1
|
Li S, Xu Z, Zhang S, Sun H, Qin X, Zhu L, Jiang T, Zhou J, Yan F, Deng Q. Non-coding RNAs in acute ischemic stroke: from brain to periphery. Neural Regen Res 2025; 20:116-129. [PMID: 38767481 PMCID: PMC11246127 DOI: 10.4103/nrr.nrr-d-23-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiyao Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fuling Yan
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Jiang Y, Ma C, Guan Y, Yang W, Yu J, Shi H, Ding Z, Zhang Z. Long noncoding RNA KCNQ1OT1 aggravates cerebral infarction by regulating PTBT1/SIRT1 via miR-16-5p. J Neuropathol Exp Neurol 2024; 83:276-288. [PMID: 38324733 DOI: 10.1093/jnen/nlae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Cerebral infarction (CI) is one of the leading causes of disability and death. LncRNAs are key factors in CI progression. Herein, we studied the function of long noncoding RNA KCNQ1OT1 in CI patient plasma samples and in CI models. Quantitative real-time PCR and Western blotting tested gene and protein expressions. The interactions of KCNQ1OT1/PTBP1 and miR-16-5p were analyzed using dual-luciferase reporter and RNA immunoprecipitation assays; MTT assays measured cell viability. Cell migration and angiogenesis were tested by wound healing and tube formation assays. Pathological changes were analyzed by triphenyltetrazolium chloride and routine staining. We found that KCNQ1OT1 and PTBP1 were overexpressed and miR-16-5p was downregulated in CI patient plasma and in oxygen-glucose deprived (OGD) induced mouse brain microvascular endothelial (bEnd.3) cells. KCNQ1OT1 knockdown suppressed pro-inflammatory cytokine production and stimulated angiogenic responses in OGD-bEnd.3 cells. KCNQ1OT1 upregulated PTBP1 by sponging miR-16-5p. PTBP1 overexpression or miR-16-5p inhibition attenuated the effects of KCNQ1OT1 knockdown. PTBP1 silencing protected against OGD-bEnd.3 cell injury by enhancing SIRT1. KCNQ1OT1 silencing or miR-16-5p overexpression also alleviated ischemic injury in a mice middle cerebral artery occlusion model. Thus, KCNQ1OT1 silencing alleviates CI by regulating the miR-16-5p/PTBP1/SIRT1 pathway, providing a theoretical basis for novel therapeutic strategies targeting CI.
Collapse
Affiliation(s)
- Yuanming Jiang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chi Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuxiu Guan
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China
| | - Wenqi Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaqi Yu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanfei Shi
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zihang Ding
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Weng YH, Chen J, Yu WT, Luo YP, Liu C, Yang J, Liu HB. lncRNA-MIAT rs9625066 polymorphism could be a potential biomarker for ischemic stroke. BMC Med Genomics 2024; 17:58. [PMID: 38383415 PMCID: PMC10882908 DOI: 10.1186/s12920-024-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a common and serious neurological condition that is highly fatal but so far no early diagnostic markers are available. Myocardial infarction-associated transcript (MIAT) is a long non-coding RNA (lncRNA) that could lead to IS by inducing autophagy and apoptosis in neuronal cells. However, there has been no report on the link between susceptibility to IS and the single-nucleotide polymorphisms (SNPs) of MIAT. This study aimed to investigate the association between MIAT gene polymorphisms and IS risk. METHODS A total of 320 IS patients and 310 age-, sex- and race-matched controls were included in this study. Four polymorphisms (rs2157598, rs5761664, rs1894720, and rs9625066) were genotyped by using SNPscan technique. RESULTS Among the 4 polymorphisms of MIAT, only rs9625066 was associated with IS risk (CA vs. CC: adjusted OR = 0.55, 95% CI, 0.37-0.85, P = 0.006; AA vs. CC: adjusted OR = 0.39, 95% CI, 0.16-0.94, P = 0.036; (AA + CA vs. CC: adjusted OR = 0.53, 95% CI, 0.35-0.80, P = 0.002; A vs. C adjusted OR = 0.59, 95% CI, 0.42-0.82, P = 0.002). Haplotype analysis showed a 1.32-fold increase (95% CI, 1.05-1.67, P = 0.017) in IS risk for rs2157598-rs5761664-rs1894720-rs9625066 (A-C-G-C). Logistic regression analysis identified some independent impact factors for IS including rs9625066 AA/AC, TC, TG, HDL-C (P < 0.05). CONCLUSION The rs9625066 polymorphism of MIAT might be associated with IS susceptibility in Chinese population, in which AA/CA plays a protective role in IS, whereas the CC genotype increases the risk of developing IS, suggesting it might be a marker predictive of IS risk.
