1
|
Min S, Xu J, Ren C, Cai Z, Li H, Wang Z. The correlation between premature ejaculation and a high incidence of erectile dysfunction and its research progress: a narrative review. Transl Androl Urol 2024; 13:2338-2350. [PMID: 39507868 PMCID: PMC11535739 DOI: 10.21037/tau-24-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Objective Premature ejaculation (PE) and erectile dysfunction (ED) are two common sexual symptoms of male sexual dysfunction that can strongly affect men's mental health and quality of life, and they often coexist. This aim of this study was to explore the causes and relationships between PE and ED, with a focus on the progression of PE accompanied by high-frequency ED. A deeper understanding of the causes and treatments for PE combined with ED will help improve clinical diagnosis and treatment. Methods We conducted a literature review of the most relevant articles related to the outlined topic in the PubMed, Google Scholar, and Web of Science databases. We did not limit language, covering both English and non-English publications, and include Chinese and English papers published between January 1996 and March 2024. Key Content and Findings The incidence of PE and ED increases with age. Approximately one-third of patients who complain of ED suffer from PE. Similarly, in a large-scale survey in the Asia-Pacific region, more than 30% of patients with PE reported concurrent ED. Various research findings indicate a strong correlation between PE and ED. Some scholars speculate that there is a vicious cycle between PE and ED. Men who attempt to control ejaculation can reduce the level of arousal, leading to ED, whereas men who try to achieve an erection will attempt to increase the level of arousal, which can lead to PE. This cycle of mutual influence may lead to reciprocal aggravation and persistence of sexual dysfunction in both parties. Although some studies have explored the relationship between PE and ED, the specific determinants and underlying factors have not yet been clarified. Conclusions There is a close interrelationship between PE and ED, and a vicious cycle may exist between the two. This cycle of mutual influence may lead to the mutual aggravation and persistence of both sexual dysfunctions. However, the specific determining factors and potential factors underlying the correlation between the two have not been clearly identified and require further exploration.
Collapse
Affiliation(s)
- Shasha Min
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Junyan Xu
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Changjie Ren
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Zhonglin Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhong Wang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
2
|
Rosen RC, Miner M, Burnett AL, Blaha MJ, Ganz P, Goldstein I, Kim N, Kohler T, Lue T, McVary K, Mulhall J, Parish SJ, Sadeghi-Nejad H, Sadovsky R, Sharlip I, Kloner RA. Proceedings of PRINCETON IV: PDE5 inhibitors and cardiac health symposium. Sex Med Rev 2024; 12:681-709. [PMID: 38936840 DOI: 10.1093/sxmrev/qeae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Prior consensus meetings have addressed the relationship between phosphodiesterase type 5 (PDE5) inhibition and cardiac health. Given significant accumulation of new data in the past decade, a fourth consensus conference on this topic was convened in Pasadena, California, on March 10 and 11, 2023. OBJECTIVES Our meeting aimed to update existing knowledge, assess current guidelines, and make recommendations for future research and practice in this area. METHODS An expert panel reviewed existing research and clinical practice guidelines. RESULTS Key findings and clinical recommendations are the following: First, erectile dysfunction (ED) is a risk marker and enhancer for cardiovascular (CV) disease. For men with ED and intermediate levels of CV risk, coronary artery calcium (CAC) computed tomography should be considered in addition to previous management algorithms. Second, sexual activity is generally safe for men with ED, although stress testing should still be considered for men with reduced exercise tolerance or ischemia. Third, the safety of PDE5 inhibitor use with concomitant medications was reviewed in depth, particularly concomitant use with nitrates or alpha-blockers. With rare exceptions, PDE5 inhibitors can be safely used in men being treated for hypertension, lower urinary tract symptoms and other common male disorders. Fourth, for men unresponsive to oral therapy or with absolute contraindications for PDE5 inhibitor administration, multiple treatment options can be selected. These were reviewed in depth with clinical recommendations. Fifth, evidence from retrospective studies points strongly toward cardioprotective effects of chronic PDE5-inhibitor use in men. Decreased rates of adverse cardiac outcomes in men taking PDE-5 inhibitors has been consistently reported from multiple studies. Sixth, recommendations were made regarding over-the-counter access and potential risks of dietary supplement adulteration. Seventh, although limited data exist in women, PDE5 inhibitors are generally safe and are being tested for use in multiple new indications. CONCLUSION Studies support the overall cardiovascular safety of the PDE5 inhibitors. New indications and applications were reviewed in depth.
