1
|
Cao B, Tang X, Liu C, Xu G, Lei M, Wu F, Chen W, Ni H, Zhang F. Unlocking new Frontiers: The cellular and molecular impact of extracorporeal shock wave therapy (ESWT) on central nervous system (CNS) disorders and peripheral nerve injuries (PNI). Exp Neurol 2025; 384:115052. [PMID: 39532248 DOI: 10.1016/j.expneurol.2024.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurological disorders encompassing both central nervous system (CNS) diseases and peripheral nerve injuries (PNI), represent significant challenges in modern clinical practice. Conditions such as stroke, spinal cord injuries, and carpal tunnel syndrome can cause debilitating impairments, leading to reduced quality of life and placing a heavy burden on healthcare systems. Current treatment strategies, including pharmacological interventions and surgical procedures, often yield limited results, and many patients experience suboptimal outcomes or treatment-associated risks. In light of these limitations, there is a growing interest in exploring non-invasive therapeutic alternatives. Among these, extracorporeal shock wave therapy (ESWT) has eme rged as a promising modality, demonstrating efficacy in musculoskeletal conditions and gaining attention for its potential role in neurological disorders. This manuscript aims to provide a comprehensive overview of the cellular and molecular mechanisms underlying ESWT, focusing on its therapeutic applications in CNS diseases and PNI, thereby shedding light on its potential to revolutionize the treatment landscape for neurological conditions.
Collapse
Affiliation(s)
- Baodan Cao
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Xiaobin Tang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Chuangjian Liu
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fan Wu
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
2
|
Huangfu Q, Zhang J, Xu J, Xu J, Yang Z, Wei J, Yang L, Shu Y, Sun C, Wang B, Chen Y, Wen J, Cai M. Mechanosensitive Ca 2+ channel TRPV1 activated by low-intensity pulsed ultrasound ameliorates acute kidney injury through Notch1-Akt-eNOS signaling. FASEB J 2025; 39:e70304. [PMID: 39785696 DOI: 10.1096/fj.202401142rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway. The results demonstrated that LIPUS treatment improved GFR, BUN, SCr levels, and renal pathology in AKI rats. In vitro experiments using HUVEC cells revealed that LIPUS stimulation promoted angiogenesis, cell migration mechanically-dependent calcium ion influx, which was partially attenuated by TRPV1 knockdown. RNA sequencing analysis indicated LIPUS-induced activation of the Notch pathway, phosphorylation of Akt and eNOS. Furthermore, inhibition or genetic silencing of Notch1 abolished the beneficial effects of LIPUS on angiogenesis, renal function, and Akt-eNOS phosphorylation in both cells and AKI rats. These findings suggest that LIPUS-induced calcium influx promotes Akt-eNOS phosphorylation, nitric oxide (NO) production, angiogenesis, and improved renal function in AKI via Notch1-Akt-eNOS signaling, positioning LIPUS as a promising therapeutic strategy for AKI by targeting vascular regeneration.
Collapse
Affiliation(s)
- Qi Huangfu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Hangzhou Applied Acoustics Research Institute, Hangzhou, China
| | - Jiaju Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangcheng Yang
- Hangzhou Applied Acoustics Research Institute, Hangzhou, China
| | - Jingchao Wei
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liuqing Yang
- Hangzhou Applied Acoustics Research Institute, Hangzhou, China
| | - Yichang Shu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengfang Sun
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Chen
- Hangzhou Applied Acoustics Research Institute, Hangzhou, China
| | - Jiaming Wen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ming Cai
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Corredor HA, Sandoval-Salinas C, Martinez JM, Barba J, Patrón F. Comparison of the effectiveness of 2 shockwave therapy protocols for the treatment of vascular erectile dysfunction: a randomized, multicenter, open-label, noninferiority, phase 4 clinical trial. J Sex Med 2025:qdae205. [PMID: 39779314 DOI: 10.1093/jsxmed/qdae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Shockwave therapy is an optional adjuvant treatment for vascular erectile dysfunction (ED). There is variability in treatment protocols and challenges with patients adherence to the weekly protocol, which is the most commonly used. AIM This study aimed to evaluate the noninferiority of a monthly shockwave therapy protocol compared to the weekly protocol for treating vascular ED. METHODS A randomized, open-label, control active, multicenter clinical trial was conducted. A total of 184 men diagnosed with vascular ED, without comorbid conditions associated with secondary dysfunction or active treatment for ED, were included across 5 clinics in Mexico and Colombia. Patients were randomized to receive either 6 sessions of weekly or monthly shockwave therapy, applying the same parameters for both groups. OUTCOMES The primary outcome was the change in the International Index of Erectile Function-Erectile Function Domain (IIEF-EF) Questionnaire score at 24 weeks after treatment, assessed using a noninferiority approach. Secondary outcomes included clinical improvement, erection hardness, and self-esteem (SEAR Questionnaire) at posttreatment, 12 weeks, and 24 weeks of follow-up. RESULTS At 24-week posttreatment, the average change in IIEF-EF was 1.93 (± 6.55; 95% CI 0.49-3.38) in the weekly group and 4.30 (± 6.78; 95% CI 2.69-5.9) in the monthly group, demonstrating noninferiority of the monthly protocol (difference -2.36; 95% CI -4.4 to -0.2; noninferiority P < .0001). At the end of treatment, clinical improvement was achieved by 55.2% of participants in the monthly protocol and 30.9% in the weekly (P = .042). No significant differences were found in other outcomes. CLINICAL IMPLICATIONS A 6-session monthly shockwave therapy regimen could improve erectile function in men with ED. STRENGTHS AND LIMITATIONS This is the largest clinical trial to date evaluating shockwave therapy regimens for ED. The principal limitations were the absence of objective vascular assessment of the changes produced by shockwaves, and the absence of a placebo control group. CONCLUSION A monthly protocol of 6 shockwave therapy sessions is noninferior to a weekly protocol up to 6 months after therapy, in men with vascular ED.
Collapse
Affiliation(s)
- Hector A Corredor
- Elexial Research Limited, Boston Medical, Department of Clinical Research, Bogotá 110111, Colombia
| | | | - Juan M Martinez
- Elexial Research Limited, Boston Medical, Department of Clinical Research, Bogotá 110111, Colombia
| | - Jorge Barba
- Elexial Research Limited, Boston Medical, Department of Clinical Research, Mexico City 11000, Mexico
| | - Francisco Patrón
- Elexial Research Limited, Boston Medical, Department of Clinical Research, Mexico City 11000, Mexico
| |
Collapse
|
4
|
Crisostomo-Wynne TC, Hertz AM, Ferrini MG, Brand TC, Salgar SK. Nutraceutical and low energy shockwave treatments improved sexual function recovery in a rat pelvic neurovascular injury model. Sex Med 2024; 12:qfaf001. [PMID: 39845379 PMCID: PMC11750428 DOI: 10.1093/sexmed/qfaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Background Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy. COMP4 is an all-natural herbal compound (Muira puama, Paullinia cupana, Ginger, and L-Citrulline) has potential to enhance penile vascular/smooth muscle/neuronal regeneration via Nitric Oxide synthesis. Low energy shockwave (LESW) therapy promotes nerve regeneration/angiogenesis by activating stem/progenitor cells. Aim To investigate the effects of the COMP4 and LESW for the treatment of ED in a rat pelvic trauma model. Methods The experimental design included five groups (Lewis rats aged 10-12 weeks; n = 8/group): (1) Sham, (2) Injury control, (3) Peanut Butter (PNB; Vehicle) Control, (4) COMP4, and (5) COMP4 + LESW. Pelvic neurovascular injury (PNVI) was induced by performing bilateral cavernous nerve crush injury and internal pudendal bundle ligation under general anesthesia. One week after PNVI rats received COMP4 (45 mg/kg b.wt./day) orally via PNB and/or LESW (1000 pulses at 0.06 mJ/mm2, 3 Hz, three times per week to the pelvis around penis) for 6 weeks. After 1 week of washout period, erectile function (EF) was assessed via intracavernous pressure (ICP; mmHg) measurements; rats euthanized, penile tissues collected for analyses. Outcomes COMP4 and LESW treatments improved EF recovery. Results There was a significant (P < .01) improvement in EF (ICP) with COMP4 (153.6 ± 26.6) and COMP4 + LESW (174.1 ± 38.2) treatments compared to vehicle (PNB) control (109.4 ± 32.6). COMP4 + LESW treatment enhanced EF compared to COMP4 alone. The base level ICP before treatments (Group 2) was 117.3 ± 6 and was lower (P < .01) than sham (165 ± 43.8) and COMP4 & COMP4 + LESW treated rats. Masson's trichrome staining of corpus cavernosum penis demonstrated reduced (P < .001) smooth muscle-to-collagen (SM:C) ratio in injury and PNB controls compared to sham. COMP4 treatment following PNVI showed an increase (P < .05) in SM:C ratio. Adding LESW and COMP4 enhanced (P < .01) the SM:C ratio, suggesting a reduction in fibrosis. Western blot analysis revealed a significant increase in Endothelial Nitric Oxide Synthase and α-Smooth Muscle Actin (α-SMA) in the corpus cavernosum with COMP4 and COMP4 + LESW treatments compared to PNB control. Clinical Implications COMP4 and/or LESW can serve as an adjunct therapy to mitigate ED. Strengths and Limitations Identified novel treatment option to improve EF recovery. Unable to address in-depth cellular/molecular mechanisms. Conclusions COMP4 and LESW treatments appear to be promising to improve clinical EF recovery in pelvic trauma.
Collapse
Affiliation(s)
| | - Alexandria M Hertz
- Department of Surgery, Madigan Army Medical Center, Tacoma, Washington 98431, United States
| | - Monica G Ferrini
- Department of Health and Life Sciences, Charles R. Drew University, Los Angeles, California 90059, United States
| | - Timothy C Brand
- Department of Surgery, Madigan Army Medical Center, Tacoma, Washington 98431, United States
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington 98431, United States
| |
Collapse
|
5
|
Rosen RC, Miner M, Burnett AL, Blaha MJ, Ganz P, Goldstein I, Kim N, Kohler T, Lue T, McVary K, Mulhall J, Parish SJ, Sadeghi-Nejad H, Sadovsky R, Sharlip I, Kloner RA. Proceedings of PRINCETON IV: PDE5 inhibitors and cardiac health symposium. Sex Med Rev 2024; 12:681-709. [PMID: 38936840 DOI: 10.1093/sxmrev/qeae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Prior consensus meetings have addressed the relationship between phosphodiesterase type 5 (PDE5) inhibition and cardiac health. Given significant accumulation of new data in the past decade, a fourth consensus conference on this topic was convened in Pasadena, California, on March 10 and 11, 2023. OBJECTIVES Our meeting aimed to update existing knowledge, assess current guidelines, and make recommendations for future research and practice in this area. METHODS An expert panel reviewed existing research and clinical practice guidelines. RESULTS Key findings and clinical recommendations are the following: First, erectile dysfunction (ED) is a risk marker and enhancer for cardiovascular (CV) disease. For men with ED and intermediate levels of CV risk, coronary artery calcium (CAC) computed tomography should be considered in addition to previous management algorithms. Second, sexual activity is generally safe for men with ED, although stress testing should still be considered for men with reduced exercise tolerance or ischemia. Third, the safety of PDE5 inhibitor use with concomitant medications was reviewed in depth, particularly concomitant use with nitrates or alpha-blockers. With rare exceptions, PDE5 inhibitors can be safely used in men being treated for hypertension, lower urinary tract symptoms and other common male disorders. Fourth, for men unresponsive to oral therapy or with absolute contraindications for PDE5 inhibitor administration, multiple treatment options can be selected. These were reviewed in depth with clinical recommendations. Fifth, evidence from retrospective studies points strongly toward cardioprotective effects of chronic PDE5-inhibitor use in men. Decreased rates of adverse cardiac outcomes in men taking PDE-5 inhibitors has been consistently reported from multiple studies. Sixth, recommendations were made regarding over-the-counter access and potential risks of dietary supplement adulteration. Seventh, although limited data exist in women, PDE5 inhibitors are generally safe and are being tested for use in multiple new indications. CONCLUSION Studies support the overall cardiovascular safety of the PDE5 inhibitors. New indications and applications were reviewed in depth.