Collapse
Affiliation(s)
- Yin-Hua Weng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jie Chen
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Wen-Tao Yu
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Yan-Ping Luo
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Chao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China.
| | - Hong-Bo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
| |
Collapse
|
4
|
Li F, Xu Y, Wang X, Cai X, Li W, Cheng W, Li X, Yan G. Block Copolymer Nanomicelle-Encapsulated Curcumin Attenuates Cerebral Ischemia Injury and Affects Stem Cell Marker Expression by Inhibiting lncRNA GAS5. Stem Cells Int 2023; 2023:9821500. [PMID: 36845969 PMCID: PMC9957624 DOI: 10.1155/2023/9821500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Stroke has become the most common cause of death among residents in China, among which ischemic stroke accounts for the vast majority reaching 70% to 80%. It is of great importance to actively investigate the protective mechanism of cerebral ischemia injury after IS (ischemic stroke). We constructed cerebral ischemia injury models in vivo MACO rat and in vitro (oxygen-glucose deprivation cell model) and set up different interference groups. RT-PCR (reverse transcription PCR) was conducted to detect the expression of lncRNA in neuronal cells, brain tissue, and plasma of different groups, and ELISA (enzyme-linked immunosorbent assay) and western blot were used to detect the expression of the protein in neuronal cells, brain tissue, and plasma of different groups. Cell activity was detected by the CCK-8 assay, while cell apoptosis was examined by TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. In the rats' neuronal cells and brain tissue, curcumin can inhibit the expression of lncRNA GAS5 (long noncoding RNA growth arrest-specific 5). In oxygen-glucose-deprived neuronal cells in vitro, curcumin and low-expressed lncRNA GAS5 can enhance cell activity and decline cell apoptosis, but the addition of curcumin and overexpressed lncRNA GAS5 can make this phenomenon disappear. In neuronal cells, plasma, and brain tissue, curcumin and the low-expressed lncRNA GAS5 can inhibit the expression of IL-1β (interleukin 1 beta), TNF-α (tumor necrosis factor alpha), IL-6 (interleukin 6), Sox2 (SRY-box transcription factor 2), Nanog, and Oct4 (octamer-binding transcription factor 4). However, overexpressed lncRNA GAS5 and curcumin made the inhibitory effect disappear. In conclusion, this study demonstrated that curcumin could inhibit the expression of lncRNA GAS5, thereby inhibiting the expression of inflammation-related factors IL-1β, TNF-α, and IL-6, and ultimately achieve the purpose of attenuating cerebral ischemic cell damage. However, curcumin and lncRNA GAS5 may not alleviate cerebral ischemic cell damage by affecting stem cell differentiation.
Collapse
Affiliation(s)
- Fengguang Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081 Hubei, China
| | - Yan Xu
- Department of Pharmacy, General Hospital of Central Theater Command, Wuhan, 430010 Hubei, China
| | - Xinghua Wang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081 Hubei, China
| | - Xuan Cai
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081 Hubei, China
| | - Wanli Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081 Hubei, China
| | - Wei Cheng
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081 Hubei, China
| | - Xing Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081 Hubei, China
| | - Gangli Yan
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430081 Hubei, China
| |
Collapse
|
5
|
Zhao Y, Liu Y, Zhang Q, Liu H, Xu J. The Mechanism Underlying the Regulation of Long Non-coding RNA MEG3 in Cerebral Ischemic Stroke. Cell Mol Neurobiol 2023; 43:69-78. [PMID: 34988760 DOI: 10.1007/s10571-021-01176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of morbidity and mortality worldwide, and rapidly increasing annually with no more effective therapeutic measures. Thus, the novel diagnostic and prognostic biomarkers are urgent to be identified for prevention and therapy of ischemic stroke. Recently, long noncoding RNAs (lncRNAs), a major family of noncoding RNAs with more than 200 nucleotides, have been considered as new targets for modulating pathological process of ischemic stroke. In this review, we summarized that the lncRNA-maternally expressed gene 3 (MEG3) played a critical role in promotion of neuronal cell death and inhibition of angiogenesis in response to hypoxia or ischemia condition, and further described the challenge of overcrossing blood-brain barrier (BBB) and determination of optimal carrier for delivering lncRNA' drugs into the specific brain regions. In brief, MEG3 will be a potential diagnostic biomarker and drug target in treatment and therapy of ischemic stroke in the future.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jianing Xu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
6
|
LncRNA SERPINB9P1 expression and polymorphisms are associated with ischemic stroke in a Chinese Han population. Neurol Sci 2022; 43:1143-1154. [PMID: 34273050 DOI: 10.1007/s10072-021-05418-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) were reported to play important roles in the pathogenesis of ischemic stroke (IS). Our study aimed to investigate the role of lncRNA SERPINB9P1 expression in ischemic stroke and the association between SERPINB9P1 polymorphisms and IS risk, as well as examine the correlation of SERPINB9P1 expression and variants with clinical parameters of IS. The SERPINB9P1 levels in human participants and oxygen-glucose deprivation (OGD)-treated human A172 cells were measured by qRT-PCR. The SERPINB9P1 polymorphisms (rs375556 and rs318429) were genotyped by the MassARRAY platform. We found that the SERPINB9P1 expression was significantly downregulated in patients with IS compared with that in healthy controls. On the 14th day in the hospital, the SERPINB9P1 level in patients with moderate and severe stroke was significantly downregulated compared with the normal group. After stratification by gender, the rs375556 polymorphism was significantly associated with susceptibility to female IS in the recessive model, and the significant association remained after adjusting for age. After adjusting for gender and age, rs318429 was significantly associated with FPG and D-D levels, and rs375556 was significantly associated with INR and PTA levels in IS cases. Besides, the lncRNA SERPINB9P1 expressed downregulated in OGD/reoxygenation-treated human A172 cells. In conclusion, the lncRNA SERPINB9P1 may protect against cerebral ischemia-reperfusion injury and neurological impairment after IS. The SERPINB9P1 rs375556 polymorphism was associated with susceptibility to female IS, and SERPINB9P1 polymorphisms may influence the metabolism of blood glucose and regulation of coagulation function in patients with IS.