Collapse
Affiliation(s)
- Raymond C Rosen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA 94143, United States
| | - Martin Miner
- Men's Health Center, Miriam Hospital, 180 Corliss St. 2nd Floor, Providence, RI 02904, United States
| | - Arthur L Burnett
- Department of Urology, Ciccarone Center for Clinical Research, Johns Hopkins University, 600 N Wolfe St # B110, Baltimore, MD 21287, United States
| | - Michael J Blaha
- Department of Cardiology, Johns Hopkins Health Care & Surgery Center, Green Spring Station, Lutherville, 10755 Falls Road, Lutherville, MD 21093, United States
| | - Peter Ganz
- Department of Cardiology and Vascular Research, University of California, San Francisco, 1001 Potrero Ave # 107, San Francisco, CA 94110, United States
| | - Irwin Goldstein
- Institute for Sexual Medicine, 5555 Reservoir Dr # 300, San Diego, CA 92120, United States
| | - Noel Kim
- Institute for Sexual Medicine, 5555 Reservoir Drive, Suite 300, San Diego, CA 92120, United States
| | - Tobias Kohler
- Dept of Urology, Mayo Clinic, 200 First St. S.W., Rochester, Minnesota 55905, US, United States
| | - Tom Lue
- Department of Urology, University of California, San Francisco, School of Medicine, 400 Parnassus Ave #610, San Francisco, CA 94143, United States
| | - Kevin McVary
- Center for Male Health, Stritch School of Medicine, Loyola University, 6800 N Frontage Rd, Burr Ridge, IL 60527, United States
| | - John Mulhall
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Hospital, 205 E 64th St, New York, NY 10065, United States
| | - Sharon J Parish
- Weill Cornell Medical College, 21 Bloomingdale Rd, White Plains, NY 10605, United States
| | - Hossein Sadeghi-Nejad
- Professor of Urology and Ob-Gyn, Department of Urology, Langone Grossman School of Medicine, New York University, 222 East 41st Street, 12th Floor, New York, NY 10017, United States
| | - Richard Sadovsky
- Dept of Family Medicine, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, United States
| | - Ira Sharlip
- Department of Urology, University of California, San Francisco, School of Medicine, 400 Parnassus Ave #610, San Francisco, CA 94143, United States
| | - Robert A Kloner
- Chief Scientist and Director, Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA. 91105, United States
| |
Collapse
|
3
|
Zhang X, Yang M, Chen X, Lu M. Research progress on the therapeutic application of extracellular vesicles in erectile dysfunction. Sex Med Rev 2024; 12:652-658. [PMID: 38629860 DOI: 10.1093/sxmrev/qeae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 10/02/2024]
Abstract
Erectile dysfunction (ED) is one of the most common male sexual dysfunctions and is related to many pathogenic factors. However, first-line treatment, represented by phosphodiesterase 5 inhibitors, is unable to maintain long-term efficacy. Extracellular vesicles (EVs) have recently attracted the attention of researchers in the fields of cardiovascular disease, neurologic disease, and regenerative medicine and may become a treatment for ED. This article reviews recent applications of EVs in the treatment of ED from the aspects of the source, the therapeutic mechanism, and the strategies to enhance therapeutic efficacy. These research advances lay the foundation for further research and provide references for in-depth understanding of the therapeutic mechanism and possible clinical application of EVs in ED.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Mengbo Yang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Xinda Chen
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| |
Collapse
|
4
|
Wang YR, Feng B, Qi WB, Gong YW, Kong XB, Cheng H, Dong ZL, Tian JQ, Wang ZP. Safety of low-intensity extracorporeal shock wave therapy in prostate disorders: in vitro and in vivo evidence. Asian J Androl 2024; 26:535-543. [PMID: 39107962 PMCID: PMC11449405 DOI: 10.4103/aja202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/21/2024] [Indexed: 09/03/2024] Open
Abstract
ABSTRACT Recent evidence suggests that low-intensity extracorporeal shock wave therapy (Li-ESWT) is a promising treatment for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); however, its safety in pelvic organs, particularly prostate tissues and cells, remains unclear. The current study evaluates the risks of prostate cell damage or oncogenesis following the administration of Li-ESWT for prostatitis. To this end, a robust in vitro model (Cell Counting Kit-8 [CCK-8] assay, clone formation assay, cell scratch assay, lactate dehydrogenase [LDH] release assay, flow cytometry, and immunoblotting assay) was designed to examine the effects of Li-ESWT on cell proliferation, clonogenicity, migration, membrane integrity, and DNA damage. Exome sequencing of Li-ESWT-treated cells was performed to determine the risk of carcinogenesis. Furthermore, an in vivo rat model ( n = 20) was employed to assess the effects of Li-ESWT on cancer biomarkers (carcinoembryonic antigen [CEA], Ki67, proliferating cell nuclear antigen [PCNA], and gamma-H2A histone family member X, phosphorylation of the H2AX Ser-139 [ γ -H2AX]) in prostate tissue. Based on our findings, Li-ESWT promotes cellular growth and motility without inducing significant cell membrane or DNA damage or alterations. Genetic analyses did not demonstrate an increase in mutations, and no damage to prostate tissue or upregulation of cancer biomarkers was detected in vivo. This comprehensive in vitro and in vivo assessment confirms the safety of Li-ESWT in managing prostate disorders.