Collapse
Affiliation(s)
- Raymond C Rosen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA 94143, United States
| | - Martin Miner
- Men's Health Center, Miriam Hospital, 180 Corliss St. 2nd Floor, Providence, RI 02904, United States
| | - Arthur L Burnett
- Department of Urology, Ciccarone Center for Clinical Research, Johns Hopkins University, 600 N Wolfe St # B110, Baltimore, MD 21287, United States
| | - Michael J Blaha
- Department of Cardiology, Johns Hopkins Health Care & Surgery Center, Green Spring Station, Lutherville, 10755 Falls Road, Lutherville, MD 21093, United States
| | - Peter Ganz
- Department of Cardiology and Vascular Research, University of California, San Francisco, 1001 Potrero Ave # 107, San Francisco, CA 94110, United States
| | - Irwin Goldstein
- Institute for Sexual Medicine, 5555 Reservoir Dr # 300, San Diego, CA 92120, United States
| | - Noel Kim
- Institute for Sexual Medicine, 5555 Reservoir Drive, Suite 300, San Diego, CA 92120, United States
| | - Tobias Kohler
- Dept of Urology, Mayo Clinic, 200 First St. S.W., Rochester, Minnesota 55905, US, United States
| | - Tom Lue
- Department of Urology, University of California, San Francisco, School of Medicine, 400 Parnassus Ave #610, San Francisco, CA 94143, United States
| | - Kevin McVary
- Center for Male Health, Stritch School of Medicine, Loyola University, 6800 N Frontage Rd, Burr Ridge, IL 60527, United States
| | - John Mulhall
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Hospital, 205 E 64th St, New York, NY 10065, United States
| | - Sharon J Parish
- Weill Cornell Medical College, 21 Bloomingdale Rd, White Plains, NY 10605, United States
| | - Hossein Sadeghi-Nejad
- Professor of Urology and Ob-Gyn, Department of Urology, Langone Grossman School of Medicine, New York University, 222 East 41st Street, 12th Floor, New York, NY 10017, United States
| | - Richard Sadovsky
- Dept of Family Medicine, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, United States
| | - Ira Sharlip
- Department of Urology, University of California, San Francisco, School of Medicine, 400 Parnassus Ave #610, San Francisco, CA 94143, United States
| | - Robert A Kloner
- Chief Scientist and Director, Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA. 91105, United States
| |
Collapse
|
6
|
Daneshwar D, Lee Y, Nordin A. Stem cell assisted low-intensity shockwave for erectile dysfunction treatment: Current perspective. Regen Ther 2024; 26:1150-1158. [PMID: 39640922 PMCID: PMC11617694 DOI: 10.1016/j.reth.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Stem cell therapy and low-intensity extracorporeal shockwave (LI-ECSW) are recognized as potential restorative therapies and have been used in the treatment of erectile dysfunction (ED). Stem cell therapy is well-known due to its attributed regenerative ability and thus can help to improve erectile function in patients with vasculogenic ED. Besides, current evidence also shows that LI-ECSW therapy can help stimulate cell recruitment and proliferation and promote angiogenesis and vascularization in the damaged tissue. Hence, due to the therapeutic and restorative effects of both therapies, the success of ED treatment can be elevated through a combination therapy between stem cell therapy and LI-ECSW. In this review, a detailed description and efficacy discussion of combination therapies between different types of stem cells and LI-ECSW therapy are described. Besides, other potential cell types to use together with LI-ECSW are also listed in this review. Thus, this review provides better insight on the efficacy of combination therapy for ED treatment.
Collapse
Affiliation(s)
- Datesh Daneshwar
- Urology Clinic, Prince Court Medical Centre, 39, Jalan Kia Peng, Kuala Lumpur 50450, Malaysia
| | - Yemin Lee
- MedCentral Consulting, International Youth Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Abid Nordin
- Graduate School of Medicine, KPJ Healthcare University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
7
|
Kloner RA, Burnett AL, Miner M, Blaha MJ, Ganz P, Goldstein I, Kim NN, Kohler T, Lue T, McVary KT, Mulhall JP, Parish SJ, Sadeghi-Nejad H, Sadovsky R, Sharlip ID, Rosen RC. Princeton IV consensus guidelines: PDE5 inhibitors and cardiac health. J Sex Med 2024; 21:90-116. [PMID: 38148297 DOI: 10.1093/jsxmed/qdad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND In 1999, 1 year after the approval of the first oral phosphodiesterase type 5 (PDE5) inhibitor for the treatment of erectile dysfunction (ED), the first Princeton Consensus Conference was held to address the clinical management of men with ED who also had cardiovascular disease. These issues were readdressed in the second and third conferences. In the 13 years since the last Princeton Consensus Conference, the experience with PDE5 inhibitors is more robust, and recent new data have emerged regarding not only safety and drug-drug interactions, but also a potential cardioprotective effect of these drugs. AIM In March 2023, an interdisciplinary group of scientists and practitioners met for the fourth Princeton Consensus Guidelines at the Huntington Medical Research Institutes in Pasadena, California, to readdress the cardiovascular workup of men presenting with ED as well as the approach to treatment of ED in men with known cardiovascular disease. METHOD A series of lectures from experts in the field followed by Delphi-type discussions were developed to reach consensus. OUTCOMES Consensus was reached regarding a number of issues related to erectile dysfunction and the interaction with cardiovascular health and phosphodiesterase-5 inhibitors. RESULTS An algorithm based on recent recommendations of the American College of Cardiology and American Heart Association, including the use of computed tomography coronary artery calcium scoring, was integrated into the evaluation of men presenting with ED. Additionally, the issue of nitrate use was further considered in an algorithm regarding the treatment of ED patients with coronary artery disease. Other topics included the psychological effect of ED and the benefits of treating it; the mechanism of action of the PDE5 inhibitors; drug-drug interactions; optimizing use of a PDE5 inhibitors; rare adverse events; potential cardiovascular benefits observed in recent retrospective studies; adulteration of dietary supplements with PDE5 inhibitors; the pros and cons of over-the-counter PDE5 inhibitors; non-PDE5 inhibitor therapy for ED including restorative therapies such as stem cells, platelet-rich plasma, and shock therapy; other non-PDE5 inhibitor therapies, including injection therapy and penile prostheses; the issue of safety and effectiveness of PDE5 inhibitors in women; and recommendations for future studies in the field of sexual dysfunction and PDE5 inhibitor use were discussed. CLINICAL IMPLICATIONS Algorithms and tables were developed to help guide the clinician in dealing with the interaction of ED and cardiovascular risk and disease. STRENGTHS AND LIMITATIONS Strengths include the expertise of the participants and consensus recommendations. Limitations included that participants were from the United States only for this particular meeting. CONCLUSION The issue of the intersection between cardiovascular health and sexual health remains an important topic with new studies suggesting the cardiovascular safety of PDE5 inhibitors.
Collapse
Affiliation(s)
- Robert A Kloner
- Department of Cardiovascular Research Pasadena, Huntington Medical Research Institutes, CA 91105, United States
- Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, United States
| | - Arthur L Burnett
- Department of Urology, Johns Hopkins University, Baltimore, MD, United States
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, United States
| | - Michael J Blaha
- Cardiology and Epidemiology, Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, United States
| | - Peter Ganz
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| | - Irwin Goldstein
- Department of Sexual Medicine, Institute for Sexual Medicine, Alvarado Hospital, San Diego, CA, United States
| | - Noel N Kim
- Department of Sexual Medicine, Institute for Sexual Medicine, Alvarado Hospital, San Diego, CA, United States
| | | | - Tom Lue
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| | - Kevin T McVary
- Center for Male Health, Stritch School of Medicine at Loyola University Medical Center, Maywood, IL, United States
| | - John P Mulhall
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sharon J Parish
- Weill Cornell Medicine, New York, NY, United States
- Department of Medicine and Psychiatry White Plains, Westchester Behavioral Health Center, NewYork-Presbyterian Hospital, NY, United States
| | - Hossein Sadeghi-Nejad
- Department of Urology NY, NYU Langone Grossman School of Medicine, NY, United States
| | - Richard Sadovsky
- Department of Family and Community Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Ira D Sharlip
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| | - Raymond C Rosen
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Stinson J, Bennett N. Reviving intimacy: Penile rehabilitation strategies for men after prostate cancer treatment. Prostate Int 2023; 11:195-203. [PMID: 38196554 PMCID: PMC10772180 DOI: 10.1016/j.prnil.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 01/11/2024] Open
Abstract
There have been considerable advances in the field of penile rehabilitation for upwards of 90% of men adversely affected by either short-term or long-term erectile dysfunction after definitive prostate cancer treatment. Despite the evolving landscape of treatment modalities for penile rehabilitation, there is a lack of consensus in the urologic community on the best therapies due to the level of evidence and efficacies of the current and emerging offerings. This review of current and next-generation interventions provides a practical approach to the myriad of data to make a better-informed decision based on the pathophysiology and highest-quality evidence available.
Collapse
Affiliation(s)
- James Stinson
- Division of Urology, Cook County Health and Hospitals System, Chicago IL, USA
| | - Nelson Bennett
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| |
Collapse
|
9
|
Vieiralves RR, Schuh MF, Favorito LA. Low-intensity extracorporeal shockwave therapy in the treatment of erectile dysfunction - a narrative review. Int Braz J Urol 2023; 49:428-440. [PMID: 36794846 PMCID: PMC10482445 DOI: 10.1590/s1677-5538.ibju.2023.9904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/02/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVES To provide an overview of low-intensity extracorporeal shockwave therapy (LIEST) for erectile dysfunction (ED), pointing out which concepts are already consolidated and which paths we still need to advance. MATERIALS AND METHODS We performed a narrative review of the literature on the role of shockwave therapies in erectile dysfunction, selecting publications in PUBMED, including only relevant clinical trials, systematic reviews and meta-analyses. RESULTS We found 11 studies (7 clinical trials, 3 systematic review and 1 meta-analysis) that evaluated the use of LIEST for the treatment of erectile dysfunction. One clinical trial evaluated the applicability in Peyronie's Disease and one other clinical trial evaluated the applicability after radical prostatectomy. CONCLUSIONS The literature presents little scientific evidence but suggests good results with the use of LIEST for ED. Despite a real optimism since it is a treatment modality capable of acting on the pathophysiology of ED, we must remain cautious, until a larger volume of higher quality studies allows us to establish which patient profile, type of energy and application protocol will achieve clinically satisfactory results.
Collapse
Affiliation(s)
- Rodrigo R. Vieiralves
- Universidade do Estado do Rio de Janeiro - UERJUnidade de Pesquisa UrogenitalRio de JaneiroRJBrasilUnidade de Pesquisa Urogenital - Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil
| | - Mathias Ferreira Schuh
- Universidade do Estado do Rio de Janeiro - UERJUnidade de Pesquisa UrogenitalRio de JaneiroRJBrasilUnidade de Pesquisa Urogenital - Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil
| | - Luciano Alves Favorito
- Universidade do Estado do Rio de Janeiro - UERJUnidade de Pesquisa UrogenitalRio de JaneiroRJBrasilUnidade de Pesquisa Urogenital - Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
Chung DY, Ryu JK, Yin GN. Regenerative therapies as a potential treatment of erectile dysfunction. Investig Clin Urol 2023; 64:312-324. [PMID: 37417556 DOI: 10.4111/icu.20230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
Erectile dysfunction (ED) is the most common sexual dysfunction disease in adult males. ED can be caused by many factors, such as vascular disease, neuropathy, metabolic disturbances, psychosocial causes, and side effects of medications. Although current oral phosphodiesterase type 5 inhibitors can achieve a certain effect, they cause temporary dilatation of blood vessels with no curative treatment effects. Emerging targeted technologies, such as stem cell therapy, protein therapy, and low-intensity extracorporeal shock wave therapy (Li-ESWT), are being used to achieve more natural and long-lasting effects in treating ED. However, the development and application of these therapeutic methods are still in their infancy, and their pharmacological pathways and specific mechanisms have not been fully discovered. This article reviews the preclinical basic research progress of stem cells, proteins, and Li-ESWT therapy, as well as the current status of clinical application of Li-ESWT therapy.
Collapse
Affiliation(s)
- Doo Yong Chung
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea.
| |
Collapse
|
11
|
Zou H, Zhang X, Chen W, Tao Y, Li B, Liu H, Wang R, Zhao J. Vascular endothelium is the basic way for stem cells to treat erectile dysfunction: a bibliometric study. Cell Death Discov 2023; 9:143. [PMID: 37127677 PMCID: PMC10151332 DOI: 10.1038/s41420-023-01443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
Vascular endothelial is considered to be a key factor in the pathogenesis of erectile dysfunction (ED). The purpose is to reveal the research trend of the field of ED and vascular endothelium. In addition, the goal is to discover the role and mechanism of vascular endothelium in ED. Bibliometrics and visualization methods based on CiteSpace were selected. We conducted the co-authorship analysis of countries, institutions and authors, co-occurrence analysis of keywords, and co-citation analysis of literature and authors through CiteSpace 6.1.R3. 1431 articles from Web of Science Core Collection (WOSCC) were included in the analysis from 1991 to 2022. We found some influential and cutting-edge nodes in each map, including countries, institutions, authors, articles, etc. Stem cell, therapy, oxidative stress, cavernous nerve injury, radical prostatectomy, fibrosis, erectile function, mesenchymal stem cell, and apoptosis may be hot keywords. In conclusion, the efficacy and mechanisms of stem cells and their derivatives in the treatment of diabetes (DM) ED and cavernous nerve injury (CNI) ED are the future research trends. Stem cells therapy for ED is a hot spot in this field, which side notes that stem cells may work mainly through improving endothelial function. Vascular endothelial cells and VEGF may repair nerve and cavernous smooth muscle directly or indirectly, and finally polish up erectile function.
