1
|
Mei Y, Chen X, Zhang Y, Wang Y, Wu B, Hu M, Bao Q. Geometrical determinants of cerebral artery fenestration for cerebral infarction. PeerJ 2025; 13:e18774. [PMID: 39866574 PMCID: PMC11758911 DOI: 10.7717/peerj.18774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Few data are available on the causality of cerebral artery fenestration (CAF) triggering cerebral infarction (CI) and this study aims to identify representative morphological features that can indicate risks. Methods A cohort comprising 89 patients diagnosed with CAF were enrolled from a total of 9,986 cranial MR angiographies. These patients were categorized into Infarction Group (n = 55) and Control Group (n = 34) according to infarction events. These two groups are divided into two subgroups depending on fenestration location (basilar artery or other cerebravascular location), respectively, i.e., BA Infarction Group (n = 37), BA Control Group (n = 23), Non_BA Infarction Group (n = 18), Non_BA Control Group (n = 11). This study firstly defined 12 indices to quantify the morphological characteristics of fenestration per se and its connecting arteries. The data were evaluated using either the independent sample t-test or the Mann-Whitney U test. Conducting univariate and multivariate logistic regression analyses to ascertain potential independent predictors of CI. Results The initiation angle φ 1 and confluence angle φ 2 at the fenestration in the Infarction Group are both smaller compared to the Control Group, but only the Infarction Group and BA Infarction Group have significant difference (p < 0.05). The maximum left fenestration axis (fAL) and the left tortuosity index (TIL) were greater in the Infarction Group for CAFs than those in the Control Group (p < 0.05). In contrast, the maximum right fenestration axis (fAR) and the right tortuosity index (TIR) were smaller than those in Control Group (p < 0.05). The logistic regression analysis revealed that φ 2 (AUC = 0.68, p = 0.02), fAL (AUC = 0.72, p < 0.01), and fAR (AUC = 0.70, p < 0.01) serve as independent risk factors influencing the occurrence of CI. The regression predictive model achieved an AUC of 0.83, enabling accurate classification of 77.5% of cases, indicating a robust predictive performance of the model. Conclusion Morphological results demonstrated a left-leaning type of fenestration with more narrow fenestration terminals indicating a higher risk of CI occurrence. Furthermore, the regression predictive model established in this study demonstrates a good predictive performance, enabling early prediction of CI occurrence in fenestrated patients and facilitating early diagnosis of CI.
Collapse
Affiliation(s)
- Yuqian Mei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoqin Chen
- Department of Radiology, West China Hospital, Sichuan University, ChengDu, Sichuan, China
| | - Yao Zhang
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanling Wang
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bo Wu
- North Sichuan Medical College, Academic Affairs Office, Nanchong, Sichuan, China
| | - Mingcheng Hu
- Department of Magnetic Resonance Imaging, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Quan Bao
- Department of Magnetic Resonance Imaging, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
2
|
Li K, Jiang H, Yu J, Liu Y, Zhang L, Ma B, Zhu S, Qi Y, Li S, Huang Y, Yang Y, Xia X, Wen L. Determinants of Leptomeningeal Collateral Status in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Observational Studies. J Am Heart Assoc 2024; 13:e034170. [PMID: 39604037 DOI: 10.1161/jaha.124.034170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Leptomeningeal collateral status is a major determinant of outcomes in patients with acute ischemic stroke; however, the factors that determine collateral status are not well understood. We conducted a comprehensive systematic review and meta-analysis to identify determinants associated with collateral status in patients with anterior circulation infarction. METHODS AND RESULTS The PubMed, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched for studies that reported the determinants of leptomeningeal collateral status in acute ischemic stroke between January 2000 and June 2023. A random-effects meta-analysis model was used to pool the determinants of leptomeningeal collateral status. Eighty-one studies with 17 366 patients met the inclusion criteria. We analyzed 31 potential risk factors, and the results indicated that worse leptomeningeal collateral status was significantly associated with older age (weighted mean difference, 1.22 [95% CI, 0.69 to 1.76]), male sex (odds ratio [OR], 1.12 [95% CI, 1.02 to 1.23]), hypertension (OR, 1.27 [95% CI, 1.15 to 1.40]), diabetes (OR, 1.21 [95% CI, 1.10 to 1.33]), atrial fibrillation (OR, 1.26 [95% CI, 1.09 to 1.46]), cardioembolic stroke (OR, 1.27 [95% CI, 1.04 to 1.55]), internal carotid artery occlusion (OR, 1.84 [95% CI, 1.50 to 2.25]), and higher admission blood glucose (weighted mean difference, 8.74 [95% CI, 2.52 to 18.51]). CONCLUSIONS Hypertension and diabetes could be modifiable risk factors associated with leptomeningeal collateral status. Older age and male sex could be nonmodified risk factors. Further high-quality therapeutic studies focusing on controlling risk factors are needed to support our findings.
