1
|
Fernández R, Ramírez K, Lorente-Bermúdez R, Gómez-Gil E, Mora M, Guillamon A, Pásaro E. Analysis of single nucleotide polymorphisms of the metabotropic glutamate receptors in a transgender population. Front Endocrinol (Lausanne) 2024; 15:1382861. [PMID: 38919484 PMCID: PMC11196815 DOI: 10.3389/fendo.2024.1382861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Gender incongruence (GI) is characterized by a marked incongruence between an individual's experienced/expressed gender and the assigned sex at birth. It includes strong displeasure about his or her sexual anatomy and secondary sex characteristics. In some people, this condition produces a strong distress with anxiety and depression named gender dysphoria (GD). This condition appears to be associated with genetic, epigenetics, hormonal as well as social factors. Given that L-glutamate is the major excitatory neurotransmitter in the central nervous system, also associated with male sexual behavior as well as depression, we aimed to determine whether metabotropic glutamate receptors are involved in GD. Methods We analyzed 74 single nucleotide polymorphisms located at the metabotropic glutamate receptors (mGluR1, mGluR3, mGluR4, mGluR5, mGluR7 and mGluR8) in 94 transgender versus 94 cisgender people. The allele and genotype frequencies were analyzed by c2 test contrasting male and female cisgender and transgender populations. The strength of the associations was measured by binary logistic regression, estimating the odds ratio (OR) for each genotype. Measurement of linkage disequilibrium, and subsequent measurement of haplotype frequencies were also performed considering three levels of significance: P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005. Furthermore, false positives were controlled with the Bonferroni correction (P ≤ 0.05/74 = 0.00067). Results After analysis of allele and genotypic frequencies, we found twenty-five polymorphisms with significant differences at level P ≤ 0.05, five at P ≤ 0.005 and two at P ≤ 0.0005. Furthermore, the only two polymorphisms (rs9838094 and rs1818033) that passed the Bonferroni correction were both related to the metabotropic glutamate receptor 7 (mGluR7) and showed significant differences for multiple patterns of inheritance. Moreover, the haplotype T/G [OR=0.34 (0.19-0.62); P<0.0004] had a lower representation in the transgender population than in the cisgender population, with no evidence of sex cross-interaction. Conclusion We provide genetic evidence that the mGluR7, and therefore glutamatergic neurotransmission, may be involved in GI and GD.
Collapse
Affiliation(s)
- Rosa Fernández
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
- Department of Psychology, Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Karla Ramírez
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
- Department of Psychology, Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Roberto Lorente-Bermúdez
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
| | - Esther Gómez-Gil
- Gender Identity Unit, Psychiatry Service, Institute of Neurosciences, Hospital Clínic Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mireia Mora
- Department of Endocrinology and Nutrition, Hospital Clínic Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Guillamon
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Eduardo Pásaro
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
- Department of Psychology, Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| |
Collapse
|
2
|
Should chromosomal analysis be performed routinely during the baseline evaluation of the gender affirmation process? The outcomes of a large cohort of gender dysphoric individuals. Int J Impot Res 2022:10.1038/s41443-022-00582-4. [PMID: 35581420 DOI: 10.1038/s41443-022-00582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
The role of genetics in the etiology of gender dysphoria (GD) is an important yet understudied area. Yet whether genetic analysis should be carried out during the gender affirmation process at all is a matter of debate. This study aims to evaluate the cytogenetic and molecular genetic findings of individuals with GD. We retrospectively reviewed the medical records of individuals with GD who were followed up in a tertiary clinic. After the exclusion criteria were applied, the study sample consisted of 918 individuals with GD; 691 of whom had female-to-male (FtM) and 227 male-to-female (MtF) GD. The cytogenetic analysis revealed that 223 out of 227 (98.2%) individuals with MtF GD had the 46,XY karyotype, while 683 out of 691 (98.8%) individuals with FtM GD had the 46,XX karyotype. In the Y chromosome microdeletion analysis, azospermic factor c (AZFc) deletion was detected in only two individuals with MtF GD. Our findings suggest that there are few chromosomal abnormalities in individuals with GD. Thus, this research calls into question both the role of chromosomal abnormalities in GD etiology and why the application of chromosomal analysis is in Turkey a routine part of the baseline evaluation of GD.