Collapse
Affiliation(s)
- Yi-Ran Wang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Bin Feng
- Department of Urology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Wen-Bo Qi
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yu-Wen Gong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Bin Kong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Hui Cheng
- Department of Urology, Gansu Provincial Second People’s Hospital, Lanzhou 730000, China
| | - Zhi-Long Dong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Jun-Qiang Tian
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Ping Wang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Kloner RA, Burnett AL, Miner M, Blaha MJ, Ganz P, Goldstein I, Kim NN, Kohler T, Lue T, McVary KT, Mulhall JP, Parish SJ, Sadeghi-Nejad H, Sadovsky R, Sharlip ID, Rosen RC. Princeton IV consensus guidelines: PDE5 inhibitors and cardiac health. J Sex Med 2024; 21:90-116. [PMID: 38148297 DOI: 10.1093/jsxmed/qdad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND In 1999, 1 year after the approval of the first oral phosphodiesterase type 5 (PDE5) inhibitor for the treatment of erectile dysfunction (ED), the first Princeton Consensus Conference was held to address the clinical management of men with ED who also had cardiovascular disease. These issues were readdressed in the second and third conferences. In the 13 years since the last Princeton Consensus Conference, the experience with PDE5 inhibitors is more robust, and recent new data have emerged regarding not only safety and drug-drug interactions, but also a potential cardioprotective effect of these drugs. AIM In March 2023, an interdisciplinary group of scientists and practitioners met for the fourth Princeton Consensus Guidelines at the Huntington Medical Research Institutes in Pasadena, California, to readdress the cardiovascular workup of men presenting with ED as well as the approach to treatment of ED in men with known cardiovascular disease. METHOD A series of lectures from experts in the field followed by Delphi-type discussions were developed to reach consensus. OUTCOMES Consensus was reached regarding a number of issues related to erectile dysfunction and the interaction with cardiovascular health and phosphodiesterase-5 inhibitors. RESULTS An algorithm based on recent recommendations of the American College of Cardiology and American Heart Association, including the use of computed tomography coronary artery calcium scoring, was integrated into the evaluation of men presenting with ED. Additionally, the issue of nitrate use was further considered in an algorithm regarding the treatment of ED patients with coronary artery disease. Other topics included the psychological effect of ED and the benefits of treating it; the mechanism of action of the PDE5 inhibitors; drug-drug interactions; optimizing use of a PDE5 inhibitors; rare adverse events; potential cardiovascular benefits observed in recent retrospective studies; adulteration of dietary supplements with PDE5 inhibitors; the pros and cons of over-the-counter PDE5 inhibitors; non-PDE5 inhibitor therapy for ED including restorative therapies such as stem cells, platelet-rich plasma, and shock therapy; other non-PDE5 inhibitor therapies, including injection therapy and penile prostheses; the issue of safety and effectiveness of PDE5 inhibitors in women; and recommendations for future studies in the field of sexual dysfunction and PDE5 inhibitor use were discussed. CLINICAL IMPLICATIONS Algorithms and tables were developed to help guide the clinician in dealing with the interaction of ED and cardiovascular risk and disease. STRENGTHS AND LIMITATIONS Strengths include the expertise of the participants and consensus recommendations. Limitations included that participants were from the United States only for this particular meeting. CONCLUSION The issue of the intersection between cardiovascular health and sexual health remains an important topic with new studies suggesting the cardiovascular safety of PDE5 inhibitors.