Collapse
Affiliation(s)
- Kunyi Li
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Hua Jiang
- Institute for Emergency and Disaster Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu China
| | - Jianping Yu
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Yong Liu
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Lili Zhang
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Bi Ma
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Shu Zhu
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Yinkuang Qi
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Shuang Li
- Department of Neurology The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yan Huang
- Department of Neurology The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yuhan Yang
- Department of Neurology The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Xun Xia
- Department of Neurosurgery The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Lan Wen
- Department of Neurology The First Affiliated Hospital of Chengdu Medical College Chengdu China
| |
Collapse
|
3
|
Strinitz M, Zimmer C, Berndt M, Wunderlich S, Boeckh-Behrens T, Maegerlein C, Sepp D. High relative cerebral blood volume is associated with good long term clinical outcomes in acute ischemic stroke: a retrospective cohort study. BMC Neurol 2024; 24:294. [PMID: 39187761 PMCID: PMC11345997 DOI: 10.1186/s12883-024-03806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Endovascular therapy for acute ischemic stroke has been shown to be highly effective in selected patients. However, the ideal criteria for patient selection are still debated. It is well known that collateral flow is an important factor, but the assessment is often subjective and time-consuming. Relative cerebral blood volume (rCBV) is a putative indicator of collateral capacity and can be quickly and easily determined by automated quantitative analysis. We investigated the relationship between rCBV of the affected region and clinical outcome in patients with acute ischemic stroke after endovascular therapy. METHODS We conducted a retrospective study on consecutive patients between January 2017 and May 2019. Patients with acute ischemic stroke of the anterior circulation who underwent imaging including computed tomography perfusion and were treated with mechanical thrombectomy (MT) were eligible for inclusion. rCBV was calculated automatically with RAPID software by dividing the average cerebral blood volume (CBV) of the affected region (time-to-maximum (Tmax) > 6 s) by the CBV of the unaffected contralateral side. The primary outcome was determined by the modified Rankin Scale (mRS) after 90 days. Good clinical outcome was defined as mRS ≤ 2. We compared means, performed mono- and multivariate logistical regression and calculated a receiver operating characteristic (ROC)-analysis to determine the ideal cutoff value to predict clinical outcomes. RESULTS 155 patients were enrolled in this study. 66 patients (42.58%) had good clinical outcomes. Higher rCBV was associated with good clinical outcome (p < 0.001), even after adjustment for the patients' status according to mRS and National Institute of Health Stroke Scale (NIHSS) age and Alberta stroke program early computed tomography score (ASPECTS) at baseline (p = 0.006). ROC-analysis revealed 0.650 (confidence interval: 0.616-0.778) as the optimal cutoff value. CONCLUSION Higher rCBV at baseline is associated with good clinical long-term outcomes in patients with acute ischemic stroke treated by MT. In this study we provide the biggest collective so far that gives evidence that rCBV can be a valuable tool to identify patients who might benefit from MT and are able give a threshold to help to offer patients MT in borderline cases.
