1
|
Nasreldein A, Shoamanesh A, Foli N, Makboul M, Salah S, Faßbender K, Walter S. Prevalence and Risk Factors of Cerebral Microbleeds among Egyptian Patients with Acute Ischemic Stroke. Neuroepidemiology 2024:1-9. [PMID: 39019020 DOI: 10.1159/000540296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Cerebral microbleeds (CMBs) are markers of underlying hemorrhage-prone cerebral small vessel disease detected on MRI. They are associated with a heightened risk of stroke and cognitive decline. The prevalence of CMBs among Egyptian patients with ischemic stroke is not well studied. Our aim was to detect the prevalence of CMBs and associated risk factors among Egyptian patients with ischemic stroke. METHODS A prospective, cross-sectional, single-center study of consecutive patients with ischemic stroke. Patients were recruited between January 2021 and January 2022 at the Assiut University Hospital in the south of Egypt. Patients with known bleeding diathesis were excluded. All participants underwent full neurological assessment, urgent laboratory investigations, and MRI with T2* sequence. RESULTS The study included 404 patients, 191 (47.3%) of them were females. The mean age of the study population was 61 ± 1 years, and the mean NIHSS on admission was 12 ± 5. The prevalence of CMB was 26.5%, of whom 6.5% were young adults (age ≤45 years). CMBs were detected in 34.6% of patients with stroke caused by large artery atherosclerosis, 28.0% with small vessel disease stroke subtype, 25.2% with stroke of undetermined cause, and in 12.1% with cardioembolic stroke. History of AF, hypertension, dyslipidemia, Fazekas score >2, dual antiplatelet use, combined antiplatelet with anticoagulant treatment, and thrombolytic therapy remained independently associated with CMBs following multivariable regression analyses. CONCLUSION The high number of identified CMBs needs to inform subsequent therapeutic management of these patients. We are unable to determine whether the association between CMBs and antithrombotic use is a causal relationship or rather confounded by indication for these treatments in our observational study. To understand more about the underlying cause of this finding, more studies are needed.
Collapse
Affiliation(s)
- Ahmed Nasreldein
- Department of Neurology, Assiut University Hospitals, Assiut University, Assiut, Egypt
| | - Ashkan Shoamanesh
- Division of Neurology, Department of Medicine, McMaster University/Population Health Research Institute, Hamilton, Ontario, Canada
| | - Nageh Foli
- Department of Neurology, Assiut University Hospitals, Assiut University, Assiut, Egypt
| | - Marwa Makboul
- Department of Radiology, Assiut University Hospitals, Assiut University, Assiut, Egypt
| | - Sabreen Salah
- Department of Neurology, Assiut University Hospitals, Assiut University, Assiut, Egypt
| | - Klaus Faßbender
- Department of Neurology, Saarland University Hospital, Homburg, Germany
| | - Silke Walter
- Department of Neurology, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
2
|
Lam BYK, Cai Y, Akinyemi R, Biessels GJ, van den Brink H, Chen C, Cheung CW, Chow KN, Chung HKH, Duering M, Fu ST, Gustafson D, Hilal S, Hui VMH, Kalaria R, Kim S, Lam MLM, de Leeuw FE, Li ASM, Markus HS, Marseglia A, Zheng H, O'Brien J, Pantoni L, Sachdev PS, Smith EE, Wardlaw J, Mok VCT. The global burden of cerebral small vessel disease in low- and middle-income countries: A systematic review and meta-analysis. Int J Stroke 2023; 18:15-27. [PMID: 36282189 DOI: 10.1177/17474930221137019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia. Previous studies on the prevalence of cSVD are mostly based on single geographically defined cohorts in high-income countries. Studies investigating the prevalence of cSVD in low- and middle-income countries (LMICs) are expanding but have not been systematically assessed. AIM This study aims to systematically review the prevalence of cSVD in LMICs. RESULTS Articles were searched from the Ovid MEDLINE and EMBASE databases from 1 January 2000 to 31 March 2022, without language restrictions. Title/abstract screening, full-text review, and data extraction were performed by two to seven independent reviewers. The prevalence of cSVD and study sample size were extracted by pre-defined world regions and health status. The Risk of Bias for Non-randomized Studies tool was used. The protocol was registered on PROSPERO (CRD42022311133). A meta-analysis of proportion was performed to assess the prevalence of different magnetic resonance imaging markers of cSVD, and a meta-regression was performed to investigate associations between cSVD prevalence and type of study, age, and male: female ratio. Of 2743 studies identified, 42 studies spanning 12 global regions were included in the systematic review. Most of the identified studies were from China (n = 23). The median prevalence of moderate-to-severe white matter hyperintensities (WMHs) was 20.5%, 40.5%, and 58.4% in the community, stroke, and dementia groups, respectively. The median prevalence of lacunes was 0.8% and 33.5% in the community and stroke groups. The median prevalence of cerebral microbleeds (CMBs) was 10.7% and 22.4% in the community and stroke groups. The median prevalence of moderate-to-severe perivascular spaces was 25.0% in the community. Meta-regression analyses showed that the weighted median age (51.4 ± 0.0 years old; range: 36.3-80.2) was a significant predictor of the prevalence of moderate-to-severe WMH and lacunes, while the type of study was a significant predictor of the prevalence of CMB. The heterogeneity of studies was high (>95%). Male participants were overrepresented. CONCLUSIONS This systematic review and meta-analysis provide data on cSVD prevalence in LMICs and demonstrated the high prevalence of the condition. cSVD research in LMICs is being published at an increasing rate, especially between 2010 and 2022. More data are particularly needed from Sub-Saharan Africa and Central Europe, Eastern Europe, and Central Asia.