Collapse
Affiliation(s)
- Hede Zou
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenkang Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Tao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bolin Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanfei Liu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ruikun Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiayou Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Chen H, Li Z, Li X, Yang Y, Dai Y, Xie Z, Xiao J, Liu X, Yang L, Shi C, Zhi E, Tian R, Li P, Chen H, Zhao F, Hu J, Yao C, Lin G, Lue TF, Xia S. The Efficacy and Safety of Thrice vs Twice per Week Low-Intensity Pulsed Ultrasound Therapy for Erectile Dysfunction: A Randomized Clinical Trial. J Sex Med 2022; 19:1536-1545. [PMID: 35999130 DOI: 10.1016/j.jsxm.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND A recent sham-controlled clinical study has shown that low-intensity pulsed ultrasound twice per week can safely and effectively treat patients with mild-to-moderate erectile dysfunction (ED). However, large-scale clinical trials are needed to verify its efficacy and safety and determine a reasonable treatment interval. AIM To study whether low-intensity pulsed ultrasound therapy thrice per week is non-inferior to twice per week in patients with mild-to-moderate ED. METHODS A randomized, open-label, parallel-group, non-inferiority clinical trial was conducted in 7 hospitals in China. A total of 323 patients with mild-to-moderate ED were randomized (1:1) into thrice per week (3/W) and twice per week (2/W) groups. Low-intensity pulsed ultrasound was applied on each side of the penis for 16 sessions. OUTCOMES The primary outcome was response rate using the minimal clinically important difference in the International Index of Erectile Function (IIEF-EF) score at week 12. Secondary outcomes included Erection Hardness Score (EHS), Sexual Encounter Profile, Global Assessment Question, and Self Esteem and Relationship Questionnaire. RESULTS Response rates in 3/W and 2/W groups were 62.0% and 62.5%, respectively. Treatment effect in the 3/W group was noninferior to that of the 2/W group, with rate difference lower bound of -0.01% [95% confidence interval -0.11 to 0.10%] within the acceptable margin (-14.0%). No significant difference was found among secondary outcomes. IIEF-EF score showed a significant increase from baseline in the 3/W group (16.8 to 20.7) and 2/W group (17.8 to 21.7), and the percentage of patients with EHS ≥3 increased in the 3/W (54.9% to 84.0%) and 2/W (59.5% to 83.5%) groups. There was no significant difference in response rate between the 2 groups after controlling for strata factors and homogeneous tests. No treatment-related adverse events were reported. CLINICAL IMPLICATIONS Low-intensity pulsed ultrasound therapy displays similar efficacy and safety for mild-to-moderate ED when administered thrice or twice per week for 16 sessions. This study provides two options to suit patients' needs. STRENGTHS & LIMITATIONS This is a large-sample, randomized, controlled, noninferiority trial study. Short-term follow-up and mostly younger patients are the main limitations. CONCLUSION Low-intensity pulsed ultrasound therapy thrice and twice per week showed equivalent therapeutic effects and safety for mild-to-moderate ED in a young and generally healthy population. This therapy warrants further investigation of its potential value in rehabilitation of ED.
Collapse
|
13
|
Asker H, Yilmaz-Oral D, Oztekin CV, Gur S. An update on the current status and future prospects of erectile dysfunction following radical prostatectomy. Prostate 2022; 82:1135-1161. [PMID: 35579053 DOI: 10.1002/pros.24366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Radical prostatectomy (RP) and radiation treatment are standard options for localized prostate cancer. Even though nerve-sparing techniques have been increasingly utilized in RP, erectile dysfunction (ED) due to neuropraxia remains a frequent complication. Erectile function recovery rates after RP remain unsatisfactory, and many men still suffer despite the availability of various therapies. OBJECTIVE This systematic review aims to summarize the current treatments for post-RP-ED, assess the underlying pathological mechanisms, and emphasize promising therapeutic strategies based on the evidence from basic research. METHOD Evaluation and review of articles on the relevant topic published between 2010 and 2021, which are indexed and listed in the PubMed database. RESULTS Phosphodiesterase type 5 inhibitors, intracavernosal and intraurethral injections, vacuum erection devices, pelvic muscle training, and surgical procedures are utilized for penile rehabilitation. Clinical trials evaluating the efficacy of erectogenic drugs in this setting are conflicting and far from being conclusive. The use of androgen deprivation therapy in certain scenarios after RP further exacerbates the already problematic situation and emphasizes the need for effective treatment strategies. CONCLUSION This article is a detailed overview focusing on the pathophysiology and mechanism of the nerve injury developed during RP and a compilation of various strategies to induce cavernous nerve regeneration to improve erectile function (EF). These strategies include stem cell therapy, gene therapy, growth factors, low-intensity extracorporeal shockwave therapy, immunophilins, and various pharmacological approaches that have induced improvements in EF in experimental models of cavernous nerve injury. Many of the mentioned strategies can improve EF following RP if transformed into clinically applicable safe, and effective techniques with reproducible outcomes.
Collapse
Affiliation(s)
- Heba Asker
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Cetin Volkan Oztekin
- Department of Urology, Faculty of Medicine, University of Kyrenia, Girne, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Guo J, Hai H, Ma Y. Application of extracorporeal shock wave therapy in nervous system diseases: A review. Front Neurol 2022; 13:963849. [PMID: 36062022 PMCID: PMC9428455 DOI: 10.3389/fneur.2022.963849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Neurological disorders are one of the leading causes of morbidity and mortality worldwide, and their therapeutic options remain limited. Recent animal and clinical studies have shown the potential of extracorporeal shock wave therapy (ESWT) as an innovative, safe, and cost-effective option to treat neurological disorders. Moreover, the cellular and molecular mechanism of ESWT has been proposed to better understand the regeneration and repairment of neurological disorders by ESWT. In this review, we discuss the principles of ESWT, the animal and clinical studies involving the use of ESWT to treat central and peripheral nervous system diseases, and the proposed cellular and molecular mechanism of ESWT. We also discuss the challenges encountered when applying ESWT to the human brain and spinal cord and the new potential applications of ESWT in treating neurological disorders.
Collapse
|
15
|
Tan Y, Reed-Maldonado AB, Wang G, Banie L, Peng D, Zhou F, Chen Y, Wang Z, Lin G, Lue TF. Microenergy acoustic pulse therapy restores urethral wall integrity and continence in a rat model of female stress incontinence. Neurourol Urodyn 2022; 41:1323-1335. [PMID: 35451520 PMCID: PMC9329256 DOI: 10.1002/nau.24939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the outcomes and mechanisms of microenergy acoustic pulse (MAP) therapy in an irreversible rat model of female stress urinary incontinence. MATERIALS AND METHODS Twenty-four female Sprague-Dawley rats were randomly assigned into four groups: sham control (sham), vaginal balloon dilation and ovariectomy (VBDO), VBDO + β-aminopropionitrile (BAPN), and VBDO + β-aminopropionitrile treated with MAP (MAP). MAP therapy was administered twice per week for 4 weeks. After a 1-week washout period, all 24 rats were evaluated with functional and histological studies. The urethral vascular plexus was examined by immunofluorescence staining with antibodies against collagen IV and von Willebrand factor (vWF). The urethral smooth muscle stem/progenitor cells (uSMPCs) were isolated and functionally studied in vivo and in vitro. RESULTS Functional study with leak point pressure (LPP) measurement showed that the MAP group had significantly higher LPPs compared to VBDO and BAPN groups. MAP ameliorated the decline in urethral wall thickness and increased the amount of extracellular matrix within the urethral wall, especially in the urethral and vaginal elastic fibers. MAP also improved the disruption of the urethral vascular plexus in the treated animals. In addition, MAP enhanced the regeneration of urethral and vaginal smooth muscle, and uSMPCs could be induced by MAP to differentiate into smooth muscle and neuron-like cells in vitro. CONCLUSION MAP appears to restore urethral wall integrity by increasing muscle content in the urethra and the vagina and by improving the urethral vascular plexus and the extracellular matrix.
Collapse
Affiliation(s)
- Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA.,Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA.,Department of Urology, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Feng Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Yinwei Chen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Zhao Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
16
|
Tao R, Chen J, Wang D, Li Y, Xiang J, Xiong L, Ji J, Wu J, Zhou S, Jia C, Lv J, Yang J, Tang Q. The Efficacy of Li-ESWT Combined With VED in Diabetic ED Patients Unresponsive to PDE5is: A Single-Center, Randomized Clinical Trial. Front Endocrinol (Lausanne) 2022; 13:937958. [PMID: 35813628 PMCID: PMC9259797 DOI: 10.3389/fendo.2022.937958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Phosphodiesterase type 5-inhibitors (PDE5is) are the first-line treatment for patients with diabetes mellitus-induced erectile dysfunction (DMED), however, some patients are non-responser to PDE5is. We performed a perspective, randomized, comparative study to explore the efficacy of low intensity extracorporeal shock wave treatment (Li-ESWT) combined with vacuum erectile device (VED) in the treatment of DMED patients who were unresponsive to PDE5is. METHODS One hundred and five eligible patients were randomly divided into three groups: group A (VED), group B (Li-ESWT) and group C (VED plus Li-ESWT). Follow-up was conducted at 4 weeks, 8 weeks and 12 weeks after the end of treatment. The erectile function was estimated by the international index of erectile function-erectile function domain (IIEF-EF), erection hardness score (EHS), sexual encounter profile questions 2 and 3 (SEP2 and SEP3) and global assessment question 1 and 2 (GAQ1 and GAQ2) before and after treatment. The changes of five points in IIEF-EF were calculated as the minimal clinical important difference (MCID), which was considered as the main index of efficacy. RESULTS The MCID was achieved in 14.7%, 14.7% and 17.6% patients in group A at the follow up on 4 weeks, 8 weeks and 12 weeks, respectively (36.4%, 39.4% and 36.4% in group B; 36.4%, 51.5%, and 66.7% in group C). There were significant differences in the percentage of MCID cases between group A and group C at the follow up on 12 weeks (P<0.001), as well as that between group B and group C (P=0.014). Additionally, comparison in MCID within group C showed that there were significant differences between 4 weeks and 12 weeks follow-up (P=0.014). CONCLUSION Our findings indicated the combined therapy Li-ESWT and VED was more beneficial to shift turn PDE5is non-responders to responders for moderate patients with DMED than VED or Li-ESWT monotherapy. Moreover, this study provided evidence that patients with DMED who failed after taking oral PDE5is could attempt to opt for an alternative physicotherapy (Li-ESWT or VED) prior to more invasive alternatives.
Collapse
Affiliation(s)
- Rongzhen Tao
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dujian Wang
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunpeng Li
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Xiang
- Department of Ultrasound, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xiong
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Junbiao Ji
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wu
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Zhou
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Chunping Jia
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jianlin Lv
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People’s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, People’s Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Xinjiang, China
- *Correspondence: Qinglai Tang, ; Jie Yang,
| | - Qinglai Tang
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Qinglai Tang, ; Jie Yang,
| |
Collapse
|
17
|
Lue T, Wang B, Reed-Maldonado A, Ly K, Lin G. Potential applications of low-intensity extracorporeal shock-wave therapy in urological diseases via activation of tissue resident stem cells. UROLOGICAL SCIENCE 2022. [DOI: 10.4103/uros.uros_56_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Yang B, Luse D, Cao Y, Ko T, Wang R. The Role of Long Term Label-Retaining Cells in the Treatment of Erectile Dysfunction by Vacuum Erectile Device. Sex Med 2021; 9:100442. [PMID: 34649131 PMCID: PMC8766272 DOI: 10.1016/j.esxm.2021.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 12/09/2022] Open
Abstract
Introduction Vacuum erectile device (VED) therapy is commonly used for penile rehabilitation after radical prostatectomy, however, the underlying mechanism of this effect is not fully understood. Aim To evaluate the presence of label-retaining cells (LRCs), cells with long-term retention of 5-ethynyl-2-deoxyuridine (EdU) labeling and recognized as adult stem cells or progenitor-like cells, in cavernous tissue after VED treatment using a BCNC rat model. Methods Postnatal pups (1 day old) of Sprague Dawley (SD) rats were intraperitoneally injected with EdU (50 ug/g, BID for 3 days) and BCNC surgery was conducted at 6 weeks old (designated as natal-labeled rats). Adult SD rats underwent BCNC surgery and EdU injection (50 ug/g, once) after surgery (designated as adult-labeled rats). One week after surgery, both natal- and adult-labeled rats received daily VED treatment for 4 weeks. Intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured for all rats and then the penile tissue was harvested. The ratio of ICP/MAP was calculated to represent erectile function. Penile tissue was examined by immunofluorescence staining to detect EdU positive cells. Main Outcome Measures The ratio of Intracavernous pressure (ICP) /MAP and the percentage of EdU positive cells were measured. Results The erectile function was impaired after BCNC and partially restored after VED treatment in both natal- and adult-labeled rats (P < .05). There was no difference in the percentage of EdU positive cells in natal-labeled rat cavernous tissue in BCNC group compared with VED group. Among the adult-labeled rats, the percentage of EdU positive cells increased in BCNC group (P < .05) but didn't change significantly after VED treatment (P = .35). Conclusion LRCs may play a limited role in the restoration of erectile dysfunction through VED treatment after BCNC. Yang B, Luse D, Cao Y, et al. The Role of Long Term Label-Retaining Cells in the Treatment of Erectile Dysfunction by Vacuum Erectile Device. Sex Med 2021;9:100442.