Collapse
|
7
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Arefian N. Emerging Impact of Non-coding RNAs in the Pathology of Stroke. Front Aging Neurosci 2021; 13:780489. [PMID: 34867304 PMCID: PMC8640345 DOI: 10.3389/fnagi.2021.780489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke (IS) is an acute cerebral vascular event with high mortality and morbidity. Though the precise pathophysiologic routes leading to this condition are not entirely clarified, growing evidence from animal and human experiments has exhibited the impact of non-coding RNAs in the pathogenesis of IS. Various lncRNAs namely MALAT1, linc-SLC22A2, linc-OBP2B-1, linc_luo_1172, linc-DHFRL1-4, SNHG15, linc-FAM98A-3, H19, MEG3, ANRIL, MIAT, and GAS5 are possibly involved in the pathogenesis of IS. Meanwhile, lots of miRNAs contribute in this process. Differential expression of lncRNAs and miRNAs in the sera of IS patients versus unaffected individuals has endowed these transcripts the aptitude to distinguish at risk patients. Despite conduction of comprehensive assays for evaluation of the influence of lncRNAs/miRNAs in the pathogenesis of IS, therapeutic impacts of these transcripts in IS have not been clarified. In the present paper, we review the impact of lncRNAs/miRNAs in the pathobiology of IS through assessment of evidence provided by human and animal studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Noormohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University Hospital, Tehra, Iran
| |
Collapse
|
8
|
Zhu R, Xiao T, Wang Q, Zhao Y, Liu X. Genetic polymorphisms in lncRNAs predict recurrence of ischemic stroke. Metab Brain Dis 2021; 36:1353-1359. [PMID: 33818708 DOI: 10.1007/s11011-021-00725-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/28/2021] [Indexed: 11/28/2022]
Abstract
Genetic polymorphisms in long non-coding RNAs (lncRNAs) are considered as potential genetic biomarkers for the prediction of human complex diseases such as ischemic stroke (IS). However, so far, no reports have focused on the relationship of lncRNA polymorphisms with IS onset and prognosis. In our study, eight potential functional polymorphisms of four well-known lncRNAs (H19 rs2107425 and rs2251375, MALAT1 rs4102217 and rs3200401, MEG3 rs11160608 and rs4081134, SENCR rs4526784 and rs555172) were genotyped in 657 ischemic stroke patients. Then, the association between lncRNA polymorphisms and IS onset and recurrence were investigated. These lncRNA variants were not associated with age onset of IS. However, we observed that MEG3 rs4081134 AA genotype was statistically related with a reduced risk of stroke recurrence, particularly for patients with large-artery atherosclerotic stroke. Also, the decreased risk was more prominent in elders, non-smokers, non-drinkers and hypertensive patients. Furthermore, the variant genotype AA of rs4081134 was an independent predictor for IS recurrence using the multivariate Cox regression model. Our findings indicated that MEG3 rs4081134 can serve as a useful biomarker and potential therapeutic target in IS recurrence. More researches are needed to verify our results and explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Tongling Xiao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Qianwen Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
9
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
10
|
Tsilimigras DI, Bibli SI, Siasos G, Oikonomou E, Perrea DN, Filis K, Tousoulis D, Sigala F. Regulation of Long Non-Coding RNAs by Statins in Atherosclerosis. Biomolecules 2021; 11:biom11050623. [PMID: 33922114 PMCID: PMC8143454 DOI: 10.3390/biom11050623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Despite increased public health awareness, atherosclerosis remains a leading cause of mortality worldwide. Significant variations in response to statin treatment have been noted among different populations suggesting that the efficacy of statins may be altered by both genetic and environmental factors. The existing literature suggests that certain long noncoding RNAs (lncRNAs) might be up- or downregulated among patients with atherosclerosis. LncRNA may act on multiple levels (cholesterol homeostasis, vascular inflammation, and plaque destabilization) and exert atheroprotective or atherogenic effects. To date, only a few studies have investigated the interplay between statins and lncRNAs known to be implicated in atherosclerosis. The current review characterizes the role of lncRNAs in atherosclerosis and summarizes the available evidence related to the effect of statins in regulating lncRNAs.