Collapse
Affiliation(s)
- Robert A Kloner
- Department of Cardiovascular Research Pasadena, Huntington Medical Research Institutes, CA 91105, United States
- Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, United States
| | - Arthur L Burnett
- Department of Urology, Johns Hopkins University, Baltimore, MD, United States
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, United States
| | - Michael J Blaha
- Cardiology and Epidemiology, Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, United States
| | - Peter Ganz
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| | - Irwin Goldstein
- Department of Sexual Medicine, Institute for Sexual Medicine, Alvarado Hospital, San Diego, CA, United States
| | - Noel N Kim
- Department of Sexual Medicine, Institute for Sexual Medicine, Alvarado Hospital, San Diego, CA, United States
| | | | - Tom Lue
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| | - Kevin T McVary
- Center for Male Health, Stritch School of Medicine at Loyola University Medical Center, Maywood, IL, United States
| | - John P Mulhall
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sharon J Parish
- Weill Cornell Medicine, New York, NY, United States
- Department of Medicine and Psychiatry White Plains, Westchester Behavioral Health Center, NewYork-Presbyterian Hospital, NY, United States
| | - Hossein Sadeghi-Nejad
- Department of Urology NY, NYU Langone Grossman School of Medicine, NY, United States
| | - Richard Sadovsky
- Department of Family and Community Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Ira D Sharlip
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| | - Raymond C Rosen
- Department of Medicine (PG); Department of Urology (TL, IDS); Department of Psychiatry and Behavioral Sciences, (RCR), University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Wang YY, Cheng J, Liu YD, Wang YP, Yang QW, Zhou N. Exosome-based regenerative rehabilitation: A novel ice breaker for neurological disorders. Biomed Pharmacother 2023; 169:115920. [PMID: 37995565 DOI: 10.1016/j.biopha.2023.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Neurological disorders affect a large population, often leading to different levels of disability and resulting in decreased quality of life. Due to the limited recovery obtained from surgical procedures and other medical approaches, a large number of patients with prolonged dysfunction receive neurorehabilitation protocols to improve their neural plasticity and regeneration. However, the poor neural regeneration ability cannot effectively rebuild the tissue integrity and neural functional networks; consequently, the prognoses of neurorehabilitation remain undetermined. To increase the chances of neural regeneration and functional recovery for patients with neurological disorders, regenerative rehabilitation was introduced with combined regenerative medicine and neurorehabilitation protocols to repair neural tissue damage and create an optimized biophysical microenvironment for neural regeneration potential. With the deepening of exosome research, an increasing number of studies have found that the systemic therapeutic effects of neurorehabilitation approaches are mediated by exosomes released by physically stimulated cells, which provides new insight into rehabilitative mechanisms. Meanwhile, exosome therapy also serves as an alternative cell-free therapy of regenerative medicine that is applied in partnership with neurorehabilitation approaches and formulates exosome-based neurological regenerative rehabilitation. In this study, we review the current state of exosome-associated neurorehabilitation. On the one hand, we focus on presenting the varied mediating effects of exosomes in neurorehabilitation protocols of specific neurological pathologies; on the other hand, we discuss the diverse combinations of exosome therapies and neurorehabilitation approaches in the field of neurological regenerative rehabilitation, aiming to increase the awareness of exosome research and applications in the rehabilitation of neurological disorders.
Collapse
Affiliation(s)
- Yuan-Yi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jin Cheng
- Department of Sport Medicine, Peking University Third Hospital, Beijing, China
| | - Ya-Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi-Peng Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China.
| | - Qi-Wei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
| |
Collapse
|
7
|
Cheng C, Li Q, Lin G, Opara EC, Zhang Y. Neurobiological insights into lower urinary tract dysfunction: evaluating the role of brain-derived neurotrophic factor. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:559-577. [PMID: 38148930 PMCID: PMC10749380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Lower urinary tract dysfunction (LUTD) encompasses a range of debilitating conditions that affect both sexes and different age groups. Understanding the underlying neurobiological mechanisms contributing to LUTD has emerged as a critical avenue for the development of targeted therapeutic strategies. Brain-derived neurotrophic factor (BDNF), a prominent member of the neurotrophin family, has attracted attention due to its multiple roles in neural development, plasticity, and maintenance. This review examines the intricate interplay between neurobiological factors and LUTD, focusing on the central involvement of BDNF. The review emphasizes the bidirectional relationship