Collapse
Affiliation(s)
- Baibing Yang
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dustin Luse
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tien Ko
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Run Wang
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Sandoval-Salinas C, Saffon JP, Corredor HA, Fonseca L, Manrique L, Solis G. Are Radial Pressure Waves Effective in Treating Erectile Dysfunction? A Systematic Review of Preclinical and Clinical Studies. Sex Med 2021; 9:100393. [PMID: 34274822 PMCID: PMC8360928 DOI: 10.1016/j.esxm.2021.100393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/09/2022] Open
Abstract
Introduction Radial waves are used to treat erectile dysfunction; however, they are different than focal waves, and their mechanism of action or effect on improving this condition is not known. Aim To evaluate the effect of radial waves at the cellular level and their effectiveness at the clinical level for the treatment of erectile dysfunction. Methods Systematic literature review. Electronic database searches and manual searches were performed to identify (i) clinical trials or cohort studies evaluating the effectiveness of radial waves in men with erectile dysfunction and (ii) preclinical trials in animal models or cell cultures in which the production of nitric oxide or endothelial growth factor was evaluated. Study quality was assessed, and data were extracted from each study. A narrative synthesis of the results was performed given the high heterogeneity between the selected studies. Main outcomes measures Nitric oxide production, endothelial growth factor expression, and changes in the Erection Hardness Score (EHS) and the International Index of Erectile Function (IIEF) Questionnaire score. Results Four studies in animal models and 1 randomized clinical trial in men with erectile dysfunction and kidney transplantation were identified that met the selection criteria. Preclinical studies in animals suggest that radial waves increase cellular apoptosis in penile tissue, while vascular endothelial growth factor expression increases in brain tissue. In men with erectile dysfunction, no differences were found between radial wave therapy and placebo therapy in the mean IIEF score (15.6 ± 6.1 vs 16.6 ± 5.4 at 1 month after treatment), EHS (2.5 ± 0.85 vs 2.4 ± 0.7 at 1 month after treatment), or penile Doppler parameters. Conclusions No quality evidence was found to support the use of radial waves in humans for the treatment of erectile dysfunction. In animal models and at the cellular level, the results are contradictory. More research is needed. Sandoval-Salinas C, Saffon JP, Corredor HA, et al. Are Radial Pressure Waves Effective in Treating Erectile Dysfunction? A Systematic Review of Preclinical and Clinical Studies. Sex Med 2021;9:100393.
Collapse
Affiliation(s)
| | - José P Saffon
- Elexial Research Center, Bogotá, Colombia; Boston Medical Group, Bogotá, Colombia
| | - Hector A Corredor
- Elexial Research Center, Bogotá, Colombia; Boston Medical Group, Bogotá, Colombia
| | | | - Laura Manrique
- Elexial Research Center, Bogotá, Colombia; Boston Medical Group, Bogotá, Colombia
| | | |
Collapse
|
20
|
Alavi SNR, Neishaboori AM, Yousefifard M. Extracorporeal shockwave therapy in spinal cord injury, early to advance to clinical trials? A systematic review and meta-analysis on animal studies. Neuroradiol J 2021; 34:552-561. [PMID: 34224252 DOI: 10.1177/19714009211026899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND As there is no consensus over the efficacy of extracorporeal shockwave therapy in the management of spinal cord injury complications, the current meta-analysis aims to investigate preclinical evidence on the matter. METHODS The search strategy was developed based on keywords related to 'spinal cord injury' and 'extracorporeal shockwave therapy'. A primary search was conducted in Medline, Embase, Scopus and Web of Science until the end of 2020. Studies which administered extracorporeal shockwave therapy on spinal cord injury animal models and evaluated motor function and/or histological findings were included. The standardised mean difference with a 95% confidence interval (CI) were calculated. RESULTS Seven articles were included. Locomotion was significantly improved in the extracorporeal shockwave therapy treated group (standardised mean difference 1.68, 95% CI 1.05-2.31, P=0.032). It seems that the efficacy of extracorporeal shockwave therapy with an energy flux density of 0.1 mJ/mm2 is higher than 0.04 mJ/mm2 (P=0.044). Shockwave therapy was found to increase axonal sprouting (standardised mean difference 1.31, 95% CI 0.65, 1.96), vascular endothelial growth factor tissue levels (standardised mean difference 1.36, 95% CI 0.54, 2.18) and cell survival (standardised mean difference 2.49, 95% CI 0.93, 4.04). It also significantly prevents axonal degeneration (standardised mean difference 2.25, 95% CI 1.47, 3.02). CONCLUSION Extracorporeal shockwave therapy significantly improves locomotor recovery in spinal cord injury animal models through neural tissue regeneration. Nonetheless, in spite of the promising results and clinical application of extracorporeal shockwave therapy in various conditions, current evidence implies that designing clinical trials on extracorporeal shockwave therapy in the management of spinal cord injury may not be soon. Hence, further preclinical studies with the effort to reach the safest and the most efficient treatment protocol are needed.
Collapse
Affiliation(s)
| | | | - Mahmoud Yousefifard
- Physiology Research Center, 440827Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
de Oliveira PS, Ziegelmann MJ. Low-intensity shock wave therapy for the treatment of vasculogenic erectile dysfunction: a narrative review of technical considerations and treatment outcomes. Transl Androl Urol 2021; 10:2617-2628. [PMID: 34295748 PMCID: PMC8261418 DOI: 10.21037/tau-20-1286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022] Open
Abstract
Erectile dysfunction (ED) impacts a significant portion of the aging male population. Standard treatments such as oral medications, intracavernosal injections, intraurethral suppositories, vacuum erection aids, and penile prosthesis placement have stood the test of time. Recently, there has been a growing interest in the concept of regenerative medicine with the goal of restoring or renewing functional tissue. Low intensity shock wave therapy (LiSWT) is one example of a regenerative therapy. A strong body of basic science data suggests that shockwaves, when applied to local tissue, will encourage blood vessel and nerve regeneration. Clinical evidence supports the use of LiSWT to treat conditions ranging from ischemic heart disease, musculoskeletal injuries, and even chronic non-healing wounds. LiSWT is also being used to treat male sexual dysfunction conditions such as Peyronie's Disease and ED. The first studied application of LiSWT for ED was published in 2010. Since then multiple randomized, sham-controlled trials have sought to evaluate outcomes for this novel therapy in men with vasculogenic ED. Additionally, several meta-analyses are available with pooled data suggesting that LiSWT results in a significantly greater improvement in erectile function relative to sham-control. Despite these promising findings, the current body of literature is marred by significant heterogeneity relating to treatment protocols, patient populations, and follow-up duration. Further work is necessary to determine optimal device technologies, patient characteristics, and treatment duration prior to considering LiSWT as standard of care for men with ED.
Collapse
Affiliation(s)
- Pedro Simoes de Oliveira
- Department of Urology, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal.,Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
22
|
Shin D, Jeon SH, Tian WJ, Kwon EB, Kim GE, Bae WJ, Cho HJ, Hong SH, Lee JY, Kim SW. Extracorporeal shock wave therapy combined with engineered mesenchymal stem cells expressing stromal cell-derived factor-1 can improve erectile dysfunction in streptozotocin-induced diabetic rats. Transl Androl Urol 2021; 10:2362-2372. [PMID: 34295723 PMCID: PMC8261440 DOI: 10.21037/tau-21-79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background For erectile dysfunction (ED) in diabetes mellitus (DM) patients who have poor response to drugs, extracorporeal shock wave therapy (ESWT) and engineered mesenchymal stem cell (MSC) therapy have been studied as alternative treatment options. The objective of this study is to investigate whether ESWT in combination with stromal cell-derived factor-1 expressing engineered mesenchymal stem cell (SDF-1 eMSC) therapy can have synergistic effects on ED in streptozotocin-induced diabetic rats. Methods Fifty 8-week-old male Sprague-Dawley rats were randomly divided into five groups (N=10 per group): (I) Normal group, (II) DM ED, (III) DM ED + ESWT group, (IV) DM ED + SDF-1 eMSC group, and (V) DM ED + ESWT + SDF-1 eMSC group. Each groups were treated with bilateral injections of SDF-1 eMSC or ESWT following the experiment protocol for eight weeks. Results The ratio of ICP/MAP was distinctly higher in the DM ED + ESWT + SDF-1 eMSC group than that in the DM ED group. Concentration of α-smooth muscle actin (α-SMA) was elevated the highest in the DM ED + ESWT + SDF-1 eMSC group. Additionally, ESWT increased the intensity of SDF-1 expression in the corpus cavernosum. ESWT + SDF-1 eMSC treatment also induced neuronal nitric oxide synthase (nNOS) and NO/cGMP expression in the corpus cavernosum. Furthermore, numbers of penile progenitor cells were increased in DM ED rats. Conclusions Combined treatment of ESWT with SDF-1 eMSC treatment is more effective than by a single therapy. It could be used as a potential and effective synergistic treatment for DM ED.
Collapse
Affiliation(s)
- Dongho Shin
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Hwan Jeon
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Wen Jie Tian
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Eun Bi Kwon
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Ga Eun Kim
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Woong Jin Bae
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk Jin Cho
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
23
|
Ochoa A, Guillot-Tantay C, Misrai V, Rouprêt M. [Low-intensity extracorporeal shock wave therapy for erectile dysfunction: A systematic review]. Prog Urol 2021; 31:506-518. [PMID: 33941461 DOI: 10.1016/j.purol.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/13/2020] [Accepted: 11/10/2020] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Our purpose was to assess the efficacy of low intensity extracorporeal shock waves (SW) for the treatment of organic erectile dysfunction (ED). METHODS A systematic review of the literature published between 2000 and 2020 was conducted using the PRISMA methodology. We used Medline data with the following key words (MesH): "extracorporeal shock wave therapy"; "erectile dysfunction"; "sexuality". RESULTS Nineteen articles were selected: thirteen randomised controlled trial and six meta-analyses. Most of them studied vascular etiology. Low intensity SW is beneficial ED is evaluated by the IIEF, EHS scores and penile hemodynamic. CONCLUSION SW may have a theoretical impact on the vascular etiology of organic DE. Their use in this context is supported by the European Society of urology and the European Society of sexual medecine. However, there are discrepancies in current data to establish a protocol to follow in daily practice.
Collapse
Affiliation(s)
- A Ochoa
- Sorbonne université, GRC 5 onco-urologie prédictive, Assistance publique-Hôpitaux de Paris, hôpital La Pitié Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Guillot-Tantay
- Sorbonne université, GRC 5 onco-urologie prédictive, Assistance publique-Hôpitaux de Paris, hôpital La Pitié Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - V Misrai
- Service d'urologie, Clinique Pasteur, Toulouse, France
| | - M Rouprêt
- Sorbonne université, GRC 5 onco-urologie prédictive, Assistance publique-Hôpitaux de Paris, hôpital La Pitié Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
24
|
Wang J, Luo L, Zhao S, Liu Y, Zhu Z, Zhao Z. Low intensity extracorporeal shockwave Therapy shifts PDE5i nonresponders to responders. Int Braz J Urol 2021; 46:934-942. [PMID: 32758304 PMCID: PMC7527091 DOI: 10.1590/s1677-5538.ibju.2019.0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
To evaluate the efficiency of an energy density of 0.05mj/mm2 of low intensity extracorporeal shockwave therapy (Li-ESWT) on erectile dysfunction (ED) patients.A total of 45 ED patients met the inclusion criteria, including 7 PDE5i responders and 38 nonresponders. All the patients have already been delivered 10000 shockwaves of total seven treatment points twice a week for 4 weeks. Simultaneously, questionnaires of International Index of Erectile Function-Erectile Function (IIEF-EF), Erectile Hard Score (EHS) and Minimal Clinical Important Differences (MCID) were evaluated for the efficiency and safety at 8th and 16th weeks.The changes in the IIEF-EF score by MCID suggested that Li-ESWT treatment was effective in 22 PDE5i nonresponders patients (58%) at 8th week. Then at 16th week the number of patients who were effectively treated increased to 27 (71%). Among PDE5i responders, 5 patients (71%) were effective base on MCID at 16th week. Among PDE5i nonresponders 22 patients (58%) achieved erection hard enough for vaginal penetration and increased to 27 (71%) patients at 16th week (EHS ≥3). Moreover, even 3 patients achieved EHS 4 in PDE5i nonresponders at 16th week. Among PDE5i responders, 4 of 7 patients reached EHS of 4 from EHS 3 at 16th week. Apart from this, Li-ESWT treatment was also effective in 9 patients (24%) in PDE5i nonresponders without follow-up PDE5i.Energy flux density (EFD) of 0.05 of Li-ESWT could improve the erectile function of ED patients with PDE5i response. In addition, EFD of 0.05 of Li-ESWT treatment could turn PDE5i nonresponders to responders.