Collapse
Affiliation(s)
- Diamantis I. Tsilimigras
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
- Correspondence: ; Tel.: +30-697-5683-212
| | - Sofia-Iris Bibli
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60323 Frankfurt am Main, Germany;
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Evangelos Oikonomou
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Despina N. Perrea
- Laboratory for Experimental Surgery and Surgical Research “N.S. Christeas”, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Konstantinos Filis
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| | - Dimitrios Tousoulis
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Fragiska Sigala
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| |
Collapse
|
11
|
Genetic Variants of lncRNA GAS5 Contribute to Susceptibility of Ischemic Stroke among Southern Chinese Population. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6634253. [PMID: 33937403 PMCID: PMC8055407 DOI: 10.1155/2021/6634253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that the long noncoding RNA (lncRNA) growth arrest special 5 (GAS5) plays crucial roles in the pathogenesis of ischemic stroke (IS). The current research is aimed at assessing the correlation between two functional GAS5 variants (rs145204276 and rs55829688) and susceptibility to IS in a Han Chinese population. This study genotyped the two GAS5 variants in 1086 IS patients as well as 1045 age-matched healthy controls by using an improved multitemperature ligase detection reaction (iMLDR-TM) genotyping technology. We observed a considerable change in the frequencies of the rs145204276 allele and genotype among the IS patients and healthy control group. The del-T haplotype was substantially more prevalent in the IS cases compared to the control individuals. When study participants were stratified according to environmental factors, we found that the rs145204276 del allele was correlated with a higher risk of IS in male, smokers, hypertensive, and those ≥65 years old. Additional stratification conforming to IS subtypes exhibited that individuals carrying the rs145204276 del allele conferred a higher risk of expanding a larger artery atherosclerosis stroke subset. Moreover, there was a significant association between the rs145204276 del allele and elevated expression of GAS5 in IS patients. In contrast, the frequency of the allele related to rs55829688 was not statistically correlated with IS in all analysis. Our study supports a model wherein the rs145204276 variant in the GAS5 lncRNA is associated with IS risk, thus representing a potentially viable biomarker for IS prevention and treatment.
Collapse
|
12
|
Wu R, Yun Q, Zhang J, Bao J. RETRACTED: Long non-coding RNA GAS5 retards neural functional recovery in cerebral ischemic stroke through modulation of the microRNA-455-5p/PTEN axis. Brain Res Bull 2021; 167:80-88. [PMID: 33309710 DOI: 10.1016/j.brainresbull.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1C and 4B+J, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China.
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| |
Collapse
|
13
|
Zhang L, Cai Q, Lin S, Chen B, Jia B, Ye R, Weygant N, Chu J, Peng J. Qingda granule exerts neuroprotective effects against ischemia/reperfusion-induced cerebral injury via lncRNA GAS5/miR-137 signaling pathway. Int J Med Sci 2021; 18:1687-1698. [PMID: 33746585 PMCID: PMC7976574 DOI: 10.7150/ijms.53603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Ischemic stroke is the second leading cause of death and disability worldwide, which needs to develop new pharmaceuticals for its prevention and treatment. Qingda granule (QDG), a traditional Chinese medicine formulation, could improve angiotensin II-induced brain injury and decrease systemic inflammation. In this study, we aimed to evaluate the neuroprotective effect of QDG against ischemia/reperfusion-induced cerebral injury and illustrate the potential mechanisms. Methods: The middle cerebral artery occlusion/reperfusion (MCAO/R) surgery in vivo and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro models were established. Ischemic infarct volume was quantified using magnetic resonance imaging (MRI). Neurobehavioral deficits were assessed using a five-point scale. Cerebral histopathology was determined by hematoxylin-eosin (HE) staining. Neuronal apoptosis was evaluated by TUNEL and immunostaining with NeuN antibodies. The protective effect of QDG on OGD/R-injured HT22 cells was determined by MTT assay and Hoechst 33258 staining. The expression of lncRNA GAS5, miR-137 and apoptosis-related proteins were investigated in MCAO/R-injured rats and in OGD/R-injured HT22 cells using RT-qPCR and western blot analysis. Results: QDG significantly reduced the ischemic infarct volume, which was accompanied with improvements in neurobehavioral deficits. Additionally, QDG significantly ameliorated cerebral histopathological changes and reduced neuron loss in MCAO/R-injured rats. Moreover, QDG improved growth and inhibited apoptosis of HT22 cells injured by OGD/R in vitro. Finally, QDG significantly decreased the expression of lncRNA GAS5, Bax and cleaved caspase3, whereas it increased miR-137 and Bcl-2 expression in MCAO/R-injured rats and in OGD/R-injured HT22 cells. Conclusion: QDG plays a neuroprotective role in ischemic stroke via regulation of the lncRNA GAS5/miR-137 signaling pathway.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Qiuyang Road, Minhou Shangjie, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Bin Chen
- People's Hospital of Fujian University of Traditional Chinese Medicine, No.602, 817 Middle Road, Fuzhou 350004, China