Collapse
|
3
|
Shirazi TN, Self H, Dawood K, Welling LLM, Cárdenas R, Rosenfield KA, Bailey JM, Balasubramanian R, Delaney A, Breedlove SM, Puts DA. Evidence that perinatal ovarian hormones promote women's sexual attraction to men. Psychoneuroendocrinology 2021; 134:105431. [PMID: 34601343 PMCID: PMC8957625 DOI: 10.1016/j.psyneuen.2021.105431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Ovarian estrogens may influence the development of the human brain and behavior, but there are few opportunities to test this possibility. Isolated GnRH deficiency (IGD) is a rare endocrine disorder that could provide evidence for the role of estrogens in organizing sexually differentiated phenotypes: Unlike typical development, development in individuals with IGD is characterized by low or absent gonadal hormone production after the first trimester of gestation. Because external genitalia develop in the first trimester, external appearance is nevertheless concordant with gonadal sex in people with IGD. We therefore investigated the effects of gonadal hormones on sexual orientation by comparing participants with IGD (n = 97) to controls (n = 1670). Women with IGD reported lower male-attraction compared with typically developing women. In contrast, no consistent sexuality differences between IGD and typically developing men were evident. Ovarian hormones after the first trimester appear to influence female-typical dimensions of sexual orientation.
Collapse
Affiliation(s)
- Talia N Shirazi
- Department of Anthropology, Pennsylvania State University, Carpenter Building, University Park, PA 16802, USA
| | - Heather Self
- Department of Anthropology, Pennsylvania State University, Carpenter Building, University Park, PA 16802, USA
| | - Khytam Dawood
- Department of Psychology, Pennsylvania State University, Moore Building, University Park, PA 16802, USA
| | - Lisa L M Welling
- Department of Psychology, Oakland University, 212 Pryale Hall, Rochester, MI 48309, USA
| | - Rodrigo Cárdenas
- Department of Psychology, Pennsylvania State University, Moore Building, University Park, PA 16802, USA
| | - Kevin A Rosenfield
- Department of Anthropology, Pennsylvania State University, Carpenter Building, University Park, PA 16802, USA
| | - J Michael Bailey
- Department of Psychology, Northwestern University, Swift Hall 303B, Evanston, IL 60208, USA
| | | | - Angela Delaney
- Reproductive Physiology and Pathophysiology Group, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - S Marc Breedlove
- Neuroscience Program and Department of Psychology, Michigan State University, 240 Giltner Hall, East Lansing, MI 48824, USA
| | - David A Puts
- Department of Anthropology, Pennsylvania State University, Carpenter Building, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Ramirez K, Fernández R, Collet S, Kiyar M, Delgado-Zayas E, Gómez-Gil E, Van Den Eynde T, T'Sjoen G, Guillamon A, Mueller SC, Pásaro E. Epigenetics Is Implicated in the Basis of Gender Incongruence: An Epigenome-Wide Association Analysis. Front Neurosci 2021; 15:701017. [PMID: 34489625 PMCID: PMC8418298 DOI: 10.3389/fnins.2021.701017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The main objective was to carry out a global DNA methylation analysis in a population with gender incongruence before gender-affirming hormone treatment (GAHT), in comparison to a cisgender population. Methods A global CpG (cytosine-phosphate-guanine) methylation analysis was performed on blood from 16 transgender people before GAHT vs. 16 cisgender people using the Illumina© Infinium Human Methylation 850k BeadChip, after bisulfite conversion. Changes in the DNA methylome in cisgender vs. transgender populations were analyzed with the Partek® Genomics Suite program by a 2-way ANOVA test comparing populations by group and their sex assigned at birth. Results The principal components analysis (PCA) showed that both populations (cis and trans) differ in the degree of global CpG methylation prior to GAHT. The 2-way ANOVA test showed 71,515 CpGs that passed the criterion FDR p < 0.05. Subsequently, in male assigned at birth population we found 