Collapse
Affiliation(s)
- Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Shankun Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Zhiguo Zhu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Drury R, Natale C, Hellstrom WJG. Reviewing the evidence for shockwave- and cell-based regenerative therapies in the treatment of erectile dysfunction. Ther Adv Urol 2021; 13:17562872211002059. [PMID: 33796149 PMCID: PMC7968013 DOI: 10.1177/17562872211002059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is both a common and complex disease process. Existing ED treatments do not always achieve adequate results. There is clinical interest in employing regenerative therapies, including low-intensity extracorporeal shockwave therapy (Li-ESWT), platelet rich plasma (PRP), and stem cell therapy (SCT), in the treatment of ED as adjunct or alternative treatments. Here, we present evidence for emerging shockwave- and cell-based regenerative therapies for the treatment of ED following a thorough review of the existing PubMed literature pertaining to Li-ESWT, PRP, and SCT in relation to the treatment of ED. Li-ESWT causes microtrauma in tissue that hypothetically upregulates angiogenesis and recruits stem cells. Several large-scale systematic reviews and meta-analyses have reported that Li-ESWT improved ED in humans. Additionally, evidence has commenced to show that Li-ESWT may be effective against two recognized and complex etiologies of ED: diabetic and neurogenic. PRP delivers an autologous sample rich in growth factors to damaged tissue. Animal model studies have demonstrated improved erectile function recovery as well as preservation of cavernous nerve axons. Studies with PRP in humans are limited. SCT utilizes the regenerative potential of stem cells for healing of damaged tissue. In the treatment of ED, SCT has been used in the setting of diabetic and post-prostatectomy ED. Results of human studies are varied, although SCT treatments did result in increased erectile rigidity with some patients recovering the ability to achieve penetration. While these regenerative therapies show potential to augment the current treatment regimen for ED, there is a paucity of evidence to support the safety and efficacy of these treatments. Further research is necessary to define the role of these alternative therapies in the treatment of ED.
Collapse
Affiliation(s)
- Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Caleb Natale
- Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
26
|
Lee YC, Hsieh TJ, Tang FH, Jhan JH, Lin KL, Juan YS, Wang HS, Long CY. Therapeutic effect of Low intensity Extracorporeal Shock Wave Therapy (Li-ESWT) on diabetic bladder dysfunction in a rat model. Int J Med Sci 2021; 18:1423-1431. [PMID: 33628099 PMCID: PMC7893573 DOI: 10.7150/ijms.55274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives: Low intensity extracorporeal shock wave therapy (Li-ESWT) has proven to be effective and safe for the treatment of various urological disorders including erectile dysfunction and chronic pelvic pain syndrome. In this study, we elucidated the therapeutic effect and possible mechanisms of Li-ESWT on diabetic bladder dysfunction (DBD) in a rat model. Materials and Methods: In all, thirty-two female Sprague-Dawley rats were divided into three groups: normal control (NC), diabetes mellitus (DM) control, and DM Li-ESWT. The two DM groups were given high fat diets for one month, followed by 2 intraperitoneal injections of streptozotocin (STZ) 30 mg/kg separated by one week. Body weight and fasting blood glucose were monitored every week. Only rats with fasting blood glucose 140 mg/dL or more were considered diabetic and used in the subsequent portions of the study. The Li-ESWTs were applied toward the pelvis of the rats twice a week for 4 weeks with energy flux density (EFD) 0.02 mJ/mm2, 500 shocks, at 3Hz. All rats underwent plasma insulin tolerance test, conscious cystometry, leak-point pressure (LPP) assessment, and immunohistochemical studies. Results: DM groups had significantly lower insulin sensitivity and higher body weight. Conscious cystometry also revealed voiding dysfunctions. In the DM Li-ESWT group, the rats had significantly improved voiding functions that were reflected in longer micturition intervals and higher LPP compared to DM control. Immunofluorescence in DM control groups showed increased tyrosine hydroxylase (TH) expression and decreased neuronal nitric oxide synthase (nNOS) expression in the longitudinal urethral smooth muscles. Besides, rats had dilations and deformities of suburothelium capillary network of the bladder, revealing the deterioration of the nerve function of the urethra and destruction of the vascularization of the bladder. However, the DM Li-ESWT group exhibited recovery of the nerve expression of the urethra and vascularization of bladder. Conclusions: Li-ESWT ameliorates the bladder dysfunction and urinary continence in the DBD rat model, reflected in restoration of the nerve expression of the urethra and the vascularization of the bladder. Non-invasive Li-ESWT could be an alternative therapeutic option for DBD.
Collapse
Affiliation(s)
- Yung-Chin Lee
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tusty-Jiuan Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Hsiang Tang
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jhen-Hao Jhan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Ling Lin
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsun-Shuan Wang
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Yu Long
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Pan J, Liang E, Cai Q, Zhang D, Wang J, Feng Y, Yang X, Yang Y, Tian W, Quan C, Han R, Niu Y, Chen Y, Xin Z. Progress in studies on pathological changes and future treatment strategies of obesity-associated female stress urinary incontinence: a narrative review. Transl Androl Urol 2021; 10:494-503. [PMID: 33532337 PMCID: PMC7844519 DOI: 10.21037/tau-20-1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the increasing prevalence of obesity worldwide, obesity-related female stress urinary incontinence (FSUI) has become a key health problem. Recent studies indicated that FSUI is primarily caused by obesity-related pathological changes, such as fat droplet deposition, and results in pelvic floor nerve, vascular, and urethral striated muscle injury. Meanwhile, treatments for obesity-associated FSUI (OA-FSUI) have garnered much attention. Although existing OA-FSUI management strategies, including weight loss, pelvic floor muscle exercise, and urethral sling operation, could play a role in symptomatic relief; they cannot reverse the pathological changes in OA-FSUI. The continued exploration of safe and reliable treatments has led to regenerative therapy becoming a particularly promising area of researches. Specifically, micro-energy, such as low-intensity pulsed ultrasound (LIPUS), low-intensity extracorporeal shock wave therapy (Li-ESWT), and pulsed electromagnetic field (PEMF), have been shown to restore the underlying pathological changes of OA-FSUI, which might be related by regulation endogenous stem cells (ESCs) to restore urine control function ultimately in animal experiments. Therefore, ESCs may be a target for repairing pathological changes of OA-FSUI. The aim of this review was to summarize the OA-FSUI-related pathogenesis, current treatments, and to discuss potential therapeutic options. In particular, this review is focused on the effects and related mechanisms of micro-energy therapy for OA-FSUI to provide a reference for future basically and clinical researches.
Collapse
Affiliation(s)
- Jiancheng Pan
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Enli Liang
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Qiliang Cai
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Dingrong Zhang
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Jiang Wang
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Yuhong Feng
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Xiaoqing Yang
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Yongjiao Yang
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Wenjie Tian
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Changyi Quan
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Ruifa Han
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Yuanjie Niu
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Yegang Chen
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China
| | - Zhongcheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China.,Laboratory of Male Reproductive Medicine, Tianjin Urology Institute, Tianjin, China.,Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
28
|
Plair A, Bennington J, Williams JK, Parker-Autry C, Matthews CA, Badlani G. Regenerative medicine for anal incontinence: a review of regenerative therapies beyond cells. Int Urogynecol J 2020; 32:2337-2347. [PMID: 33247762 DOI: 10.1007/s00192-020-04620-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Current treatment modalities for anal sphincter injuries are ineffective for many patients, prompting research into restorative and regenerative therapies. Although cellular therapy with stem cells and progenitor cells show promise in animal models with short-term improvement, there are additional regenerative approaches that can augment or replace cellular therapies for anal sphincter injuries. The purpose of this article is to review the current knowledge of cellular therapies for anal sphincter injuries and discusses the use of other regenerative therapies including cytokine therapy with CXCL12. METHODS A literature search was performed to search for articles on cellular therapy and cytokine therapy for anal sphincter injuries and anal incontinence. RESULTS The article search identified 337 articles from which 33 articles were included. An additional 12 referenced articles were included as well as 23 articles providing background information. Cellular therapy has shown positive results for treating anal sphincter injuries and anal incontinence in vitro and in one clinical trial. However, cellular therapy has disadvantages such as the source and processing of stem cells and progenitor cells. CXCL12 does not have such issues while showing promising in vitro results for treating anal sphincter injuries. Additionally, electrical stimulation and extracorporeal shock wave therapy are potential regenerative medicine adjuncts for anal sphincter injuries. A vision for future research and clinical applications of regenerative medicine for anal sphincter deficiencies is provided. CONCLUSION There are viable regenerative medicine therapies for anal sphincter injuries beyond cellular therapy. CXCL12 shows promise as a focus of therapeutic research in this field.
Collapse
Affiliation(s)
- Andre Plair
- Department of Urology, Wake Forest Baptist Health, Winston Salem, NC, USA.
| | - Julie Bennington
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | | | | | | | - Gopal Badlani
- Department of Urology, Wake Forest Baptist Health, Winston Salem, NC, USA
| |
Collapse
|
29
|
Bowman M, Shindel AW. Low-Intensity Extracorporeal Shockwave Therapy for Erectile Dysfunction. CURRENT SEXUAL HEALTH REPORTS 2020. [DOI: 10.1007/s11930-020-00289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Ochoa A, Guillot-Tantay C, Faix A, Misrai V, Rouprêt M. Traitement de la maladie de Lapeyronie par ondes de choc extracorporelles. Prog Urol 2020; 30:488-499. [DOI: 10.1016/j.purol.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/01/2022]
|
31
|
Peng D, Reed-Maldonado AB, Zhou F, Tan Y, Yuan H, Banie L, Wang G, Tang Y, He L, Lin G, Lue TF. Exosome Released From Schwann Cells May Be Involved in Microenergy Acoustic Pulse-Associated Cavernous Nerve Regeneration. J Sex Med 2020; 17:1618-1628. [PMID: 32669249 DOI: 10.1016/j.jsxm.2020.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurogenic erectile dysfunction (ED) is often refractory to treatment because of insufficient functional nerve recovery after injury or insult. Noninvasive mechano-biological intervention, such as microenergy acoustic pulse (MAP), low-intensity pulsed ultrasound, and low-intensity extracorporeal shockwave treatment, is an optimal approach to stimulate nerve regeneration. AIM To establish a new model in vitro to simulate nerve injury in neurogenic ED and to explore the mechanisms of MAP in vitro. METHODS Sprague-Dawley rats were used to isolate Schwann cells (SCs), major pelvic ganglion (MPG), and cavernous nerve with MPG (CN/MPG). SCs were then treated with MAP (0.033 mJ/mm2, 1 Hz, 100 pulses), and SC exosomes were isolated. The MPG and CN/MPG were treated with MAP (0.033 mJ/mm2, 1 Hz) at different dosages (25, 50, 100, 200, or 300 pulses) or exosomes derived from MAP-treated SCs in vitro. OUTCOMES Neurite growth from the MPG fragments and CN was photographed and measured. Expression of neurotropic factors (brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) was checked. RESULTS Neurite outgrowth from MPG and CN/MPG was enhanced by MAP in a dosage response manner, peaking at 100 pulses. MAP promoted SC proliferation, neurotropic factor (brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) expression, and exosome secretion. SC-derived exosomes significantly enhanced neurite outgrowth from MPG in vitro. CLINICAL IMPLICATIONS MAP may have utility in the treatment of neurogenic ED by SC-derived exosomes. STRENGTH & LIMITATIONS We confirmed that MAP enhances penile nerve regeneration through exsomes. Limitations of this study include that our study did not explore the exact mechanisms of how MAP increases SC exosome secretion nor whether MAP modulates the content of exosomes. CONCLUSION This study revealed that neurite outgrowth from MPG was enhanced by MAP and by SC-derived exosomes which were isolated after MAP treatment. Our findings indicate that one mechanism by which MAP induces nerve regeneration is by stimulation of SCs to secrete exosomes. Peng D, Reed-Maldonado AB, Zhou F, et al. Exosome Released From Schwann Cells May Be Involved in Microenergy Acoustic Pulse-Associated Cavernous Nerve Regeneration. J Sex Med 2020;17:1618-1628.