| | - Beibei Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,The Higher Educational Key Laboratory for Integrative Medicine of Fujian Province, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Renzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,The Higher Educational Key Laboratory for Integrative Medicine of Fujian Province, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, China.,Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| |
Collapse
|
14
|
Fan J, Saft M, Sadanandan N, Gonzales-Portillo B, Park YJ, Sanberg PR, Borlongan CV, Luo Y. LncRNAs Stand as Potent Biomarkers and Therapeutic Targets for Stroke. Front Aging Neurosci 2020; 12:594571. [PMID: 33192490 PMCID: PMC7604318 DOI: 10.3389/fnagi.2020.594571] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is a major public health problem worldwide with a high burden of neurological disability and mortality. Long noncoding RNAs (lncRNAs) have attracted much attention in the past decades because of their newly discovered roles in pathophysiological processes in many diseases. The abundance of lncRNAs in the nervous system indicates that they may be part of a complex regulatory network governing physiology and pathology of the brain. In particular, lncRNAs have been shown to play pivotal roles in the pathogenesis of stroke. In this article, we provide a review of the multifaceted functions of lncRNAs in the pathogenesis of ischemic stroke and intracerebral hemorrhage, highlighting their promising use as stroke diagnostic biomarkers and therapeutics. To this end, we discuss the potential of stem cells in aiding lncRNA applications in stroke.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Madeline Saft
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Han X, Wang C, Tang D, Shi Y, Gao M. Association of genetic polymorphisms in chromosome 9p21 with risk of ischemic stroke. Cytokine 2020; 127:154921. [DOI: 10.1016/j.cyto.2019.154921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
|
16
|
Zhao S, Jiang H, Liang ZH, Ju H. Integrating Multi-Omics Data to Identify Novel Disease Genes and Single-Neucleotide Polymorphisms. Front Genet 2020; 10:1336. [PMID: 32038707 PMCID: PMC6993083 DOI: 10.3389/fgene.2019.01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Stroke ranks the second leading cause of death among people over the age of 60 in the world. Stroke is widely regarded as a complex disease that is affected by genetic and environmental factors. Evidence from twin and family studies suggests that genetic factors may play an important role in its pathogenesis. Therefore, research on the genetic association of susceptibility genes can help understand the mechanism of stroke. Genome-wide association study (GWAS) has found a large number of stroke-related loci, but their mechanism is unknown. In order to explore the function of single-nucleotide polymorphisms (SNPs) at the molecular level, in this paper, we integrated 8 GWAS datasets with brain expression quantitative trait loci (eQTL) dataset to identify SNPs and genes which are related to four types of stroke (ischemic stroke, large artery stroke, cardioembolic stroke, small vessel stroke). Thirty-eight SNPs which can affect 14 genes expression are found to be associated with stroke. Among these 14 genes, 10 genes expression are associated with ischemic stroke, one gene for large artery stroke, six genes for cardioembolic stroke and eight genes for small vessel stroke. To explore the effects of environmental factors on stroke, we identified methylation susceptibility loci associated with stroke using methylation quantitative trait loci (MQTL). Thirty-one of these 38 SNPs are at greater risk of methylation and can significantly change gene expression level. Overall, the genetic pathogenesis of stroke is explored from locus to gene, gene to gene expression and gene expression to phenotype.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zong-Hui Liang
- Department of Radiology, Jian'an District Centre Hospital of Fudan University, Shanghai, China
| | - Hong Ju
- Department of Information Engineering, Heilongjiang Biological Science and Technology Career Academy, Harbin, China
| |
Collapse
|
17
|
Zheng Z, Liu S, Wang C, Wang C, Tang D, Shi Y, Han X. Association of genetic polymorphisms in CASP7 with risk of ischaemic stroke. Sci Rep 2019; 9:18627. [PMID: 31819117 PMCID: PMC6901581 DOI: 10.1038/s41598-019-55201-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Caspase 7 (CASP7) is located on chromosome 10q25.3 that has been identified to be a susceptibility locus of ischaemic stroke (IS) by genome-wide association study. Elevated CASP7 was observed in IS, acting as a key apoptotic mediator in the development of IS. The aim of this study was to investigate the association between genetic polymorphisms in CASP7 and risk of IS. The CASP7 polymorphisms were genotyped using a TaqMan allelic discrimination assay. The expression levels of CASP7 mRNA were examined using quantitative polymerase chain reaction and luciferase activity was analyzed using the Dual Luciferase reporter assay. The rs12415607 in the promoter of CASP7 was associated with a reduced risk of IS (AA vs. CC: adjusted OR = 0.55, 95% CI: 0.38-0.80, P = 0.002; CA/AA vs. CC: adjusted OR = 0.70, 95% CI: 0.54-0.91, P = 0.007; AA vs. CC/CA: adjusted OR = 0.64, 95% CI: 0.46-0.90, P = 0.01; A vs. C: adjusted OR = 0.74, 95% CI: 0.62-0.89, P = 0.001). Moreover, the rs12415607 AA genotype carriers exhibited lower levels of CASP7 mRNA and the rs12415607 A allele decreased the promoter activity. These findings indicate that the rs12415607 A allele induces lower levels of transcriptional activity and CASP7 mRNA, and thus is associated with a reduced risk of IS.