Collapse
Affiliation(s)
- Marc Strinitz
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Maria Berndt
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tobias Boeckh-Behrens
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Maegerlein
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dominik Sepp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Chen XQ, Jiang J, Xing J, Ming ZK, Zhu M, Bao Q, Hu MC. Hemodynamic characteristics of vertebrobasilar artery fenestration combined with vertebrobasilar dolichoectasia: a study based on magnetic resonance angiography. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:253-260. [PMID: 39309419 PMCID: PMC11411188 DOI: 10.62347/tlnn8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE This study delves into the hemodynamic characteristics of Vertebrobasilar Artery Fenestration (VBAF) combined with Vertebrobasilar Dolichoectasia (VBD) using Magnetic Resonance Angiography (MRA). By summarizing the hemodynamic features and identifying high-risk populations, we aim to provide insights for clinical treatment. METHODS Utilizing MRA images as a foundation, arterial three-dimensional geometric models were constructed. A total of 22 cases were categorized into control, S, L, U, and Spiral groups, and numerical simulation analysis of the vessels was conducted using computational fluid dynamics methods. RESULTS Hemodynamic parameters of the VBAF combined with the VBD model were obtained, including blood flow velocity, oscillatory shear stress (OSI), wall shear stress (WSS), and aneurysm formation indicator (AFI). The V, OSI, and WSS indices of the L, U, and Spiral groups were significantly higher than those of the control group (P < 0.05). High-speed blood flow, elevated WSS, and increased OSI in these groups were concentrated at the fenestration site, with scattered distribution along the tortuous vertebral artery and basilar artery segments, accompanied by significant differences in the parameters of the bilateral vertebral arteries. CONCLUSION This preliminary investigation identifies the L, U, and Spiral groups as high-risk populations. Abnormal hemodynamics may lead to a vicious cycle in vascular wall pathology, increasing the likelihood of adverse events such as cerebral infarction. Clinical attention should focus on individuals within these groups and their corresponding vascular regions.
Collapse
Affiliation(s)
- Xiao-Qin Chen
- Department of Radiology, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Jie Jiang
- Department of Infectious Diseases, Mudanjiang Forestry Central HospitalMudanjiang, Heilongjiang, China
| | - Jian Xing
- Department of Magnetic Resonance Imaging, Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, China
| | - Zhao-Kai Ming
- Department of Radiology, The First Hospital of QiqiharQiqihar, Heilongjiang, China
| | - Min Zhu
- Department of Magnetic Resonance Imaging, Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, China
| | - Quan Bao
- Department of Magnetic Resonance Imaging, Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, China
| | - Ming-Cheng Hu
- Department of Magnetic Resonance Imaging, Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, China
| |
Collapse
|
5
|
Lin LP, Hu MS, Wei D, Li JJ, Liang JH, Xie YZ, Li ZH, Che X, Xie DX, Yang ZY, Jiang L, Zhao J. Quantitative evaluation of CTP derived time-density alterations versus CTP for collateral status prediction with stroke. Eur J Radiol 2024; 177:111571. [PMID: 38925043 DOI: 10.1016/j.ejrad.2024.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND OBJECTIVES Collateral status is a pivotal determinant of clinical outcomes in acute ischemic stroke (AIS); however, its evaluation can be challenging. We investigated the predictive value of CT perfusion (CTP) derived time and density alterations versus CTP for collateral status prediction in AIS. METHODS Consecutive patients with anterior circulation occlusion within 24 h were retrospectively included. Time-density curves of the CTP specified ischemic core, penumbra, and the corresponding contralateral unaffected brain were obtained. The collateral status was dichotomised into robust (4-5 scores) and poor (0-3 scores) using multiphase collateral scoring, as described by Menon et al.. Receiver operating characteristic curves and multivariable regression analysis were performed to assess the predictive ability of CTP-designated tissue time and density alterations, CTP for robust collaterals, and favourable outcomes (mRS score of 0-2 at 90 days). RESULTS One-hundred patients (median age, 68 years; interquartile range, 57-80 years; 61 men) were included. A smaller ischemic core, shorter peak time delay, lower peak density decrease, lower cerebral blood volume ratio, and cerebral blood flow ratio in the CTP specified ischemic core were significantly associated with robust collaterals (PFDR ≤ 0.004). The peak time delay demonstrated the highest diagnostic value (AUC, 0.74; P < 0.001) with 66.7 % sensitivity and 73.7 % specificity. Furthermore, the peak time delay of less than 8.5 s was an independent predictor of robust collaterals and favourable clinical outcomes. CONCLUSIONS Robust collateral status was significantly associated with the peak time delay in the ischemic core. It is a promising image marker for predicting collateral status and functional outcomes in AIS.