Collapse
Affiliation(s)
- Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA; Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Feng Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Huixing Yuan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yuxin Tang
- Department of Urology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Leye He
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Grandez-Urbina JA, Rodríguez RP, Torres-Román JS, Saldaña-Gallo J, García-Perdomo HA. [Low-intensity extracorporeal shock wave treatment improves erectile function in non-responder PDEi5 patients: A systematic review]. Rev Int Androl 2020; 19:272-280. [PMID: 32605764 DOI: 10.1016/j.androl.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/06/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the effectiveness and safety in the short, medium, and long term of LISWT in patients with Erectile Dysfunction who do not respond to PDE5 inhibitors. METHODOLOGY Clinical study, quasi-experimental cohort and systematic review following the guidelines of the Cochrane collaboration and the PRISMA writing guides. The measurement of the variables was determined as a primary outcome to the evaluation of erectile function, by means of a validated questionnaire. The baseline scale was evaluated, as well as the difference at 1, 3 and 6 months, evidenced by the possibility of maintaining an erection or responding to therapy with PDEi5. An information search was carried out from its beginning to the current date, in the databases: Medline, Embase, Central, Science Direct and Lilacs. RESULTS The studies found used different outcome variables to show efficacy in the follow-up: All the studies used the IIEF-EF as outcome variable in its different variations. CONCLUSION LISWT could be an effective and safe treatment in patients not responding to PDEi5. It is important to point out that the evidence is currently limited, randomized studies with greater methodological rigidity and follow-up longer than 12 months are needed in order to verify the medium and long-term effect of the application of shock waves in this group of patients.
Collapse
Affiliation(s)
| | - Rafael Pichardo Rodríguez
- Centro de Investigación, Clínica de Urología Avanzada UROZEN, Lima, Perú; Instituto de Investigación en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
| | | | | | | |
Collapse
|
33
|
Liu MC, Chang ML, Wang YC, Chen WH, Wu CC, Yeh SD. Revisiting the Regenerative Therapeutic Advances Towards Erectile Dysfunction. Cells 2020; 9:E1250. [PMID: 32438565 PMCID: PMC7290763 DOI: 10.3390/cells9051250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is an inability to attain or maintain adequate penile erection for successful vaginal intercourse, leading to sexual and relationship dissatisfaction. To combat ED, various surgical and non-surgical approaches have been developed in the past to restore erectile functions. These therapeutic interventions exhibit significant impact in providing relief to patients; however, due to their associated adverse effects and lack of long-term efficacy, newer modalities such as regenerative therapeutics have gained attention due to their safe and prolonged efficacy. Stem cells and platelet-derived biomaterials contained in platelet-rich plasma (PRP) are thriving as some of the major therapeutic regenerative agents. In recent years, various preclinical and clinical studies have evaluated the individual, as well as combined of stem cells and PRP to restore erectile function. Being rich in growth factors, chemokines, and angiogenic factors, both stem cells and PRP play a crucial role in regenerating nerve cells, myelination of axons, homing and migration of progenitor cells, and anti-fibrosis and anti-apoptosis of damaged cavernous nerve in corporal tissues. Further, platelet-derived biomaterials have been proven to be a biological supplement for enhancing the proliferative and differentiation potential of stem cells towards neurogenic fate. Therefore, this article comprehensively analyzes the progresses of these regenerative therapies for ED.
Collapse
Affiliation(s)
- Ming-Che Liu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, school of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Meng-Lin Chang
- Department of Urology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ya-Chun Wang
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Wei-Hung Chen
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Chien-Chih Wu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Department of Education and Humanities in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shauh-Der Yeh
- Department of Urology and Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
34
|
Zhang X, Ruan Y, Wu AK, Zaid U, Villalta JD, Wang G, Banie L, Reed-Maldonado AB, Lin G, Lue TF. Delayed Treatment With Low-intensity Extracorporeal Shock Wave Therapy in an Irreversible Rat Model of Stress Urinary Incontinence. Urology 2020; 141:187.e1-187.e7. [PMID: 32283169 DOI: 10.1016/j.urology.2020.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the outcomes and mechanisms of delayed low-intensity extracorporeal shock wave therapy (Li-ESWT) in a rat model of irreversible stress urinary incontinence (SUI). MATERIALS AND METHODS Twenty-four female Sprague-Dawley rats were randomly assigned into 3 groups: sham control, vaginal balloon dilation + β-aminopropionitrile (BAPN; SUI group), and vaginal balloon dilation + BAPN + treatment with Li-ESWT (SUI-Li-ESWT group). An irreversible SUI model was developed by inhibiting the urethral structural recovery with BAPN daily for 5 weeks. Thereafter, in the SUI-Li-ESWT group, Li-ESWT was administered twice per week for 2 weeks. After a 1-week washout, all 24 rats were evaluated with functional and histologic studies at 17 weeks of age. Endogenous progenitor cells were detected via the EdU-labeling method. RESULTS Functional analysis with leak point pressure testing showed that the SUI-Li-ESWT group had significantly higher leak point pressures compared with untreated rats. Increased urethral and vaginal smooth and striated muscle content and increased thickness of the vaginal wall were noted in the SUI-Li-ESWT group. The SUI group had significantly decreased neuronal nitric oxide /tyrosine hydroxylase positive nerves ratio in the smooth muscle layers of the urethra, while the SUI-Li-ESWT group had neuronal nitric oxide/tyrosine hydroxylase+ nerves ratio similar to that of the control group. The continuality of urothelial cell lining was also improved in the SUI-Li-ESWT group. In addition, there were significantly increased EdU-positive cells in the SUI-Li-ESWT group. CONCLUSION Li-ESWT appears to increase smooth muscle content in the urethra and the vagina, increase the thickness of urethral wall, improve striated muscle content and neuromuscular junctions, restore the integrity of the urothelium, and increase the number of EdU-retaining progenitor cells in the urethral wall.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Yajun Ruan
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Alex K Wu
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Uwais Zaid
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Jaqueline D Villalta
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Guifang Wang
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Lia Banie
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Amanda B Reed-Maldonado
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Guiting Lin
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Tom F Lue
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
35
|
Jeon SH, Bae WJ, Zhu GQ, Tian W, Kwon EB, Kim GE, Hwang SY, Lee KW, Cho HJ, Ha US, Hong SH, Lee JY, Kim SW. Combined treatment with extracorporeal shockwaves therapy and an herbal formulation for activation of penile progenitor cells and antioxidant activity in diabetic erectile dysfunction. Transl Androl Urol 2020; 9:416-427. [PMID: 32420147 PMCID: PMC7214964 DOI: 10.21037/tau.2020.01.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background A Korean herbal formulation named KH-204 was reported to have an antioxidant effect in our previous study. We hypothesized that Low-intensity extracorporeal shockwave therapy (Li-ESWT) combined with KH-204 would accelerate the treatment of erectile dysfunction (ED) by enhancing antioxidant. We investigated the synergistic effect of Li-ESWT and KH-204 for ED and explored the mechanism. Methods Human umbilical vein endothelial cells (HUVEC) were treated with KH-204 and LI-ESWT in vitro. Fifty 5-week-old male Sprague Dawley rats received an intraperitoneal injection of 5-ethynyl-20-deoxyuridine (EdU) which can label live cells, and were randomly divided into five groups: (I) normal; (II) diabetes mellitus-associated erectile dysfunction (DMED); (III) DMED + KH-204; (IV) DMED + Li-ESWT; and (V) DMED + KH-204/Li-ESWT. Li-ESWT treatment was repeated three times a week every other day for four weeks in group 4 and 5. Meanwhile, rats in group 3 and 5 were orally fed 400 mg/kg of KH-204 daily for 1 month. Following a 1-week washout period, penile tissues were evaluated by immunostaining and Western blotting. Results KH-204 combined with Li-ESWT improved intracavernosal pressure (ICP) in DMED rats. Li-ESWT/KH-204 stimulated HUVEC tube formation and promoted proliferation. Li-ESWT drove progenitor cells to migrate to penile tissue and KH-204 protected penile progenitor cells in the corpus cavernosum. Oxidative stress was relieved by KH-204/Li-ESWT. Treatment with KH-204/Li-ESWT protected penile progenitor cells, which were recruited to the corpus cavernosum by Li-ESWT, from apoptosis via its antioxidant activity. KH-204/Li-ESWT protected penile tissue from oxidative stress by improving the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), increasing superoxide dismutase (SOD), decreasing 8-hydroxy-20-deoxyguanosine (8-OHdG), and reducing apoptosis. KH-204/Li-ESWT promoted stromal derived factor-1 (SDF-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) in DMED rats. Conclusions KH-204 protected penile progenitor cells, which were recruited to the corpus cavernosum by Li-ESWT, from apoptosis via its antioxidant activity. The combination of Li-ESWT and KH-204 as a synergy therapy could be a potential and effective treatment for DMED.
Collapse
Affiliation(s)
- Seung Hwan Jeon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Guan Qun Zhu
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wenjie Tian
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Bi Kwon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Eun Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Kyu Won Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
36
|
Chen Y, Cai Q, Pan J, Zhang D, Wang J, Guan R, Tian W, Lei H, Niu Y, Guo Y, Quan C, Xin Z. Role and mechanism of micro-energy treatment in regenerative medicine. Transl Androl Urol 2020; 9:690-701. [PMID: 32420176 PMCID: PMC7215051 DOI: 10.21037/tau.2020.02.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the continuous integration and intersection of life sciences, engineering and physics, the application for micro-energy in the basic and clinical research of regenerative medicine (RM) has made great progress. As a key target in the field of RM, stem cells have been widely used in the studies of regeneration. Recent studies have shown that micro-energy can regulate the biological behavior of stem cells to repair and regenerate injured organs and tissues by mechanical stimulation with appropriate intensity. Integrins-mediated related signaling pathways may play important roles in transducing mechanical force about micro-energy. However, the complete mechanism of mechanical force transduction needs further research. The purpose of this article is to review the biological effect and mechanism of micro-energy treatment on stem cells, to provide reference for further research.
Collapse
Affiliation(s)
- Yegang Chen
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Qiliang Cai
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Jiancheng Pan
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Dingrong Zhang
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Jiang Wang
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ruili Guan
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Wenjie Tian
- Department of Urology, Seoul St. Mary's Hospital, the Catholic University of Korea, Jongno-gu, Seoul, Korea
| | - Hongen Lei
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100034, China
| | - Yuanjie Niu
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yinglu Guo
- Department of Urology, Peking University First Hospital and the Institute of Urology, Peking University, Beijing 100034, China
| | - Changyi Quan
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zhongcheng Xin
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.,Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| |
Collapse
|
37
|
Peng D, Yuan H, Liu T, Wang T, Reed-Maldonado AB, Kang N, Banie L, Wang G, Tang Y, He L, Lin G, Lue TF. Smooth Muscle Differentiation of Penile Stem/Progenitor Cells Induced by Microenergy Acoustic Pulses In Vitro. J Sex Med 2019; 16:1874-1884. [PMID: 31585805 DOI: 10.1016/j.jsxm.2019.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Modulating tissue-resident stem and progenitor cells with a non-invasive, mechanobiological intervention is an optimal approach for tissue regeneration. Stem cell antigen-1 (Sca-1) has been identified as a stem cell marker within many organs but never within the penis. AIM To localize and isolate penile stem/progenitor cells (PSPCs) and to evaluate cellular differentiation after exposure to induction medium and microenergy acoustic pulse (MAP) therapy. METHODS Six male Sprague-Dawley rats were used to isolate PSPCs. Isolation was followed by stem cell characterization and differentiation assays. The PSPCs were then treated with MAP (0.033 mJ/mm2, 1 Hz) at various dosages (25, 50, 100, and 200 pulses) and for different durations (1, 2, 4, 6, or 8 hours) in vitro. MAIN OUTCOME MEASURE The PSPCs (Sca-1-positive cells) were isolated using the magnetic-activated cell sorting system. PSPC cellular differentiation was assessed after induction with induction medium and with MAP in vitro. Wnt/β-catenin signaling was also assayed. RESULTS The PSPCs were successfully localized within the penile subtunic and perisinusoidal spaces, and they were successfully isolated using magnetic-activated cell sorting. The stemness of the cells was confirmed by stem cell marker characterization and by multiple differentiation into smooth muscle cells, endothelial cells, adipocytes, and neurons. MAP-induced PSPCs differentiated into smooth muscle cells by activating the Wnt/β-catenin signaling pathway in a time- and dosage-dependent manner. CLINICAL IMPLICATIONS By modulating resident PSPCs, MAP may have utility in the treatment of erectile dysfunction (ED). STRENGTHS & LIMITATIONS This study provides solid evidence in support of microenergy therapies, including both MAP and low-intensity extracorporeal shock wave therapy, for the treatment of ED. Additional studies are needed and should include additional stem cells markers. Furthermore, studies exploring the underling mechanisms for PSPC activation and differentiation are required. CONCLUSION PSPCs were successfully identified, localized, and isolated. Additionally, MAP provoked PSPCs to differentiate into smooth muscle cells via the Wnt/β-catenin signaling pathway. As such, MAP provides a novel method for activating endogenous tissue-resident stem/progenitor cells and might facilitate stem cell regenerative therapy targeting ED. Peng D, Yuan H, Liu T, et al. Smooth Muscle Differentiation of Penile Stem/Progenitor Cells Induced by Microenergy Acoustic Pulses In Vitro. J Sex Med 2019; 16:1874-1884.