87 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2) of which 22 were located in islands. The most significant CpGs were related to genes: WDR45B, SLC6A20, NHLH1, PLEKHA5, UBALD1, SLC37A1, ARL6IP1, GRASP, and NCOA6. Regarding the female assigned at birth populations, we found 2 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2), but none were located in islands. One of these CpGs, related to the MPPED2 gene, is shared by both, trans men and trans women. The enrichment analysis showed that these genes are involved in functions such as negative regulation of gene expression (GO:0010629), central nervous system development (GO:0007417), brain development (GO:0007420), ribonucleotide binding (GO:0032553), and RNA binding (GO:0003723), among others. Strengths and Limitations It is the first time that a global CpG methylation analysis has been carried out in a population with gender incongruence before GAHT. A prospective study before/during GAHT would provide a better understanding of the influence of epigenetics in this process. Conclusion The main finding of this study is that the cis and trans populations have different global CpG methylation profiles prior to GAHT. Therefore, our results suggest that epigenetics may be involved in the etiology of gender incongruence.
Collapse
Affiliation(s)
- Karla Ramirez
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain.,Laboratory of Neurophysiology, Center for Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa Fernández
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | - Sarah Collet
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Enrique Delgado-Zayas
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | | | | | - Guy T'Sjoen
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Antonio Guillamon
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Eduardo Pásaro
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| |
Collapse
|
5
|
Ramírez KDV, Fernández R, Delgado-Zayas E, Gómez-Gil E, Esteva I, Guillamon A, Pásaro E. Implications of the Estrogen Receptor Coactivators SRC1 and SRC2 in the Biological Basis of Gender Incongruence. Sex Med 2021; 9:100368. [PMID: 34049263 PMCID: PMC8240342 DOI: 10.1016/j.esxm.2021.100368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Brain sexual differentiation results from the effects of sex steroids on the developing brain. The presumptive route for brain masculinization is the direct induction of gene expression via activation of the estrogen receptors α and β and the androgen receptor through their binding to ligands and to coactivators, regulating the transcription of multiple genes in a cascade effect. Aim To analyze the implication of the estrogen receptor coactivators SRC-1, SRC-2, and SRC-3 in the genetic basis of gender incongruence. Main Outcome Measures Analysis of 157 polymorphisms located at the estrogen receptor coactivators SRC-1, SRC-2, and SRC-3, in 94 transgender versus 94 cisgender individuals. Method Using SNPStats software, the allele and genotype frequencies were analyzed by χ2, the strength of the association was measured by binary logistic regression, estimating the odds ratio for each genotype. Measurements of linkage disequilibrium and haplotype frequencies were also performed. Results We found significant differences at level P < .05 in 8 polymorphisms that correspond to 5.09% of the total. Three were located in SRC-1 and 5 in SRC-2. The odds ratio analysis showed significant differences at level P < .05 for multiple patterns of inheritance. The polymorphisms analyzed were in linkage disequilibrium. The SRC-1 haplotypes CGA and CGG (global haplotype association P < .009) and the SRC-2 haplotypes GGTAA and GGTAG (global haplotype association P < .005) were overrepresented in the transgender population. Conclusion The coactivators SRC-1 and SRC-2 could be considered as candidates for increasing the list of potential genes for gender incongruence. Ramírez KDV, Fernández R, Delgado-Zayas E, et al. Implications of the Estrogen Receptor Coactivators SRC1 and SRC2 in the Biological Basis of Gender Incongruence. Sex Med 2021;9:100368.