between LUTD and BDNF and explores how LUTD-induced neural changes may affect BDNF dynamics and vice versa. Growth factor therapy and the combined administration of controlled release growth factors and stem cells are minimally invasive treatment strategies for neuromuscular injury. Among the many growth factors and cytokines, brain-derived neurotrophic factor (BDNF) plays a prominent role in neuromuscular repair. As an essential neurotrophin, BDNF is involved in the modulation of neuromuscular regeneration through tropomyosin receptor kinase B (TrkB). Increasing BDNF levels facilitates the regeneration of the external urethral sphincter and contributes to the regulation of bladder contraction. Treatments targeting the BDNF pathway and sustained release of BDNF may become novel treatment options for urinary incontinence and other forms of lower urinary tract dysfunction. This review discusses the applications of BDNF and the theoretical basis for its use in the treatment of lower urinary tract dysfunction, including urinary incontinence (UI), overactive bladder (OAB), and benign prostatic hyperplasia (BPH), and in the clinical diagnosis of bladder dysfunction.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of CaliforniaSan Francisco, CA 94143, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health SciencesWinston-Salem, NC 27101, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health SciencesWinston-Salem, NC 27101, USA
| |
Collapse
|
8
|
Ye K, Li Z, Yin Y, Zhou J, Li D, Gan Y, Peng D, Xiao M, Zhao L, Dai Y, Tang Y. LIPUS-SCs-Exo promotes peripheral nerve regeneration in cavernous nerve crush injury-induced ED rats via PI3K/Akt/FoxO signaling pathway. CNS Neurosci Ther 2023; 29:3239-3258. [PMID: 37157936 PMCID: PMC10580359 DOI: 10.1111/cns.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE Clinical treatment of erectile dysfunction (ED) caused by cavernous nerve (CN) injury during pelvic surgery is difficult. Low-intensity pulsed ultrasound (LIPUS) can be a potential strategy for neurogenic ED (NED). However, whether Schwann cells (SCs) can respond to LIPUS stimulation signals is unclear. This study aims to elucidate the signal transmission between SCs paracrine exosome (Exo) and neurons stimulated by LIPUS, as well as to analyze the role and potential mechanisms of exosomes in CN repair after injury. METHODS The major pelvic ganglion (MPG) neurons and MPG/CN explants were stimulated with LIPUS of different energy intensities to explore the appropriate LIPUS energy intensity. The exosomes were isolated and purified from LIPUS-stimulated SCs (LIPUS-SCs-Exo) and non-stimulated SCs (SCs-Exo). The effects of LIPUS-SCs-Exo on neurite outgrowth, erectile function, and cavernous penis histology were identified in bilateral cavernous nerve crush injury (BCNI)-induced ED rats. RESULTS LIPUS-SCs-Exo group can enhance the axon elongation of MPG/CN and MPG neurons compared to SCs-Exo group in vitro. Then, the LIPUS-SCs-Exo group showed a stronger ability to promote the injured CN regeneration and SCs proliferation compared to the SCs-Exo group in vivo. Furthermore, the LIPUS-SCs-Exo group increased the Max intracavernous pressure (ICP)/mean arterial pressure (MAP), lumen to parenchyma and smooth muscle to collagen ratios compared to the SCs-Exo group in vivo. Additionally, high-throughput sequencing combined with bioinformatics analysis revealed the differential expression of 1689 miRNAs between the SCs-Exo group and the LIPUS-SCs-Exo group. After LIPUS-SCs-Exo treatment, the phosphorylated levels of Phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and forkhead box O (FoxO) in MPG neurons increased significantly compared to negative control (NC) and SCs-Exo groups. CONCLUSION Our study revealed that LIPUS stimulation could regulate the gene of MPG neurons by changing miRNAs derived from SCs-Exo, then activating the PI3K-Akt-FoxO signal pathway to enhance nerve regeneration and restore erectile function. This study had important theoretical and practical significance for improving the NED treatment.
Collapse
Affiliation(s)
- Kun Ye
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| | - Zitaiyu Li
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| | - Yinghao Yin
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| | - Jun Zhou
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| | - Dongjie Li
- Department of UrologyXiangya Hospital, Central South UniversityChangshaChina
| | - Yu Gan
- Department of UrologyXiangya Hospital, Central South UniversityChangshaChina
| | - Dongyi Peng
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Xiao
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| | - Liangyu Zhao
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| | - Yingbo Dai
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| | - Yuxin Tang
- Department of UrologyThe Fifth Affiliated Hospital of Sun Yat‐Sen UniversityZhuhaiGuangdongChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐Sen UniversityZhuhaiGuangdongChina
| |
Collapse
|
9
|