Collapse
Affiliation(s)
- Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA; Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Huixing Yuan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tianshu Liu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tianyu Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Ning Kang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yuxin Tang
- Department of Urology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Leye He
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Wang B, Ruan Y, Zhou T, Wang L, Li H, Peng D, Reed-Maldonado AB, Sanford MT, Lee YC, Zhou J, Wang HS, Banie L, Wang G, Liu J, Lin G, Lue TF. The effects of microenergy acoustic pulses on an animal model of obesity-associated stress urinary incontinence. Part 1: Functional and histologic studies. Neurourol Urodyn 2019; 38:2130-2139. [PMID: 31483063 DOI: 10.1002/nau.24160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023]
Abstract
AIM Obesity is a strong independent risk factor for urinary incontinence. Effective therapeutic approaches for obesity-associated stress urinary incontinence (OA-SUI) are lacking as the mechanisms remain unclear. The aim of our study is to explore the impacts of microenergy acoustic pulse (MAP) therapy on urethral and pelvic floor muscle structure and function in female lean and fatty rats. METHODS A total 24 Zucker fatty (ZF) and 24 Zucker lean (ZL) female 24-week-old rats were grouped into four groups: ZL control, ZLMAP, ZF control, and ZFMAP. For MAP treatment, 500 pulses were delivered at an energy level of 0.033 mJ/mm 2 and a frequency of 3 Hz and were applied twice a week for 4 weeks. After a 1-week washout, all rats underwent conscious cystometry and leak-point pressure (LPP) measurements followed by ex vivo organ-bath assay and histological study. RESULTS ZF rats had lower LPP as compared to ZL rats, and MAP treatment significantly improved LPP in ZF rats (P < .05). Impaired muscle contractile activity (MCA) in organ-bath study was noted in ZF rats. MAP treatment significantly increased MCA in ZF rats (P < .05) and also increased the thickness of the striated muscle layer and the number of neuromuscular junctions (NMJs). In situ, MAP activated muscle satellite cells significantly (P < .05). CONCLUSIONS Obesity impairs the function of both the urethral sphincter and the pelvic floor and leads to atrophy and distortion of the striated muscle in obese female rats. These issues contribute to OA-SUI. MAP improves continence by stimulating muscle regeneration and nerve innervation as well as by activating satellite cells.
Collapse
Affiliation(s)
- Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.,Department of Urology, The Second Hospital, Zhejiang University, Hangzhou, China
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.,Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.,Department of Urology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lin Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Huixi Li
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Melissa T Sanford
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Yung-Chin Lee
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Jun Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Hsun Shuan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| |
Collapse
|
39
|
Kang N, Peng D, Wang B, Ruan Y, Zhou J, Reed-Maldonado AB, Banie L, Wang G, Xing N, Tang Y, Lin G, Lue TF. The effects of microenergy acoustic pulses on animal model of obesity-associated stress urinary incontinence. Part 2: In situ activation of pelvic floor and urethral striated muscle progenitor cells. Neurourol Urodyn 2019; 38:2140-2150. [PMID: 31452249 DOI: 10.1002/nau.24152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022]
Abstract
AIM To investigate the possibility and mechanism of microenergy acoustic pulses (MAP) for activating tissue resident stem/progenitor cells within pelvic and urethral muscle and possible mechanism. METHODS The female Zucker Lean and Zucker Fatty rats were randomly divided into four groups: ZL control, ZLMAP, ZF control, and ZFMAP. MAP was applied at 0.033 mJ/mm2 , 3 Hz for 500 pulses, and the urethra and pelvic floor muscles of each rat was then harvested for cell isolation and flow cytometry assay. Freshly isolated cells were analyzed by flow cytometry for Pax-7, Int-7α, H3P, and EdU expression. Meanwhile, pelvic floor muscle-derived stem cells (MDSCs) were harvested through magnetic-activated cell sorting, MAP was then applied to MDSCs to assess the mechanism of stem cell activation. RESULTS Obesity reduced EdU-label-retaining cells and satellite cells in both pelvic floor muscle and urethra, while MAP activated those cells and enhanced cell proliferation, which promoted regeneration of striated muscle cells of the pelvic floor and urethral sphincter. Activation of focal adhesion kinase (FAK)/AMP-activated protein kinase (AMPK) /Wnt/β-catenin signaling pathways by MAP is the potential mechanism. CONCLUSIONS MAP treatment activated tissue resident stem cells within pelvic floor and urethral muscle in situ via activating FAK-AMPK and Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ning Kang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.,Department of Urology, Chaoyang Hospital, Beijing Captial Medical University, Beijing, China
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.,Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Jun Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Nianzeng Xing
- Department of Urology, Chaoyang Hospital, Beijing Captial Medical University, Beijing, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| |
Collapse
|
40
|
Determinants of Early Response to Low-Intensity Extracorporeal Shockwaves for the Treatment of Vasculogenic Erectile Dysfunction: An Open-Label, Prospective Study. J Clin Med 2019; 8:jcm8071017. [PMID: 31336717 PMCID: PMC6678562 DOI: 10.3390/jcm8071017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to expand existing literature on the effects of cardiovascular risk factors on the outcome of low-intensity extracorporeal shockwaves therapy (LIESWT), and to evaluate the role of hormone concentrations. Twenty patients with long-standing, PDE5i-resistant, vasculogenic erectile dysfunction (VED) were treated with six weekly sessions of LIESWT (9000 pulses). After a three-week break, four poor responders underwent another six weekly sessions. Rigidity score (RS) questionnaire was administered at baseline (T0), last session (T1), and three months after LIESWT (T2), while the Improvement component of the Clinical Global Impression of Change (CGIC-I) and the International Index of Erectile Function-5 (IIEF-5) questionnaires were administered at T1 and T2, and at T0 and T2, respectively. At T0 serum luteinizing hormone (LH), testosterone, sex hormone binding globulin (SHBG), calculated free testosterone, and prolactin levels were also recorded. At T1 and T2, 12/20 (60%) and 11/20 (55%) patients reached a RS ≥ 3; 16/20 (80%) and 13/20 (65%) improved their erections variably. Testosterone levels correlated positively with CGIC-I at T1. Patients < 65 years and those nonhypercholesterolemic had higher RS at T1 and T2. Age correlated negatively with RS at T1 and T2. At T0, diabetic patients had lower IIEF-5 scores, but those with RS ≥ 3 at T1 had higher IIEF-5 compared to those with RS < 3. Also, diabetes duration correlated inversely with IIEF-5 at T0. At T2, IIEF-5 improved significantly by an average of 2.8-points. We confirm safety and effectiveness of LIESWT for the treatment of VED. Age ≥ 65 years, diabetes, and hypercholesterolemia influence early and negatively the outcome of LIESWT.
Collapse
|
41
|
Patel P, Fode M, Lue T, Ramasamy R. Should Low-intensity Extracorporeal Shockwave Therapy Be the First-line Erectile Dysfunction Treatment for Nonresponders to Phosphodiesterase Type 5 Inhibition? Eur Urol Focus 2019; 5:526-528. [DOI: 10.1016/j.euf.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 11/27/2022]
|
42
|
Gruenwald I, Spector A, Shultz T, Lischinsky D, Kimmel E. The beginning of a new era: treatment of erectile dysfunction by use of physical energies as an alternative to pharmaceuticals. Int J Impot Res 2019; 31:155-161. [DOI: 10.1038/s41443-019-0142-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
43
|
Controversies in low intensity extracorporeal shockwave therapy for erectile dysfunction. Int J Impot Res 2019; 31:239-242. [PMID: 30742044 DOI: 10.1038/s41443-019-0124-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022]
|
44
|
Usta MF, Gabrielson AT, Bivalacqua TJ. Low-intensity extracorporeal shockwave therapy in the treatment of erectile dysfunction following radical prostatectomy: a critical review. Int J Impot Res 2019; 31:231-238. [PMID: 30710107 DOI: 10.1038/s41443-019-0121-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Low-intensity extracorporeal shockwave therapy (LI-ESWT) to the penis has recently emerged as novel therapeutic option in the treatment of erectile dysfunction (ED). Randomized-controlled studies investigating the effect of this new treatment modality revealed promising results in men with vasculogenic ED. However, the efficacy of LI-ESWT in men who develop ED following radical prostatectomy (RP) remains obscure due to the exclusion of this group in nearly all clinical trials. In this review, the authors synthesize the findings from available preclinical and clinical studies that examine the potential utility of LI-ESWT in men with post-RP ED.
Collapse
Affiliation(s)
- Mustafa F Usta
- Department of Urology, Section of Andrology, Akdeniz University School of Medicine, Dumlupinar Bulvari, Kampus, 07070, Antalya, Turkey.
| | - Andrew T Gabrielson
- Department of Urology, Tulane University School of Medicine, New Orlans, LA, USA
| | - Trinity J Bivalacqua
- Johns Hopkins School of Medicine, James Buchanan Brady Urological Institute, Baltimore, MD, USA
| |
Collapse
|
45
|
Liu T, Shindel AW, Lin G, Lue TF. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int J Impot Res 2019; 31:170-176. [PMID: 30670837 DOI: 10.1038/s41443-019-0113-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Low-intensity extracorporeal shock wave therapy (Li-ESWT) is a form of energy transfer that is of lower intensity (<0.2mJ/mm2) relative to traditional Extracorporeal Shock Wave Lithotripsy (ESWL) used for management of urinary stones. At this intensity and at appropriate dosing energy transfer is thought to induce beneficial effects in human tissues. The proposed therapeutic mechanisms of action for Li-ESWT include neovascularization, tissue regeneration, and reduction of inflammation. These effects are thought to be mediated by enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, and proliferating cell nuclear antigen. Upregulation of chemoattractant factors and recruitment/activation of stem/progenitor cells may also play a role. Li-ESWT has been studied for management of musculoskeletal disease, ischemic cardiovascular disorders, Peyronie's Disease, and more recently erectile dysfunction (ED). The underlying mechanism of Li-ESWT for treatment of ED is incompletely understood. We summarize the current evidence basis by which Li-ESWT is thought to enhance penile hemodynamics with an intention of outlining the fundamental mechanisms by which this therapy may help manage ED.