Collapse
Affiliation(s)
- Bonnie Yin Ka Lam
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Gerald Choa Neuroscience Institute, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yuan Cai
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Neurology, University College Hospital, Ibadan, Nigeria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilde van den Brink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chin Wai Cheung
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - King Ngai Chow
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Henry Kwun Hang Chung
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Marco Duering
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Medical Image Analysis Center (MIAC), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Siu Ting Fu
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Deborah Gustafson
- Section for NeuroEpidemiology, Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Saima Hilal
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore
| | - Vincent Ming Ho Hui
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Gerald Choa Neuroscience Institute, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rajesh Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - SangYun Kim
- Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Maggie Li Man Lam
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Frank Erik de Leeuw
- Donders Institute for Brain Cognition and Behaviour, Department of Neurology, Radboudumc, Nijmegen, The Netherlands
| | - Ami Sin Man Li
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Gerald Choa Neuroscience Institute, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hugh Stephen Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anna Marseglia
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Huijing Zheng
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Gerald Choa Neuroscience Institute, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - John O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Leonardo Pantoni
- Stroke and Dementia Lab, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Perminder Singh Sachdev
- School of Psychiatry, Neuropsychiatric Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Eric E Smith
- Division of Neurology, Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Vincent Chung Tong Mok
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Gerald Choa Neuroscience Institute, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
4
|
Corica B, Romiti GF, Raparelli V, Cangemi R, Basili S, Proietti M. Epidemiology of cerebral microbleeds and risk of adverse outcomes in atrial fibrillation: a systematic review and meta-analysis. Europace 2022; 24:1395-1403. [PMID: 35244694 DOI: 10.1093/europace/euac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/18/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS The aim of this study is to perform a systematic review and meta-analysis on the epidemiology of cerebral microbleeds (CMBs) and the risk of intracranial haemorrhage (ICH) and ischaemic stroke (IS) in patients with atrial fibrillation (AF). METHODS AND RESULTS PubMed and EMBASE databases were systematically searched from inception to 6 March 2021. All studies reporting the prevalence of CMBs and incidence of ICH and IS in AF patients with and without CMBs were included. Meta-analysis was conducted using random-effect models; odds ratios (ORs), 95% confidence intervals (CIs), and prediction intervals (PIs) were calculated for each outcome. Subgroup analyses were performed according to the number and localization of CMBs. A total of 562 studies were retrieved, with 17 studies finally included in the meta-analysis. Prevalence of CMBs in AF population was estimated at 28.3% (95% CI: 23.8-33.4%). Individuals with CMBs showed a higher risk of ICH (OR: 3.04, 95% CI: 1.83-5.06, 95% PI 1.23-7.49) and IS (OR: 1.78, 95% CI: 1.26-2.49, 95% PI 1.10-2.87). Patients with ≥5 CMBs showed a higher risk of ICH. Metaregression showed how higher of prevalence of diabetes mellitus in AF cohort is associated with higher prevalence of CMBs. CONCLUSIONS Cerebral microbleeds are common in patients with AF, found in almost one out of four subjects. Cerebral microbleeds were associated with both haemorrhagic and thromboembolic events in AF patients. Moreover, the risk of ICH increased consistently with the burden of CMBs. Cerebral microbleeds may represent an important overlooked risk factor for both ICH and IS in adults with AF.
Collapse
Affiliation(s)
- Bernadette Corica
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Rome, Italy
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Rome, Italy
| | - Marco Proietti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, Via Camaldoli, 64, 20138 Milan, Italy.,Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| |
Collapse
|