Collapse
Affiliation(s)
- Karla Del Valle Ramírez
- Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología. Universidade da Coruña (UDC), Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Coruña, Spain
| | - Rosa Fernández
- Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología. Universidade da Coruña (UDC), Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Coruña, Spain.
| | - Enrique Delgado-Zayas
- Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología. Universidade da Coruña (UDC), Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Coruña, Spain
| | - Esther Gómez-Gil
- Unidad de Identidad de Género, Instituto de Neurociencias, Hospital Clínic, Barcelona, Spain
| | - Isabel Esteva
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Eduardo Pásaro
- Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología. Universidade da Coruña (UDC), Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Coruña, Spain
| |
Collapse
|
6
|
Analysis of Four Polymorphisms Located at the Promoter of the Estrogen Receptor Alpha ESR1 Gene in a Population With Gender Incongruence. Sex Med 2020; 8:490-500. [PMID: 32409288 PMCID: PMC7471065 DOI: 10.1016/j.esxm.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Gender incongruence defines a state in which individuals feel discrepancy between the sex assigned at birth and their gender. Some of these people make a social transition from male to female (trans women) or from female to male (trans men). By contrast, the word cisgender describes a person whose gender identity is consistent with their sex assigned at birth. AIM To analyze the implication of the estrogen receptor α gene (ESR1) in the genetic basis of gender incongruence. MAIN OUTCOME MEASURES Polymorphisms rs9478245, rs3138774, rs2234693, rs9340799. METHOD We carried out the analysis of 4 polymorphisms located at the promoter of the ESR1 gene (C1 = rs9478245, C2 = rs3138774, C3 = rs2234693, and C4 = rs9340799) in a population of 273 trans women, 226 trans men, and 537 cis gender controls. For SNP polymorphisms, the allele and genotype frequencies were analyzed by χ2 test. The strength of the SNP associations with gender incongruence was measured by binary logistic regression. For the STR polymorphism, the mean number of repeats were analyzed by the Mann-Whitney U test. Measurement of linkage disequilibrium and haplotype frequencies were also performed. RESULTS The C2 median repeats were shorter in the trans men population. Genotypes S/S and S/L for the C2 polymorphism were overrepresented in the trans men group (P = .012 and P = .003 respectively). We also found overtransmission of the A/A genotype (C4) in the trans men population (P = .017), while the A/G genotype (C4) was subrepresented (P = .009]. The analyzed polymorphisms were in linkage disequilibrium. In the trans men population, the T(C1)-L(C2)-C(C3)-A(C4) haplotype was overrepresented (P = .019) while the T(C1)-L(C2)-C(C3)-G(C4) was subrepresented (P = .005). CONCLUSION The ESR1 is associated with gender incongruence in the trans men population. Fernández R, Delgado-Zayas E,RamírezK, et al. Analysis of Four Polymorphisms Located at the Promoter of the Estrogen Receptor Alpha ESR1 Gene in a Population With Gender Incongruence. Sex Med 2020;8:490-500.