Collapse
Affiliation(s)
- Tianshu Liu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, 94143, USA.,Department of Urology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Alan W Shindel
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
46
|
Wang HS, Ruan Y, Banie L, Cui K, Kang N, Peng D, Liu T, Wang T, Wang B, Wang G, Shindel AW, Lin G, Lue TF. Delayed Low-Intensity Extracorporeal Shock Wave Therapy Ameliorates Impaired Penile Hemodynamics in Rats Subjected to Pelvic Neurovascular Injury. J Sex Med 2018; 16:17-26. [PMID: 30509508 DOI: 10.1016/j.jsxm.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Erectile dysfunction (ED) caused by pelvic neurovascular injury (PNVI) is often refractory to treatment. In many cases, erectogenic therapy is administered in a delayed fashion. AIM To evaluate penile hemodynamic effects and histologic changes associated with delayed low-intensity extracorporeal shock wave therapy (Li-ESWT) after PNVI ED in a rat model. We visualized images using immunofluorescence and 3-dimensional imaging of solvent-cleared organs (3DISCO), a novel imaging technique. METHODS A total of 32 Sprague-Dawley male rats aged 12 weeks were divided equally into 4 groups: sham surgery as normal controls (NC), PNVI controls (PC), PNVI with very-low-energy Li-ESWT (PVL), and PNVI with low-energy Li-ESWT (PL). Bilateral cavernous nerve crush and internal pudendal bundle ligation were performed in the 3 PNVI groups. Li-ESWT was administered twice a week for 4 weeks in the PL and PVL groups starting at 4 weeks after PNVI. OUTCOMES Intracavernous pressure (ICP) studies (normalized to mean arterial pressure [MAP]) were conducted in all subject animals. After testing, tissue was harvested for immunofluorescence staining and 3DISCO analysis. RESULTS Mean ICP/MAP was lower in PC animals compared with NC animals (0.37 ± 0.03 vs 0.91 ± 0.03, respectively; P = .001). The ICP/MAP ratio was significantly higher in PVL and PL animals (0.66 ± 0.07 and 0.82 ± 0.05, respectively) compared with PC animals (P = .002 and .001, respectively). Detailed microstructures and trajectories of nerves and vessels were identified with immunofluorescence and 3DISCO. The PC group had lower density of nerves, axons, neuronal nitric oxide synthase-positive nerves, and Schwann cells in the dorsal penis. Animals in the PL group had significantly higher expression of all of these markers compared with PC animals. CLINICAL IMPLICATIONS Li-EWST may have utility in the management of severe ED related to PNVI from severe pelvic injury or radical pelvic surgeries, even when administered in a delayed fashion. STRENGTH & LIMITATIONS This study of a severe ED phenotype involved treatment administered in a delayed fashion, which is more consistent with how therapy likely would be delivered in a real-world clinical context. Moreover, because the treatment commenced at 4 weeks after injury, when nerve and tissue atrophy have already occurred, the results imply that Li-ESWT can be used for regenerative therapy. Additional studies on dose optimization and treatment interval are needed to inform the design of human clinical trials. CONCLUSION Li-ESWT ameliorates the negative functional and histologic effects of severe pelvic neurovascular injury in a rat model system. 3DISCO provides high-resolution images of neuroanatomy and neural regeneration. Wang HS, Ruan Y, Banie L, et al. Delayed Low-Intensity Extracorporeal Shock Wave Therapy Ameliorates Impaired Penile Hemodynamics in Rats Subjected to Pelvic Neurovascular Injury. J Sex Med 2019;16:17-26.
Collapse
Affiliation(s)
- Hsun Shuan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung, Taiwan
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Kai Cui
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Ning Kang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tianshu Liu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tianyu Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Alan W Shindel
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
47
|
Gur S, Abdel-Mageed AB, Sikka SC, Hellstrom WJG. Advances in stem cell therapy for erectile dysfunction. Expert Opin Biol Ther 2018; 18:1137-1150. [PMID: 30301368 DOI: 10.1080/14712598.2018.1534955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Stem cell (SC) application is a promising area of research in regenerative medicine, with the potential to treat, prevent, and cure disease. In recent years, the number of studies focusing on SCs for the treatment of erectile dysfunction (ED) and other sexual dysfunctions has increased significantly. AREAS COVERED This review includes critical ED targets and preclinical studies, including the use of SCs and animal models in diabetes, aging, cavernous nerve injury, and Peyronie's disease. A literature search was performed on PubMed for English articles. EXPERT OPINION Combination treatment offers better results than monotherapy to improve pathological changes in diabetic ED. Regenerative medicine is a promising approach for the maintenance of sexual health and erectile function later in life. Cavernous nerve regeneration and vascular recovery employing SC treatment may be focused on radical prostatectomy-induced ED. Notwithstanding, there are a number of hurdles to overcome before SC-based therapies for ED are considered in clinical settings. Paracrine action, not cellular differentiation, appears to be the principal mechanism of action underlying SC treatment of ED. Intracavernosal injection of a single SC type should be the choice protocol for future clinical trials.
Collapse
Affiliation(s)
- Serap Gur
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA.,b Department of Pharmacology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Asim B Abdel-Mageed
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Suresh C Sikka
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Wayne J G Hellstrom
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
48
|
Ruan Y, Zhou J, Kang N, Reed-Maldonado AB, Tamaddon A, Wang B, Wang HS, Wang G, Banie L, Lin G, Liu J, Lue TF. The effect of low-intensity extracorporeal shockwave therapy in an obesity-associated erectile dysfunction rat model. BJU Int 2018; 122:133-142. [PMID: 29573106 PMCID: PMC9848222 DOI: 10.1111/bju.14202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To investigate the feasibility of the Zucker fatty (ZF) rat as a model for research in to obesity-associated erectile dysfunction (OAED) and to determine the effect of low-intensity extracorporeal shockwave therapy (Li-ESWT) on penile tissue and function in these rats. MATERIALS AND METHODS Eight new-born male Zucker lean (ZL group) rats (ZUC-Leprfa 186) and 16 new-born male ZF rats (ZUC-Leprfa 185) were injected with 5-ethynyl-2'-deoxyuridine (EdU) at birth to identify and monitor endogenous stem cells. Insulin tolerance testing was performed at 10 weeks of age. Beginning at 12 weeks of age, eight ZF rats were kept as controls, and the remaining eight ZF rats were treated with Li-ESWT (0.02 mJ/mm2 , 3 Hz, 500 pulses; ZF + SW group) twice a week for 4 weeks. Following a 1-week washout period, erectile function was evaluated by measuring intracavernosal pressure (ICP) and mean arterial pressure (MAP). Penile tissues were then harvested for histological study to assess smooth muscle/collagen content and endothelium content in the corpora cavernosum. LipidTOX™ staining was used to evaluate lipid accumulation. EdU, as a marker of cell activation, and phosphorylated histone 3 (H3P), as a marker of cell mitosis, were also assessed. RESULTS The ICP/MAP indicated that erectile function was severely impaired in the ZF group as compared with the ZL group. In the ZF + SW group, erectile function was significantly improved (P < 0.05). Muscle atrophy was seen in the ZF group, while Li-ESWT increased the muscle content in ZF + SW group. Moreover, the penile endothelium was damaged in the ZF group, and Li-ESWT enhanced the regeneration of endothelial cells (P < 0.01) in the ZF + SW group. Lipid accumulation was seen in the penile tissue of ZF rats. Li-ESWT significantly reduced both the amount and the distribution pattern of LipidTOX, suggesting decreased overall lipid infiltration. Furthermore, Li-ESWT increased EdU-positive cells and markedly enhanced the phosphorylation level of H3P at Ser-10 in the ZF + SW group. Most H3P-positive cells were located within smooth muscle cells, with some located in the endothelium suggesting that these tissues are the reservoirs of penile stem/progenitor cells. CONCLUSION ZF rats can serve as an animal model in which to study OAED. This study reveals that obesity impairs erectile function by causing smooth muscle atrophy, endothelial dysfunction, and lipid accumulation in the corpus cavernosum. Li-ESWT restored penile haemodynamic parameters in the ZF rats by restoring smooth muscle and endothelium content and reducing lipid accumulation. The underlying mechanism of Li-ESWT appears to be activation of stem/progenitor cells, which prompts cellular proliferation and accelerates penile tissue regeneration. Our findings are of interest, not just as a validation of this emerging treatment for erectile dysfunction, but also as a novel and potentially significant method to modulate endogenous stem/progenitor cells in other disease processes.
Collapse
Affiliation(s)
- Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Ning Kang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Amanda B. Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Arianna Tamaddon
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Hsun Shuan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Correspondence: Tom F. Lue, MD, Department of Urology, University of California, San Francisco, 400 Parnassus Ave., Ste A-633, San Francisco, CA 94143-0738, USA, Phone: 415-476-1611, Fax: 415-476-8849, , Jihong Liu, MD, PhD, Department of Urology, Tongji Hospital, Huazhong University of Science and Technology,Wuhan 430030, China
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Correspondence: Tom F. Lue, MD, Department of Urology, University of California, San Francisco, 400 Parnassus Ave., Ste A-633, San Francisco, CA 94143-0738, USA, Phone: 415-476-1611, Fax: 415-476-8849, , Jihong Liu, MD, PhD, Department of Urology, Tongji Hospital, Huazhong University of Science and Technology,Wuhan 430030, China
| |
Collapse
|
49
|
Wang HS, Oh BS, Wang B, Ruan Y, Zhou J, Banie L, Lee YC, Tamaddon A, Zhou T, Wang G, Lin G, Lue TF. Low-intensity extracorporeal shockwave therapy ameliorates diabetic underactive bladder in streptozotocin-induced diabetic rats. BJU Int 2018; 122:490-500. [PMID: 29603534 DOI: 10.1111/bju.14216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To evaluate the therapeutic effect of once-weekly low-intensity extracorporeal shock wave therapy (Li-ESWT) on underactive bladder (UAB) in the streptozotocin (STZ)-induced diabetic rat model. MATERIALS AND METHODS In all, 36 female Sprague-Dawley rats were divided into three groups: normal control (NC), diabetes mellitus control (DMC), and DM with Li-ESWT (DM Li-ESWT). The two DM groups received an intraperitoneal 60 mg/kg STZ injection to induce DM. The Li-ESWT was applied toward the pelvis of the rats starting 4 weeks after STZ administration and lasting for 4 weeks. The Li-ESWT was given once weekly, with an energy flux density of 0.02 mJ/mm2 at 3 Hz for 400 pulses. All rats underwent conscious cystometry, leak-point pressure (LPP) assessment, ex vivo organ-bath study, histology, immunofluorescence, and Western Blot analysis. RESULTS Conscious cystometry revealed voiding dysfunction in the DMC group, whereas the DM Li-ESWT group showed significantly improved voiding function, reflected in a reduced post-void residual urine volume and increased LPP compared to the DMC group. Ex vivo organ-bath studies showed that Li-ESWT enhanced muscle contractile activity of the bladder and urethra during electrical-field stimulation and drug stimulation. Histologically, Li-ESWT significantly restored bladder morphology, reflected by a reduction in the intravesical lumen area and increased muscle proportion of the bladder wall. Western Blot analysis showed higher smooth muscle actin expression in the bladder wall in the DM Li-ESWT group compared to the DMC group. Immunofluorescence showed decreased nerve-ending distribution, and destroyed and shortened nerve fibres in the DMC group, and recovery of neuronal integrity and innervation in the DM Li-ESWT group. CONCLUSIONS In conclusion, Li-ESWT ameliorated UAB and urinary incontinence in the diabetic UAB rat model. The improvement appears to be the result of restoration of bladder and urethral structure and function by Li-ESWT. Li-ESWT is non-invasive and may become a better alternative therapy for UAB. Further investigations are warranted.
Collapse
Affiliation(s)
- Hsun Shuan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung, Taiwan
| | - Byung Seok Oh
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Jun Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yung Chin Lee
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung, Taiwan
| | - Arianna Tamaddon
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tie Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
50
|
Wu AK, Zhang X, Wang J, Ning H, Zaid U, Villalta JD, Wang G, Banie L, Lin G, Lue TF. Treatment of stress urinary incontinence with low-intensity extracorporeal shock wave therapy in a vaginal balloon dilation induced rat model. Transl Androl Urol 2018; 7:S7-S16. [PMID: 29644165 PMCID: PMC5881209 DOI: 10.21037/tau.2017.12.36] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background To investigate the outcomes and mechanisms of low-intensity extracorporeal shock wave therapy (Li-ESWT) on stress urinary incontinence (SUI) in a vaginal balloon dilation (VBD) rat model. Methods Thirty Sprague-Dawley rats were randomly grouped into normal controls, VBD only, and VBD with Li-ESWT. Li-ESWT was administered twice per week for 3 weeks. Afterward, all 30 rats were assessed with functional and histological studies. To explore the acute effect of Li-ESWT, another 25 rats, given intraperitoneal 5-ethynyl-2-deoxyuridine (EdU) at birth, were treated with Li-ESWT followed by assessment of vascular endothelial growth factor (VEGF) expression and endogenous progenitor cells distribution at 24 hours or 1 week after the last Li-ESWT therapy. Additionally, rat myoblast L6 cells were used for myotube formation assay in vitro. Results Functional analysis with leak-point pressure (LPP) testing showed that rats treated with Li-ESWT following VBD had significantly higher LPP relative to those receiving VBD only (44.8±3.2 versus 27.0±2.9 cmH2O, P<0.01). Histological examinations showed increased urethral sphincter regeneration in Li-ESWT group. The rats treated with Li-ESWT also had increased vascularity, which was confirmed by immunohistochemistry of rat endothelial cell antigen, while reverse-transcriptase polymerase chain reaction (RT-PCR) showed VEGF expression was significantly enhanced. Additionally, there were significantly increased EdU+ cells in Li-ESWT treated rats at 24 hours. In vitro, Li-ESWT promoted myotube formation from L6 cells. Conclusions Li-ESWT ameliorated SUI by promoting angiogenesis, progenitor cell recruitment, and urethral sphincter regeneration in a rat model induced by VBD. Li-ESWT represents a potential novel non-invasive therapy for SUI.
Collapse
Affiliation(s)
- Alex K Wu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Xiaoyu Zhang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Jianwen Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Hongxiu Ning
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Uwais Zaid
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Jaqueline D Villalta
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|