Collapse
Affiliation(s)
- Li-Ping Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Man-Shi Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Wei
- Department of Radiology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, China
| | - Jing-Jing Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Hui Liang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, China; State Key Laboratory of Oncology in South China, China; Collaborative Innovation Center for Cancer Medicine, China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan-Zhao Xie
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Zhu-Hao Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Che
- Canon Medical Systems (China) Co, China
| | - Ding-Xiang Xie
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Yun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Jiang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Ozkara BB, Karabacak M, Hoseinyazdi M, Dagher SA, Wang R, Karadon SY, Ucisik FE, Margetis K, Wintermark M, Yedavalli VS. Utilizing imaging parameters for functional outcome prediction in acute ischemic stroke: A machine learning study. J Neuroimaging 2024; 34:356-365. [PMID: 38430467 DOI: 10.1111/jon.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND PURPOSE We aimed to predict the functional outcome of acute ischemic stroke patients with anterior circulation large vessel occlusions (LVOs), irrespective of how they were treated or the severity of the stroke at admission, by only using imaging parameters in machine learning models. METHODS Consecutive adult patients with anterior circulation LVOs who were scanned with CT angiography (CTA) and CT perfusion were queried in this single-center, retrospective study. The favorable outcome was defined as a modified Rankin score (mRS) of 0-2 at 90 days. Predictor variables included only imaging parameters. CatBoost, XGBoost, and Random Forest were employed. Algorithms were evaluated using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), accuracy, Brier score, recall, and precision. SHapley Additive exPlanations were implemented. RESULTS A total of 180 patients (102 female) were included, with a median age of 69.5. Ninety-two patients had an mRS between 0 and 2. The best algorithm in terms of AUROC was XGBoost (0.91). Furthermore, the XGBoost model exhibited a precision of 0.72, a recall of 0.81, an AUPRC of 0.83, an accuracy of 0.78, and a Brier score of 0.17. Multiphase CTA collateral score was the most significant feature in predicting the outcome. CONCLUSIONS Using only imaging parameters, our model had an AUROC of 0.91 which was superior to most previous studies, indicating that imaging parameters may be as accurate as conventional predictors. The multiphase CTA collateral score was the most predictive variable, highlighting the importance of collaterals.