Collapse
|
7
|
A New Theory of Gender Dysphoria Incorporating the Distress, Social Behavioral, and Body-Ownership Networks. eNeuro 2019; 6:ENEURO.0183-19.2019. [PMID: 31792116 PMCID: PMC6911960 DOI: 10.1523/eneuro.0183-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
When postmortem studies related to transgender individuals were first published, little was known about the function of the various identified nuclei. Now, over 2 decades later, significant progress has been made associating function with specific brain regions, as well as in identifying networks associated with groups of behaviors. However, much of this progress has not been integrated into the general conceptualization of gender dysphoria in humans. When postmortem studies related to transgender individuals were first published, little was known about the function of the various identified nuclei. Now, over 2 decades later, significant progress has been made associating function with specific brain regions, as well as in identifying networks associated with groups of behaviors. However, much of this progress has not been integrated into the general conceptualization of gender dysphoria in humans. I hypothesize that in individuals with gender dysphoria, the aspects of chronic distress, gender atypical behavior, and incongruence between perception of gender identity and external primary sex characteristics are all directly related to functional differences in associated brain networks. I evaluated previously published neuroscience data related to these aspects and the associated functional networks, along with other relevant information. I find that the brain networks that give individuals their ownership of body parts, that influence gender typical behavior, and that are involved in chronic distress are different in individuals with and without gender dysphoria, leading to a new theory—that gender dysphoria is a sensory perception condition, an alteration in the sense of gender influenced by the reflexive behavioral responses associated with each of these networks. This theory builds upon previous work that supports the relevance of the body-ownership network and that questions the relevance of cerebral sexual dimorphism in regard to gender dysphoria. However, my theory uses a hierarchical executive function model to incorporate multiple reflexive factors (body ownership, gender typical/atypical behavior, and chronic distress) with the cognitive, reflective process of gender identity.
Collapse
|
8
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Mohammadian Amiri R, Mirzai Z. Influence of Estrogen Receptor Alpha Polymorphism on Bone Mineral Density in Iranian Children. Hum Hered 2019; 84:82-89. [PMID: 31655805 DOI: 10.1159/000502230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bone mass acquisition in childhood is directly linked to adult bone mineral density (BMD) and fracture risk. BMD is a heritable trait, more than 70% of its variability among a population is affected by genetic factors. OBJECTIVES In the present study, we wanted to investigate the association between estrogen receptor alpha (ESR1) polymorphisms, PvuII (rs2234693) and XbaI (rs9340799), and bone area, bone mineral content (BMC), and BMD of the lumbar spine, femoral neck, and also of the total body less the head in Iranian children. METHODS The ESR1 gene PvuII and XbaI genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. Bone area, BMC, BMD, and bone mineral apparent density (BMAD) were assessed by dual-energy X-ray absorptiometry (DEXA). Linear regression was carried out to examine the effects of the ESR1 (PvuII and XbaI) polymorphisms on DEXA outputs when adjusted for confounding factors (i.e., age, sex, BMI, and pubertal stage) in 3 models. RESULTS ESR1 (PvuII) gene polymorphisms (CT vs. CC) showed significant effects on the BMC of the total body less the head in all 3 models. For ESR1 (XbaI), individuals with the AG genotype had higher lumbar spine BMD and lumbar spine BMAD compared to other genotypes. CONCLUSIONS It seems that the PvuII and XbaI polymorphisms of ESR1 could be associated with BMC and BMD variation in Iranian children and adolescents.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Rajeeh Mohammadian Amiri
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mirzai
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Foreman M, Hare L, York K, Balakrishnan K, Sánchez FJ, Harte F, Erasmus J, Vilain E, Harley VR. Genetic Link Between Gender Dysphoria and Sex Hormone Signaling. J Clin Endocrinol Metab 2019; 104:390-396. [PMID: 30247609 DOI: 10.1210/jc.2018-01105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT There is a likely genetic component to gender dysphoria, but association study data have been equivocal. OBJECTIVE We explored the specific hypothesis that gender dysphoria in transgender women is associated with variants in sex hormone-signaling genes responsible for undermasculinization and/or feminization. DESIGN Subject-control analysis included 380 transgender women and 344 control male subjects. Associations and interactions were investigated between functional variants in 12 sex hormone-signaling genes and gender dysphoria in transgender women. SETTING Patients were recruited from the Monash Gender Clinic, Monash Health, Melbourne, Australia, and the University of California, Los Angeles. PATIENTS Caucasian (non-Latino) transgender women were recruited who received a diagnosis of transsexualism [Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV) or gender dysphoria (DSM-V)] pre- or postoperatively. Most were receiving hormone treatment at the time of recruitment. MAIN OUTCOME MEASURED Genomic DNA was genotyped for repeat length polymorphisms or single nucleotide polymorphisms. RESULTS A significant association was identified between gender dysphoria and ERα, SRD5A2, and STS alleles, as well as ERα and SULT2A1 genotypes. Several allele combinations were also overrepresented in transgender women, most involving AR (namely, AR-ERβ, AR-PGR, AR-COMT, CYP17-SRD5A2). Overrepresented alleles and genotypes are proposed to undermasculinize/feminize on the basis of their reported effects in other disease contexts. CONCLUSION Gender dysphoria may have an oligogenic component, with several genes involved in sex hormone-signaling contributing.
