GPI, S100A8, LBP, vinculin, VDBP, and RBP4 were found to play crucial roles in the pathogenesis of AMI. Using bioinformatics analysis, we found that dysregulation of carbon metabolism, toll-like receptor signaling pathway, and hypertrophic cardiomyopathy may be the major driving forces for cardiac damage during myocardial infarction. However, further investigations are needed to verify the mechanisms involved in the development of AMI especially NSTEMI. Taken together, our findings lay the foundation for understanding the molecular mechanisms underlying the pathogenic processes of AMI, and suggest potential applications for specific biomarkers in early diagnosis and determination of prognosis.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, NO.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Linlin Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, NO.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yaofeng Xie
- Department of Cardiology, Shengjing Hospital of China Medical University, NO.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yuan Tan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng Chang
- Department of Cardiology, Shengjing Hospital of China Medical University, NO.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, NO.36 Sanhao Street, Heping District, Shenyang 110004, China.
| |
Collapse
|
8
|
Evaluation of potential cardiovascular risk protein biomarkers in high severity restless legs syndrome. J Neural Transm (Vienna) 2019; 126:1313-1320. [DOI: 10.1007/s00702-019-02051-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
|
9
|
Genetic effects of BDKRB2 and KNG1 on deep venous thrombosis after orthopedic surgery and the potential mediator. Sci Rep 2018; 8:17332. [PMID: 30478260 PMCID: PMC6255904 DOI: 10.1038/s41598-018-34868-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022] Open
Abstract
Deep venous thrombosis (DVT) is a common complication of orthopedic surgery. Genetic risk factors and high heritability carried a substantial risk of DVT. In this study, we aimed to investigate the potential association in the Han Chinese population between the polymorphisms of BDKRB2 and KNG1 and DVT after orthopedic surgery (DVTAOS). A total of 3,010 study subjects comprising 892 DVT cases and 2,118 controls were included in the study, and 39 single nucleotide polymorphisms (SNPs) in total (30 for BDKRB2 and 9 for KNG1) were chosen for genotyping. Two SNPs, rs710446 (OR = 1.27, P = 0.00016) and rs2069588 (OR = 1.29, P = 0.00056), were identified as significantly associated with DVTAOS. After adjusting for BMI, the significance of rs2069588 decreased (P = 0.0013). Haplotype analyses showed that an LD block containing rs2069588 significantly correlated with the DVTAOS risk. Moreover, bioinformatics analysis indicated that hsa-miR-758-5p and BDKRB2 formed miRNA/SNP target duplexes if the rs2069588 allele was in the T form, suggesting that rs2069588 may alter BDKRB2 expression by affecting hsa-miR-758-5p/single-nucleotide polymorphism target duplexes. Our results demonstrate additional evidence supporting that there is an important role for the KNG1 and BDKRB2 genes in the increased susceptibility of DVTAOS.
Collapse
|
10
|
Sennblad B, Basu S, Mazur J, Suchon P, Martinez-Perez A, van Hylckama Vlieg A, Truong V, Li Y, Gådin JR, Tang W, Grossman V, de Haan HG, Handin N, Silveira A, Souto JC, Franco-Cereceda A, Morange PE, Gagnon F, Soria JM, Eriksson P, Hamsten A, Maegdefessel L, Rosendaal FR, Wild P, Folsom AR, Trégouët DA, Sabater-Lleal M. Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels. Hum Mol Genet 2017; 26:637-649. [PMID: 28053049 DOI: 10.1093/hmg/ddw401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/21/2016] [Indexed: 11/14/2022] Open
Abstract
Coagulation factor XI (FXI) has become increasingly interesting for its role in pathogenesis of thrombosis. While elevated plasma levels of FXI have been associated with venous thromboembolism and ischemic stroke, its deficiency is associated with mild bleeding. We aimed to determine novel genetic and post-transcriptional plasma FXI regulators.We performed a genome-wide association study (GWAS) for plasma FXI levels, using novel data imputed to the 1000 Genomes reference panel. Individual GWAS analyses, including a total of 16,169 European individuals from the ARIC, GHS, MARTHA and PROCARDIS studies, were meta-analysed and further replicated in 2,045 individuals from the F5L family, GAIT2 and MEGA studies. Additional association with activated partial thromboplastin time (aPTT) was tested for the top SNPs. In addition, a study on the effect of miRNA on FXI regulation was performed using in silico prediction tools and in vitro luciferase assays.Three loci showed robust, replicating association with circulating FXI levels: KNG1 (rs710446, P-value = 2.07 × 10-302), F11 (rs4253417, P-value = 2.86 × 10-193), and a novel association in GCKR (rs780094, P-value = 3.56 ×10-09), here for the first time implicated in FXI regulation. The two first SNPs (rs710446 and rs4253417) also associated with aPTT. Conditional and haplotype analyses demonstrated a complex association signal, with additional novel SNPs modulating plasma FXI levels in both the F11 and KNG1 loci. Finally, eight miRNAs were predicted to bind F11 mRNA. Over-expression of either miR-145 or miR-181 significantly reduced the luciferase activity in cells transfected with a plasmid containing FXI-3'UTR.These results should open the door to new therapeutic targets for thrombosis prevention.
Collapse
Affiliation(s)
- Bengt Sennblad
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Saonli Basu
- University of Minnesota School of Public Health, Division of Biostatistics, MN, USA
| | - Johanna Mazur
- University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Pierre Suchon
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France; Aix-Marseille University
| | - Angel Martinez-Perez
- Unitat de Genòmica de Malalties Complexes. Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | | | - Vinh Truong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Yuhuang Li
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Weihong Tang
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, USA
| | - Vera Grossman
- University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niklas Handin
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juan Carlos Souto
- Unitat de Trombosi i Hemostàsia, Hospital de Sant Pau, Barcelona, Spain
| | | | - Pierre-Emmanuel Morange
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France; Aix-Marseille University
| | - France Gagnon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jose Manuel Soria
- Unitat de Genòmica de Malalties Complexes. Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Maegdefessel
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Philipp Wild
- University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), partner site RhineMain, Mainz, Germany
| | - Aaron R Folsom
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN, USA
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Maria Sabater-Lleal
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|