Collapse
Affiliation(s)
- Burak B Ozkara
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | - Meisam Hoseinyazdi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Samir A Dagher
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Sadik Y Karadon
- School of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - F Eymen Ucisik
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek S Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Franx BAA, Lebrun F, Chin Joe Kie L, Deffieux T, Vivien D, Bonnard T, Dijkhuizen RM. Dynamics of cerebral blood volume during and after middle cerebral artery occlusion in rats - Comparison between ultrafast ultrasound and dynamic susceptibility contrast-enhanced MRI measurements. J Cereb Blood Flow Metab 2024; 44:333-344. [PMID: 38126356 PMCID: PMC10870967 DOI: 10.1177/0271678x231220698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Tomographic perfusion imaging techniques are integral to translational stroke research paradigms that advance our understanding of the disease. Functional ultrasound (fUS) is an emerging technique that informs on cerebral blood volume (CBV) through ultrasensitive Doppler and flow velocity (CBFv) through ultrafast localization microscopy. It is not known how experimental results compare with a classical CBV-probing technique such as dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI). To that end, we assessed hemodynamics based on uUS (n = 6) or DSC-MRI (n = 7) before, during and up to three hours after 90-minute filament-induced middle cerebral artery occlusion (MCAO) in rats. Recanalization was followed by a brief hyperperfusion response, after which CBV and CBFv temporarily normalized but progressively declined after one hour in the lesion territory. DSC-MRI data corroborated the incomplete restoration of CBV after recanalization, which may have been caused by the free-breathing anesthetic regimen. During occlusion, MCAO-induced hypoperfusion was more discrepant between either technique, likely attributable to artefactual signal mechanisms related to slow flow, and processing algorithms employed for either technique. In vivo uUS- and DSC-MRI-derived measures of CBV enable serial whole-brain assessment of post-stroke hemodynamics, but readouts from both techniques need to be interpreted cautiously in situations of very low blood flow.
Collapse
Affiliation(s)
- Bart AA Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Florent Lebrun
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- ETAP-Lab, STROK@LLIANCE, 13 Rue du bois de la champelle, 54500, Vandoeuvre-les-Nancy, France
| | - Lois Chin Joe Kie
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Thomas Deffieux
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- CHU Caen, Department of Clinical Research, CHU Caen, Côte de Nacre, France
| | - Thomas Bonnard
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Rick M Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
van der Zijden T, Mondelaers A, Loos C, Voormolen M, Franck C, Niekel M, Jardinet T, Van Thielen T, d'Archambeau O, Menovsky T, Parizel PM. Can angiographic Flat Detector Computed Tomography blood volume measurement be used to predict final infarct size in acute ischemic stroke? Eur J Radiol 2023; 158:110650. [PMID: 36549171 DOI: 10.1016/j.ejrad.2022.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION AND PURPOSE Flat detector computed tomography (FD-CT) technology is becoming more widely available in the angiography suites of comprehensive stroke centers. In patients with acute ischemic stroke (AIS), who are referred for endovascular therapy (EVT), FD-CT generates cerebral pooled blood volume (PBV) maps, which might help in predicting the final infarct area. We retrospectively analyzed pre- and post-recanalization therapy quantitative PBV measurements in both the infarcted and hypoperfused brain areas of AIS patients referred for EVT. MATERIALS AND METHODS We included AIS patients with large vessel occlusion in the anterior circulation referred for EVT from primary stroke centers to our comprehensive stroke center. The pre- and post-recanalization FD-CT regional relative PBV (rPBV) values were measured between ipsilateral lesional and contralateral non-lesional areas based on final infarct area on post EVT follow-up cross-sectional imaging. Statistical analysis was performed to identify differences in PBV values between infarcted and non-infarcted, recanalized brain areas. RESULTS We included 20 AIS patients. Mean age was 63 years (ranging from 36 to 86 years). The mean pre- EVT rPBV value was 0.57 (±0.40) for infarcted areas and 0.75 (±0.43) for hypoperfusion areas. The mean differences (Δ) between pre- and post-EVT rPBV values for infarcted and hypoperfused areas were respectively 0.69 (±0.59) and 0.69 (±0.90). We found no significant differences (p > 0.05) between pre-EVT rPBV and ΔrPBV values of infarct areas and hypoperfusion areas. CONCLUSION Angiographic PBV mapping is useful for the detection of cerebral perfusion deficits, especially in combination with the fill run images. However, we were not able to distinguish irreversibly infarcted tissue from potentially salvageable, hypoperfused brain tissue based on quantitative PBV measurement in AIS patients.