Collapse
Affiliation(s)
| | - Lauren Hare
- Hudson Institute of Research, Melbourne, Victoria, Australia
| | - Kate York
- Hudson Institute of Research, Melbourne, Victoria, Australia
| | | | | | - Fintan Harte
- Monash Gender Clinic, Monash Health, Melbourne, Victoria, Australia
| | | | - Eric Vilain
- Children's National Health System, Washington, DC
| | | |
Collapse
|
10
|
Fernández R, Guillamon A, Cortés-Cortés J, Gómez-Gil E, Jácome A, Esteva I, Almaraz M, Mora M, Aranda G, Pásaro E. Molecular basis of Gender Dysphoria: androgen and estrogen receptor interaction. Psychoneuroendocrinology 2018; 98:161-167. [PMID: 30165284 DOI: 10.1016/j.psyneuen.2018.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Polymorphisms in sex steroid receptors have been associated with transsexualism. However, published replication studies have yielded inconsistent findings, possibly because of a limited sample size and/or the heterogeneity of the transsexual population with respect to the onset of dysphoria and sexual orientation. We assessed the role of androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERβ), and aromatase (CYP19A1) in two large and homogeneous transsexual male-to-female (MtF) and female-to-male (FtM) populations. METHODS The association of each polymorphism with transsexualism was studied with a twofold subject-control analysis: in a homogeneous population of 549 early onset androphilic MtF transsexuals versus 728 male controls, and 425 gynephilic FtMs versus 599 female controls. Associations and interactions were investigated using binary logistic regression. RESULTS Our data show that specific allele and genotype combinations of ERβ, ERα and AR are implicated in the genetic basis of transsexualism, and that MtF gender development requires AR, which must be accompanied by ERβ. An inverse allele interaction between ERβ and AR is characteristic of the MtF population: when either of these polymorphisms is short, the other is long. ERβ and ERα are also associated with transsexualism in the FtM population although there was no interaction between the polymorphisms. Our data show that ERβ plays a key role in the typical brain differentiation of humans. CONCLUSION ERβ plays a key role in human gender differentiation in males and females.
Collapse
Affiliation(s)
- Rosa Fernández
- Departamento de Psicología, Universidade da Coruña, A Coruña, Spain.
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain.
| | | | - Esther Gómez-Gil
- Unidad de Identidad de Género, Hospital Clínic, Barcelona, Spain.
| | - Amalia Jácome
- Departamento de Matemáticas, Universidade da Coruña, A Coruña, Spain.
| | - Isabel Esteva
- Unidad de Transexualidad e Identidad de Género, Hospital Carlos Haya, Málaga, Spain.
| | - MariCruz Almaraz
- Unidad de Transexualidad e Identidad de Género, Hospital Carlos Haya, Málaga, Spain.
| | - Mireia Mora
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain.
| | - Gloria Aranda
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain.
| | - Eduardo Pásaro
- Departamento de Psicología, Universidade da Coruña, A Coruña, Spain.