Li Z, Ye K, Yin Y, Zhou J, Li D, Gan Y, Peng D, Zhao L, Xiao M, Zhou Y, Dai Y, Tang Y. Low-intensity pulsed ultrasound ameliorates erectile dysfunction induced by bilateral cavernous nerve injury through enhancing Schwann cell-mediated cavernous nerve regeneration. Andrology 2023; 11:1188-1202. [PMID: 36762774 DOI: 10.1111/andr.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Cavernous nerve injury-induced erectile dysfunction caused by pelvic surgery or trauma is refractory to conventional medications and required an alternative treatment. Low-intensity pulsed ultrasound is a noninvasive mechanical therapy that promotes nerve regeneration. OBJECTIVES To investigate the therapeutic effect and potential mechanism of low-intensity pulsed ultrasound in the treatment of neurogenic erectile dysfunction. MATERIALS AND METHODS Thirty rats were randomly divided into the sham-operated group, bilateral cavernous nerve injury group, and bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. The erectile function was assessed 3 weeks after daily low-intensity pulsed ultrasound treatment. The penile tissues and cavernous nerve tissues were harvested and subjected to histologic analysis. Primary Schwann cells and explants were extracted from adult rats. The effects of low-intensity pulsed ultrasound on proliferation, migration, and nerve growth factor expression of Schwann cells and axonal elongation were examined in vitro. RNA sequencing and western blot assay were applied to predict and verify the molecular mechanism of low-intensity pulsed ultrasound-induced Schwann cell activation. RESULTS Our study showed that low-intensity pulsed ultrasound promoted Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. Meanwhile, low-intensity pulsed ultrasound exhibits a stronger ability to enhance Schwann cells-mediated neurite outgrowth of major pelvic ganglion neurons and major pelvic ganglion/cavernous nerve explants in vitro. In vivo experiments demonstrated that the erectile function of the rats in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group was significantly higher than those in the bilateral cavernous nerve injury groups. Moreover, the expression levels of smooth muscle and cavernous endothelium also increased significantly in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. In addition, we observed the higher density and number of cavernous nerve regenerating axons in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group, indicating that low-intensity pulsed ultrasound promotes axonal regeneration following cavernous nerve injury in vivo. RNA sequencing analysis and bioinformatic analysis suggested that low-intensity pulsed ultrasound might trigger the activation of the PI3K/Akt pathway. Western blot assay confirmed that low-intensity pulsed ultrasound activated Schwann cells through TrkB/Akt/CREB signaling. CONCLUSIONS Low-intensity pulsed ultrasound promoted nerve regeneration and ameliorated erectile function by enhancing Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. The TrkB/Akt/CREB axis is the possible mechanism of low-intensity pulsed ultrasound-mediated Schwann cell activation. Low-intensity pulsed ultrasound-based therapy could be a novel potential treatment strategy for cavernous nerve injury-induced neurogenic erectile dysfunction.
Collapse
Affiliation(s)
- Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kun Ye
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jun Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Dongjie Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongyi Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ming Xiao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
10
|
Liu S, Li K, Zhao Y, Wang W, Bao J, Wang X, Shi L, Zhou L, Fu Q. Fermented Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer alleviates diabetic erectile dysfunction by attenuating oxidative stress and regulating PI3K/Akt/eNOS pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116249. [PMID: 36775080 DOI: 10.1016/j.jep.2023.116249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (G. officinalis) has been historically as tonics to treat impotence. Fermentation is an ancient processing method for traditional Chinese medicine. Whether fermentation affects the therapeutic effects of G. officinalis on diabetic erectile dysfunction has so far remained unknown. AIMS OF THE STUDY In this research, we aim to determine the effect of fermented or unfermented G. officinalis root extract on diabetes mellitus-induced erectile dysfunction (DMED) and the potential mechanisms. MATERIALS AND METHODS Candida sp. B5, Lactobacillus sp. Y5 and Lactobacillus sp. R2 are applied for the fermentation of G. officinalis. The optimum fermentation conditions of G. officinalis are investigated. Sprague-Dawley rats were used to establish a diabetic erectile dysfunction model, treated with different concentrations of fermented or unfermented G. officinalis, to compare the effect of fermented or unfermented G. officinalis on DMED and explore underlying mechanisms by assessment of intracavernous pressure, ELISA, Western blot, Masson's trichrome staining, and immunofluorescence. The corpus cavernosum smooth muscle cells (CCSMCs) and Schwann cells were isolated and used to investigate the effect of fermented or unfermented G. officinalis on hydrogen peroxide (H2O2)-induced apoptosis. RESULTS The results reveal the optimum fermentation conditions of G. officinalis using Lactobacillus sp. Y5 were determined to be 35 °C, the ratio of solid to liquid 1:10, and six days of fermentation. The fermentation increases the abundance of major active ingredients within G. officinalis. After fermented or unfermented G. officinalis treatment for eight weeks by oral gavage at a dose of 100 mg kg-1 or 300 mg kg-1, the results show that the fermentation enhances