Collapse
Affiliation(s)
- Thijs van der Zijden
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium; Department of Medical Imaging, AZ KLINA, 2930 Brasschaat, Belgium.
| | - Annelies Mondelaers
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium; Research Group mVision, Faculty of Medicine and Health Sciences, University of Antwerp (UA), 2610 Wilrijk, Belgium
| | - Caroline Loos
- Department of Neurology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium; Research Group Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, (UA), 2610 Wilrijk, Belgium
| | - Maurits Voormolen
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium; Research Group mVision, Faculty of Medicine and Health Sciences, University of Antwerp (UA), 2610 Wilrijk, Belgium
| | - Caro Franck
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium; Research Group mVision, Faculty of Medicine and Health Sciences, University of Antwerp (UA), 2610 Wilrijk, Belgium
| | - Maarten Niekel
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Thomas Jardinet
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Thomas Van Thielen
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium; Department of Medical Imaging, AZ KLINA, 2930 Brasschaat, Belgium
| | - Olivier d'Archambeau
- Department of Radiology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Tomas Menovsky
- Research Group Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, (UA), 2610 Wilrijk, Belgium; Department of Neurosurgery, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Paul M Parizel
- Research Group mVision, Faculty of Medicine and Health Sciences, University of Antwerp (UA), 2610 Wilrijk, Belgium; Department of Radiology, Royal Perth Hospital and University of Western Australia Medical School, Perth, WA, Australia; Director, Western Australia National Imaging Facility (WA NIF) Node, Perth, WA, Australia
| |
Collapse
|
9
|
Feng Y, Bai X, Li W, Cao W, Xu X, Yu F, Fu Z, Tian Q, Guo X, Wang T, Sha A, Chen Y, Gao P, Wang Y, Chen J, Ma Y, Chen F, Dmytriw AA, Regenhardt RW, Lu J, Ma Q, Yang B, Jiao L. Postoperative neutrophil-lymphocyte ratio predicts unfavorable outcome of acute ischemic stroke patients who achieve complete reperfusion after thrombectomy. Front Immunol 2022; 13:963111. [PMID: 36275640 PMCID: PMC9585914 DOI: 10.3389/fimmu.2022.963111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Only approximately half of anterior circulation large vessel occlusion (LVO) patients receiving endovascular treatment (EVT) have a favorable outcome. The aim of this study was to explore the association of dynamic inflammatory markers (i.e., neutrophil to lymphocyte ratios, NLR, measured at different times after EVT) as well as other potential influencing factors with unfavorable outcome among acute ischemic stroke (AIS) patients who achieved complete reperfusion after EVT. Methods Patients treated with EVT for LVO between January 2019 to December 2021 were prospectively enrolled. Complete reperfusion was defined as modified thrombolysis in cerebral infarction (mTICI) grade 3. A modified Rankin scale at 90 days (mRS90) of 3-6 was defined as unfavorable outcome (i.e., futile reperfusion). A logistic regression analysis was performed with unfavorable outcome as a dependent variable. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were then used to determine the diagnostic values of NLR and other relevant factors. Results 170 patients with complete reperfusion (mTICI 3) were included in this study. Unfavorable outcome was observed in 70 (41.2%). Higher NLR within 24h (p=0.017) and at 3-7d (p=0.008) after EVT were an independent risk factors for unfavorable outcome at 3 months. In addition, older age, higher NIHSS scores, poor collaterals, and general anesthesia were independent predictors of unfavorable outcomes. When accounting for NLR, the diagnostic efficiency improved compared to conventional characteristics. Conclusion Our findings suggest that advanced age, increased stroke severity, poor collaterals, general anesthesia, and NLR are independent predictors for an unfavorable clinical outcome following complete reperfusion after EVT. Neuroinflammation may merit particular attention in future studies.