| |
Collapse
|
11
|
Martinerie L, Condat A, Bargiacchi A, Bremont-Weill C, de Vries MC, Hannema SE. MANAGEMENT OF ENDOCRINE DISEASE: Approach to the management of children and adolescents with Gender Dysphoria. Eur J Endocrinol 2018; 179:R219-R237. [PMID: 30049812 DOI: 10.1530/eje-18-0227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 02/03/2023]
Abstract
Over the past 20 years, the care for transgender adolescents has developed throughout many countries following the "Dutch Approach" initiated in the 90's in pioneer countries as the Netherlands, United States and Canada, with increasing numbers of children and adolescents seeking care in transgender clinics. This medical approach has considerable positive impacts on the psychological outcomes of these adolescents and several studies have been recently published underlining the relative safety of such treatments. This paper reviews the current standards of care for transgender children and adolescents with particular emphasis on disparities among countries and short to medium-term outcomes. Finally it highlights ethical considerations regarding categorization of gender dysphoria, timing of treatment initiation, infertility, and how to deal with the long-term consequences.
Collapse
Affiliation(s)
- L Martinerie
- Department of Pediatric Endocrinology, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Paris, France
- INSERM Unit 1145, Le Kremlin-Bicêtre, France
| | - A Condat
- Department of Adolescent and Child Psychiatry, Pitié-Salpétrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- CESP INSERM 1018, ED3C, Université Paris Descartes, Paris, France
| | - A Bargiacchi
- Department of Adolescent and Child Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Bremont-Weill
- Department of Endocrinology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M C de Vries
- Departments of Medical Ethics and Health Law, Leiden University Medical Center, Leiden, The Netherlands
- Departments of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - S E Hannema
- Departments of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
The Biological Contributions to Gender Identity and Gender Diversity: Bringing Data to the Table. Behav Genet 2018; 48:95-108. [DOI: 10.1007/s10519-018-9889-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 02/05/2018] [Indexed: 01/13/2023]
|
13
|
Fernández R, Guillamón A, Gómez-Gil E, Esteva I, Almaraz MC, Cortés-Cortés J, Lamas B, Lema E, Pásaro E. Analyses of karyotype by G-banding and high-resolution microarrays in a gender dysphoria population. Genes Genomics 2018; 40:465-473. [DOI: 10.1007/s13258-017-0646-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
|
14
|
Yang F, Zhu XH, Zhang Q, Sun NX, Ji YX, Ma JZ, Xiao B, Ding HX, Sun SH, Li W. Genomic Characteristics of Gender Dysphoria Patients and Identification of Rare Mutations in RYR3 Gene. Sci Rep 2017; 7:8339. [PMID: 28827537 PMCID: PMC5567086 DOI: 10.1038/s41598-017-08655-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/14/2017] [Indexed: 11/26/2022] Open
Abstract
Gender dysphoria (GD) is characterized by an incongruence between the gender assigned at birth and the gender with which one identifies. The biological mechanisms of GD are unclear. While common genetic variants are associated with GD, positive findings have not always been replicated. To explore the role of rare variants in GD susceptibility within the Han Chinese population, whole-genome sequencing of 9 Han female-to-male transsexuals (FtMs) and whole-exome sequencing of 4 Han male-to-female transsexuals (MtFs) were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level and then by Gene Ontology terms. Novel nonsynonymous variants in ion transport genes were significantly enriched in FtMs (P- value, 2.41E-10; Fold enrichment, 2.8) and MtFs (P- value, 1.04E-04; Fold enrichment, 2.3). Gene burden analysis comparing 13 GD cases and 100 controls implicated RYR3, with three heterozygous damaging mutations in unrelated FtMs and zero in controls (P = 0.001). Importantly, protein structure modeling of the RYR3 mutations indicated that the R1518H mutation made a large structural change in the RYR3 protein. Overall, our results provide information about the genetic basis of GD.
Collapse
Affiliation(s)
- Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China.
| | - Xiao-Hai Zhu
- Department of Plastic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Qing Zhang
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ning-Xia Sun
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yi-Xuan Ji
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jin-Zhao Ma
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China
| | - Bang Xiao
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China
| | - Hai-Xia Ding
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Shu-Han Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China.
| | - Wen Li
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|