the effect of G. officinalis on diabetic erectile dysfunction detected by intracavernous pressure. The protein expressions of the PI3K/Akt/eNOS pathway were upregulated in diabetic rats after fermented or unfermented G. officinalis treatment, while the level of oxidative stress was significantly reduced. Meanwhile, Masson's trichrome staining also displayed an improvement in the ratio of smooth muscle to collagen. In vitro experiments confirmed that fermented or unfermented G. officinalis protected CCSMCs and Schwann cells from apoptosis. In contrast, fermented G. officinalis showed a fortified protective effect over unfermented G. officinalis. CONCLUSION Our findings suggest that fermentation can increase the composition of main active ingredients in G. officinalis and enhance its role in diabetic erectile dysfunction. It augurs the potential therapeutic application of fermented G. officinalis well for treating diabetic erectile dysfunction.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Kefan Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Yanfen Zhao
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Wenbo Wang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Xinxin Wang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Liwen Shi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Lei Zhou
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Injectable thermo-sensitive hydrogel containing ADSC-derived exosomes for the treatment of cavernous nerve injury. Carbohydr Polym 2023; 300:120226. [DOI: 10.1016/j.carbpol.2022.120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
12
|
Yin Y, Zhou Y, Zhou J, Zhao L, Hu H, Xiao M, Niu B, Peng J, Dai Y, Tang Y. Cisplatin causes erectile dysfunction by decreasing endothelial and smooth muscle content and inducing cavernosal nerve senescence in rats. Front Endocrinol (Lausanne) 2023; 14:1096723. [PMID: 36761198 PMCID: PMC9905444 DOI: 10.3389/fendo.2023.1096723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Cisplatin (cis-diamminedichloroplatinum II, CDDP), a drug widely used for cancer worldwide, may affect erectile function, but its side effects have not received enough attention. To investigate the effect of CDDP on erectile function and its possible mechanism. METHODS Sprague-Dawley rats were intraperitoneally administered CDDP (CDDP group) or the same volume of normal saline (control group). Erectile function was evaluated after a one-week washout. Then, histologic changes in the corpus cavernosum and cavernous nerve (CN) were measured. Other Sprague-Dawley rats were used to isolate the major pelvic ganglion and cavernous nerve (MPG/CN). RSC96 cells were then treated with CDDP. SA-β-gal staining was used to identify senescent cells, and qPCR was used to detect the senescence-associated secretory phenotype (SASP). Finally, the supernatant of RSC96 cells was used to culture MPG/CN. Erectile function was measured after administration of CDDP. The cavernosum levels of α-SMA, CD31, eNOS, and γ-H2AX, the apoptosis rate and the expression of p16, p21 and p53 in CN were also assayed. The senescent phenotype of RSC96 cells treated with CDDP was identified, and neurite growth from the MPG/CN was photographed and measured. RESULTS The CDDP group had a significantly lower ICP/MAP ratio than the control group. Compared to the control group, the CDDP group exhibited significantly lower α-SMA, CD31 and eNOS levels and significantly higher γ-H2AX and apoptosis rates in corpus cavernosum. In addition, CDDP increased some senescence markers p16, p21 and p53 in CN. In vitro, CDDP induced RSC96 senescence and SASP, and the supernatant of senescent cells slowed neurite outgrowth of MPG/CN. DISCUSSIONS CDDP treatment could induce erectile dysfunction, by affecting the content of endothelial and smooth muscle and causing SASP in CN. The results indicate that CDDP treatment should be considered as a risk factor for ED. Clinicians should pay more attention to the erectile function of cancer patients who receive CDDP treatment.
Collapse
Affiliation(s)
- Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jun Zhou
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hongji Hu
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ming Xiao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Bin Niu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jingxuan Peng
- Department of Urology, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Yingbo Dai, ; Yuxin Tang,
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Yingbo Dai, ; Yuxin Tang,
| |
Collapse
|
13
|
Feng H, Peng W, Deng Z, Liu J, Wang T. Erectile dysfunction and exosome therapy. Front Endocrinol (Lausanne) 2023; 14:1123383. [PMID: 36967787 PMCID: PMC10034068 DOI: 10.3389/fendo.2023.1123383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Erectile dysfunction (ED), as a common male disease, can seriously reduce the life quality of men and their partners. With the improvement of human living standards, ED is considered to be an important health issue that plagues men. However, it is difficult for existing therapeutic approaches to meet the needs of all patients, so it is necessary to develop novel treatment strategies. Exosomes, as a class of vesicles secreted by cells with bilayer membrane structure, are involved in various physiological and pathological processes in human body and considered to have great therapeutic potentials. This review summarizes the recent advances on exosome therapy with animal models of ED, and proposes the prospect of future research in order to provide a basis for clinical trials and clinical translation.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jihong Liu, ; Tao Wang,