Collapse
Affiliation(s)
- Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Liaocheng Brain Hospital, Liaocheng, China
| | - Wenbo Cao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Fan Yu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhaolin Fu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Qiuyue Tian
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, United States
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Arman Sha
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanfei Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Peng Gao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabing Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Fei Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Adam A Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert W Regenhardt
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Flat Detector CT with Cerebral Pooled Blood Volume Perfusion in the Angiography Suite: From Diagnostics to Treatment Monitoring. Diagnostics (Basel) 2022; 12:diagnostics12081962. [PMID: 36010312 PMCID: PMC9406673 DOI: 10.3390/diagnostics12081962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
C-arm flat-panel detector computed tomographic (CT) imaging in the angiography suite increasingly plays an important part during interventional neuroradiological procedures. In addition to conventional angiographic imaging of blood vessels, flat detector CT (FD CT) imaging allows simultaneous 3D visualization of parenchymal and vascular structures of the brain. Next to imaging of anatomical structures, it is also possible to perform FD CT perfusion imaging of the brain by means of cerebral blood volume (CBV) or pooled blood volume (PBV) mapping during steady state contrast administration. This enables more adequate decision making during interventional neuroradiological procedures, based on real-time insights into brain perfusion on the spot, obviating time consuming and often difficult transportation of the (anesthetized) patient to conventional cross-sectional imaging modalities. In this paper we review the literature about the nature of FD CT PBV mapping in patients and demonstrate its current use for diagnosis and treatment monitoring in interventional neuroradiology.
Collapse
|
11
|
Zhang M, Shi Q, Yue Y, Zhang M, Zhao L, Yan C. Evaluation of T2-FLAIR combined with ASL on the collateral circulation of acute ischemic stroke. Neurol Sci 2022; 43:4891-4900. [DOI: 10.1007/s10072-022-06042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2022] [Indexed: 12/09/2022]
|
12
|
Hirai S, Sato H, Yamamura T, Kato K, Ishikawa M, Sagawa H, Aoyama J, Fujii S, Fujita K, Arai T, Sumita K. Correlation between the CT Perfusion Parameter Values and Response to Recanalization in Patients with Acute Ischemic Stroke. JOURNAL OF NEUROENDOVASCULAR THERAPY 2022; 16:577-585. [PMID: 37502670 PMCID: PMC10370711 DOI: 10.5797/jnet.oa.2022-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/15/2022] [Indexed: 07/29/2023]
Abstract
Objective CT perfusion (CTP) provides various hemodynamic parameters. However, it is unclear which CTP parameters are useful in predicting clinical outcome in patients with acute ischemic stroke (AIS). Methods Between February 2019 and June 2021, patients with anterior circulation large-vessel occlusion who achieved successful recanalization within 8 hours after stroke onset were included. The relative CTP parameter values analyzed by the reformulated singular value decomposition (SVD) method in the affected middle cerebral artery territories compared to those in the unaffected side were calculated. In addition, the ischemic core volume (ICV) was evaluated using a Bayesian Vitrea. The final infarct volume (FIV) was assessed by 24-hour MRI. The correlation between these CTP-derived values and clinical outcome was assessed. Results Forty-two patients were analyzed. Among the CTP-related parameters, the ICV, relative cerebral blood volume (rCBV), and relative mean transit time (rMTT) showed a strong correlation with the FIV (ρ = 0.74, p <0.0001; ρ = -0.67, p <0.0001; and ρ = -0.66, p <0.0001, respectively). In multivariate analysis, rCBV, rMTT, and ICV were significantly associated with good functional outcome, which was defined as a modified Rankin Scale score ≤2 (OR, 6.87 [95% CI, 1.20-39.30], p = 0.0303; OR, 11.27 [95% CI, 0.97-130.94], p = 0.0269; and OR, 36.22 [95% CI, 2.78-471.18], p = 0.0061, respectively). Conclusion Among the CTP parameters analyzed by the SVD deconvolution algorithms, rCBV and rMTT could be useful imaging predictors of response to recanalization in patients with AIS, and the performances of these variables were similar to that of the ICV calculated by the Bayesian Vitrea.