Collapse
Affiliation(s)
- Zhaoshi Zheng
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Songyan Liu
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Chuheng Wang
- Department of Clinical Medicine (Grade 2017 Student), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China
| | - Chunhui Wang
- Department of Neurosurgery, the Hospital of Jilin Province, Changchun, Jilin, 130031, P.R. China
| | - Dong Tang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Yuqing Shi
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China.
| |
Collapse
|
18
|
The lncRNA SOX2OT rs9839776 C>T Polymorphism Indicates Recurrent Miscarriage Susceptibility in a Southern Chinese Population. Mediators Inflamm 2019; 2019:9684703. [PMID: 31827385 PMCID: PMC6885167 DOI: 10.1155/2019/9684703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Genetic susceptibility may be involved in the onset of recurrent miscarriage. Previous studies have shown that some genetic polymorphisms that regulate cell migration are associated with susceptibility to recurrent miscarriage. The SOX2 overlapping transcript (SOX2OT) may regulate the migration and invasion of multiple tumor cells and is related to susceptibility to various diseases. However, whether lncRNA SOX2OT polymorphisms are related to recurrent miscarriage susceptibility is unclear. Therefore, we investigated the relationship between the lncRNA SOX2OT rs9839776 C>T polymorphism and recurrent miscarriage susceptibility. We recruited 570 subjects with recurrent miscarriage and 578 healthy control subjects from a population in southern China and used the TaqMan method for genotyping. We found a significant association between the rs9839776 CT genotype in the SOX2OT gene and an increased risk for recurrent miscarriage (CT vs CC: adjusted OR = 1.357, 95%CI = 1.065 - 1.728, P = 0.0134). However, we did not observe any significant associations between the recurrent miscarriage risk and the number of miscarriages in different age groups. In conclusion, our study indicated that the rs9839776 CT genotype may contribute to an increased risk of recurrent miscarriage in the southern Chinese population and that rs9839776 may act as a prognostic biomarker in recurrent miscarriage patients. However, an experiment-based study with a larger sample size should be performed to confirm these results.
Collapse
|
19
|
Huang H, Wei G, Wang C, Lu Y, Liu C, Wang R, Shi X, Yang J, Wei Y. A functional polymorphism in the promoter of miR-17-92 cluster is associated with decreased risk of ischemic stroke. BMC Med Genomics 2019; 12:159. [PMID: 31703587 PMCID: PMC6839137 DOI: 10.1186/s12920-019-0589-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background The microRNA-17-92 (miR-17-92) cluster is one of the most extensively studied miRNA clusters. Abnormal expression of the cluster has been found to play important role in different kinds of human diseases, including ischemic stroke (IS). The aim of our study was to investigate the association between three polymorphisms (rs1491034, rs9301654 and rs982873) in the promoter of the miR-17-92 cluster and risk of IS. Methods Three hundred and ninety-eight patients with IS and 397 control subjects were included. The genotypes of the three polymorphisms were determined by Snapshot SNP genotyping assay. Relative expression of the cluster in peripheral blood mononuclear cells (PBMCs) of cases and controls were examined by quantitative real-time PCR. Results Significant association between rs9301654 polymorphism and risk of IS were observed basing on genotype, model and allele analyses (GA vs. AA: adjusted OR = 0.63, 95% CI: 0.41~0.97, P = 0.037; GG vs. AA: adjusted OR = 0.23, 95% CI: 0.07~0.78, P = 0.018; GA + GG vs. AA: adjusted OR = 0.57, 95% CI: 0.38~0.87, P = 0.009; GA + AA vs. GG: adjusted OR = 0.27, 95% CI: 0.08~0.89, P = 0.032; G vs. A: adjusted OR = 0.58, 95% CI: 0.40~0.83). Haplotype analysis showed that TGC and TGT haplotypes were associated with decreased risk of IS (OR = 0.59, 95% CI: 0.40~0.87, P = 0.007 for TGC haplotype; OR = 0.21, 95% CI: 0.06~0.75, P = 0.009 for TGT haplotype). Importantly, we found the expression of miR-17-5p was significant higher while miR-19a-3p was significant lower in patient with IS compared with the control group (P < 0.01), and patients with rs9301654GG or GA genotype displayed lower level of miR-19a-3p compared with the AA genotype (P < 0.01). Conclusions Our findings indicated that rs9301654 polymorphism in the promoter of miR-17-92 cluster may be associated with susceptibility of IS in the Chinese population. However, we found that rs9301654 polymorphism and its respective gene expression did not demonstrate consistent association with IS in the Chinese population. Further studies such as gene-gene interaction are warranted to reveal the role of miR-19a and its regulatory genes in the etiology of IS.
Collapse
Affiliation(s)
- Huatuo Huang
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Guijiang Wei
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chunfang Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yulan Lu
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chunhong Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Rong Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiang Shi
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jun Yang
- Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yesheng Wei
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China. .,Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
20
|
Zou JB, Chai HB, Zhang XF, Guo DY, Tai J, Wang Y, Liang YL, Wang F, Cheng JX, Wang J, Shi YJ. Reconstruction of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in Cerebral Infarction. Sci Rep 2019; 9:12176. [PMID: 31434962 PMCID: PMC6704173 DOI: 10.1038/s41598-019-48435-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Functioning as miRNA sponges, long non-coding RNA (lncRNA) exert its pharmacological action via regulating expression of protein-coding genes. However, the lncRNA-mediated ceRNA in cerebral Infarction (CI) remains unclear. In this study, the expression recordsets of mRNA, lncRNA and miRNA of CI samples were obtained from the NCBI GEO datasets separately. The differentially expressed lncRNAs (DELs), miRNAs (DEMis) and mRNAs (DEMs) were identified by limma package in R platform. A total of 267 DELs, 26 DEMis, and 760 DEMs were identified as differentially expressed profiles, with which we constructed the ceRNA network composed of DELs-DEMis-DEMs. Further, clusterProfiler package in R platform is employed for performing Gene Ontology (GO) and KEGG pathway analysis. An aberrant ceRNA network was constructed according to node degrees in CI, including 28 DELs, 19 DEMs and 12 DEMis, from which we extracted the core network, in which 9 nodes were recognized as kernel genes including Tspan3, Eif4a2, rno-miR-208a-3p, rno-miR-194-5p, Pdpn, H3f3b, Stat3, Cd63 and Sdc4. Finally, with the DELs-DEMis-DEMs ceRNA network provided above, we can improve our understanding of the pathogenesis of CI mediated by lncRNA.
Collapse
Affiliation(s)
- Jun-Bo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hong-Bo Chai
- The first affiliated Hospital of Hunan University of Medicine, Huaihua, 410007, China
| | - Xiao-Fei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Yan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jia Tai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yu Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yu-Lin Liang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fang Wang
- Key laboratory of Modern Prepararation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330000, China
| | - Jiang-Xue Cheng
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jing Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ya-Jun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research,Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
21
|
Wei YS, Yang J, He YL, Shi X, Zeng ZN. A functional polymorphism in the promoter of TUG1 is associated with an increased risk of ischaemic stroke. J Cell Mol Med 2019; 23:6173-6181. [PMID: 31264779 PMCID: PMC6714496 DOI: 10.1111/jcmm.14499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Taurine‐upregulated gene 1 (TUG1), a kind of long non‐coding RNAs (lncRNAs), was up‐regulated in ischaemic stroke (IS) with the function of promoting neuron apoptosis. In this study, we aimed to investigate the association of TUG1 polymorphisms with IS risk. The TUG1 polymorphisms were genotyped using a custom‐by‐design 48‐Plex SNPscan kit. The promoter activity was measured using the dual luciferase reporter assay. Relative expression of TUG1 in IS patients was analysed using quantitative PCR and the binding of TUG1rs2240183 polymorphism to transcription factor was analysed using chromatin immunoprecipitation (ChIP) assay. The rs2240183 CT/CC genotypes and C allele in the promoter of TUG1 were associated with an increased risk of IS (CT/CC vs. TT: adjusted OR = 1.70, 95% CI, 1.16‐2.49, P = 0.006; C vs. T: adjusted OR = 1.47, 95% CI, 1.12‐1.93, P = 0.005). Logistic regression analysis showed that the rs2240183 was a risk factor of IS besides TC, TG, HDL‐C, LDL‐C, VLDL‐C, Apo‐A1, Apo‐B and NEFA. Further functional analysis revealed that the TUG1rs2240183 C allele exhibited higher transcriptional activity and TUG1 expression levels (P < 0.01). The ChIP assay showed that the rs2240183 C allele binds to transcriptional factor GATA‐1. These findings indicate that the rs2240183 C allele was associated with a higher risk of IS possibly by binding to GATA‐1 and elevating TUG1 levels.