Collapse
Affiliation(s)
- Sakyo Hirai
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurosurgery, Soka Municipal Hospital, Soka, Saitama, Japan
| | - Hirotaka Sato
- Department of Radiological Technology, Soka Municipal Hospital, Soka, Saitama, Japan
| | - Toshihiro Yamamura
- Department of Neurosurgery, Soka Municipal Hospital, Soka, Saitama, Japan
| | - Koichi Kato
- Department of Radiological Technology, Soka Municipal Hospital, Soka, Saitama, Japan
| | - Mariko Ishikawa
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirotaka Sagawa
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jiro Aoyama
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoko Fujii
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyohei Fujita
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshinari Arai
- Department of Radiological Technology, Soka Municipal Hospital, Soka, Saitama, Japan
| | - Kazutaka Sumita
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Hao J, Feng Y, Xu X, Li L, Yang K, Dai G, Gao W, Zhang M, Fan Y, Yin T, Wang J, Yang B, Jiao L, Zhang L. Plasma Lipid Mediators Associate With Clinical Outcome After Successful Endovascular Thrombectomy in Patients With Acute Ischemic Stroke. Front Immunol 2022; 13:917974. [PMID: 35865524 PMCID: PMC9295711 DOI: 10.3389/fimmu.2022.917974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeuroinflammatory response contributes to early neurological deterioration (END) and unfavorable long-term functional outcome in patients with acute ischemic stroke (AIS) who recanalized successfully by endovascular thrombectomy (EVT), but there are no reliable biomarkers for their accurate prediction. Here, we sought to determine the temporal plasma profiles of the bioactive lipid mediators lipoxin A4 (LXA4), resolvin D1 (RvD1), and leukotriene B4 (LTB4) for their associations with clinical outcome.MethodsWe quantified levels of LXA4, RvD1, and LTB4 in blood samples retrospectively and longitudinally collected from consecutive AIS patients who underwent complete angiographic recanalization by EVT at admission (pre-EVT) and 24 hrs post-EVT. The primary outcome was unfavorable long-term functional outcome, defined as a 90-day modified Rankin Scale score of 3-6. Secondary outcome was END, defined as an increase in National Institutes of Health Stroke Scale (NIHSS) score ≥4 points at 24 hrs post-EVT.ResultsEighty-one consecutive AIS patients and 20 healthy subjects were recruited for this study. Plasma levels of LXA4, RvD1, and LTB4 were significantly increased in post-EVT samples from AIS patients, as compared to those of healthy controls. END occurred in 17 (20.99%) patients, and 38 (46.91%) had unfavorable 90-day functional outcome. Multiple logistic regression analyses demonstrated that post-EVT levels of LXA4 (adjusted odd ratio [OR] 0.992, 95% confidence interval [CI] 0.987-0.998), ΔLXA4 (adjusted OR 0.995, 95% CI 0.991-0.999), LTB4 (adjusted OR 1.003, 95% CI 1.001-1.005), ΔLTB4 (adjusted OR 1.004, 95% CI 1.002-1.006), and post-EVT LXA4/LTB4 (adjusted OR 0.023, 95% CI 0.001-0.433) and RvD1/LTB4 (adjusted OR 0.196, 95% CI 0.057-0.682) ratios independently predicted END, and post-EVT LXA4 levels (adjusted OR 0.995, 95% CI 0.992-0.999), ΔLXA4 levels (adjusted OR 0.996, 95% CI 0.993-0.999), and post-EVT LXA4/LTB4 ratio (adjusted OR 0.285, 95% CI 0.096-0.845) independently predicted unfavorable 90-day functional outcome. These were validated using receiver operating characteristic curve analyses.ConclusionsPlasma lipid mediators measured 24 hrs post-EVT were independent predictors for early and long-term outcomes. Further studies are needed to determine their causal-effect relationship, and whether the imbalance between anti-inflammatory/pro-resolving and pro-inflammatory lipid mediators could be a potential adjunct therapeutic target.
Collapse
Affiliation(s)
- Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Kun Yang
- Department of Evidence-based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gaolei Dai
- Department of Intervention, Liaocheng People’s hospital, Liaocheng, China
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Yaming Fan
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical Universit, Beijing, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| |
Collapse
|