Collapse
Affiliation(s)
- Ye-Sheng Wei
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yong-Ling He
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiang Shi
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhi-Neng Zeng
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
22
|
Akella A, Bhattarai S, Dharap A. Long Noncoding RNAs in the Pathophysiology of Ischemic Stroke. Neuromolecular Med 2019; 21:474-483. [DOI: 10.1007/s12017-019-08542-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
|
23
|
Wang L, Niu Y, He G, Wang J. Down-regulation of lncRNA GAS5 attenuates neuronal cell injury through regulating miR-9/FOXO3 axis in cerebral ischemic stroke. RSC Adv 2019; 9:16158-16166. [PMID: 35521373 PMCID: PMC9064354 DOI: 10.1039/c9ra01544b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of neurological disability worldwide. Previous study reported that long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) was highly expressed in ischemic stroke. However, the mechanism underlying GAS5 in an inflammatory injury during an ischemic stroke remains poorly understood. An in vivo mouse model of middle cerebral artery occlusion (MCAO) and an in vitro cell model of oxygen-glucose deprivation (OGD) were established to induce cerebral ischemic stroke condition. The expressions of GAS5, microRNA-9 (miR-9) and forkhead box O3 (FOXO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis, respectively. The neurological injury in vivo was investigated by neurological score and TTC staining. Cell apoptosis and inflammatory injury were analyzed by western blot, flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The interaction between miR-9 and GAS5 or FOXO3 was explored by luciferase activity, RNA pull-down and RNA immunoprecipitation (RIP) assays. GAS5 expression was enhanced in the cerebral ischemic stroke model. Knockdown of GAS5 attenuated the cerebral infarct, neurological injury, apoptosis and inflammatory injury in the mouse MCAO model. miR-9 was bound to GAS5 and its overexpression inhibited cell apoptosis and inflammatory response in OGD-treated bEnd.3 cells, which was attenuated by GAS5. FOXO3 was a target of miR-9 and its restoration reversed the miR-9-mediated suppression of apoptosis and inflammation. Moreover, GAS5 promoted FOXO3 expression by competitively sponging miR-9. GAS5 knockdown alleviated neuronal cell injury by regulating miR-9/FOXO3, providing a new theoretical foundation for cerebral ischemic stroke. Cerebral ischemic stroke is a leading cause of neurological disability worldwide.![]()
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| | - Yanliang Niu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| | - Gangrui He
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| | - Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University No. 3, Kangfu Street, Erqi District Zhengzhou 450000 China +86-0317-66916091
| |
Collapse
|
24
|
Han X, Zheng Z, Wang C, Wang L. Association between MEG3/miR-181b polymorphisms and risk of ischemic stroke. Lipids Health Dis 2018; 17:292. [PMID: 30579356 PMCID: PMC6303848 DOI: 10.1186/s12944-018-0941-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent evidence suggests that long non-coding RNAs (lncRNAs) are key regulators in the pathological process of ischemic stroke (IS). Maternally expressed gene 3 (MEG3) was observed to be up-regulated in IS, acting as a competing endogenous RNA for miR-181b to regulate ischemic brain injury. The purpose of this study was to evaluate the association of tagSNPs in MEG3 (i.e., rs7158663 and rs4081134) and miR-181b rs322931 with IS risk. METHODS Genomic DNA was extracted from blood samples of 509 patients with IS and 668 healthy controls. Genotyping of MEG3 rs7158663, rs4081134, and miR-181b rs322931 was performed by TaqMan assay. The transcriptional activity was measured using the Dual-Luciferase Reporter Assay kit. RESULTS Single-site analysis revealed a significantly higher risk of IS being associated with miR-181b rs322931 CT and CT/TT genotypes (CT vs. CC: adjusted OR = 1.48, 95% CI: 1.13-1.95, P = 0.005; CT/TT vs. CC: adjusted OR = 1.52, 95% CI: 1.17-1.97, P = 0.002). Combined analyses revealed that combined genotypes (rs7158663 GG + rs322931 CT/TT and rs7158663 AG/AA + rs322931 CT/TT) increased IS risk compared to genotypes of rs7158663 GG + rs322931 CC. Stratification analyses showed that patients carrying miR-181b rs322931 CT/TT genotypes had higher levels of low-density lipoprotein cholesterol (LDL_C) (P = 0.01). Moreover, results from logistic regression analysis showed that rs322931 CT/TT genotypes were risk factors besides hypertension, total cholesterol, triglyceride, and LDL_C. Further dual-luciferase reporter assay showed that the rs322931 T allele had lower levels of luciferase activity than the rs322931 C allele. CONCLUSION These findings indicate that miR-181b rs322931 may singly or jointly contribute to the risk of IS.
Collapse
Affiliation(s)
- Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, People's Republic of China
| | - Zhaoshi Zheng
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, People's Republic of China
| | - Chunhui Wang
- Department of Neurosurgery, the Hospital of Jilin Province, Changchun, Jilin, 130031, People's Republic of China
| | - Libo Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, People's Republic of China.
| |
Collapse
|