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
- *Correspondence: Jihong Liu, ; Tao Wang,
| |
Collapse
|
14
|
Song G, Hu P, Song J, Liu J, Ruan Y. Molecular pathogenesis and treatment of cavernous nerve injury-induced erectile dysfunction: A narrative review. Front Physiol 2022; 13:1029650. [PMID: 36277218 PMCID: PMC9582663 DOI: 10.3389/fphys.2022.1029650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Erectile dysfunction (ED) is a common complication after radical prostatectomy (RP), and it seriously affects the quality of life in patients and their partners. The primary trigger of postoperative ED is surgical injury to the cavernous nerves that control penile erection and run along the anterolateral aspect of the prostate. Despite the introduction and ongoing innovation of nerve-sparing techniques, a significant number of patients still suffer from moderate cavernous nerve injury (CNI), which is thought to be transient and reversible. Therefore, early postoperative penile rehabilitation therapy may salvage patients’ erectile function by promoting cavernous nerve regeneration and preventing penile structural alterations.Aims: To present a comprehensive overview of the current molecular pathogenesis of CNI-induced ED, as well as novel therapeutic strategies and their potential mechanisms.Methods: A literature search was performed using PubMed. Search terms included erectile dysfunction, cavernous nerve injury, pathogenesis, pathway, and treatment.Results: The NOS/NO pathway, oxidative stress-related pathway, RhoA/ROCK pathway, transforming growth factor-β (TGF-β), sonic hedgehog (Shh), and hydrogen sulfide (H2S) are involved in the molecular pathogenesis of CNI-induced ED. Multiple neurotrophins, including brain-derived nerve growth factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurturin (NTN), were found to promote cavernous nerve regeneration. Emerging therapeutic approaches can be roughly summarized into four categories, namely small molecule and drug, stem cell-based therapy (SCT), micro-energy therapy and platelet-rich plasma (PRP) therapy.Conclusion: These pathways collectively lead to the irreversible damage to the penile structure after CNI. The combined early rehabilitation strategies of promoting upstream nerve regeneration and recovering abnormal molecular signals of downstream penis are presumed to save patients’ erectile function after RP. In future studies, the cross-talk between these molecular pathways needs to be further clarified, and the questions of how denervation injury induces the molecular alterations in the penis also need to be addressed.
Collapse
|
15
|
Chen H, Li Z, Li X, Yang Y, Dai Y, Xie Z, Xiao J, Liu X, Yang L, Shi C, Zhi E, Tian R, Li P, Chen H, Zhao F, Hu J, Yao C, Lin G, Lue TF, Xia S. The Efficacy and Safety of Thrice vs Twice per Week Low-Intensity Pulsed Ultrasound Therapy for Erectile Dysfunction: A Randomized Clinical Trial. J Sex Med 2022; 19:1536-1545. [PMID: 35999130 DOI: 10.1016/j.jsxm.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND A recent sham-controlled clinical study has shown that low-intensity pulsed ultrasound twice per week can safely and effectively treat patients with mild-to-moderate erectile dysfunction (ED). However, large-scale clinical trials are needed to verify its efficacy and safety and determine a reasonable treatment interval. AIM To study whether low-intensity pulsed ultrasound therapy thrice per week is non-inferior to twice per week in patients with mild-to-moderate ED. METHODS A randomized, open-label, parallel-group, non-inferiority clinical trial was conducted in 7 hospitals in China. A total of 323 patients with mild-to-moderate ED were randomized (1:1) into thrice per week (3/W) and twice per week (2/W) groups. Low-intensity pulsed ultrasound was applied on each side of the penis for 16 sessions. OUTCOMES The primary outcome was response rate using the minimal clinically important difference in the International Index of Erectile Function (IIEF-EF) score at week 12. Secondary outcomes included Erection Hardness Score (EHS), Sexual Encounter Profile, Global Assessment Question, and Self Esteem and Relationship Questionnaire. RESULTS Response rates in 3/W and 2/W groups were 62.0% and 62.5%, respectively. Treatment effect in the 3/W group was noninferior to that of the 2/W group, with rate difference lower bound of -0.01% [95% confidence interval -0.11 to 0.10%] within the acceptable margin (-14.0%). No significant difference was found among secondary outcomes. IIEF-EF score showed a significant increase from baseline in the 3/W group (16.8 to 20.7) and 2/W group (17.8 to 21.7), and the percentage of patients with EHS ≥3 increased in the 3/W (54.9% to 84.0%) and 2/W (59.5% to 83.5%) groups. There was no significant difference in response rate between the 2 groups after controlling for strata factors and homogeneous tests. No treatment-related adverse events were reported. CLINICAL IMPLICATIONS Low-intensity pulsed ultrasound therapy displays similar efficacy and safety for mild-to-moderate ED when administered thrice or twice per week for 16 sessions. This study provides two options to suit patients' needs. STRENGTHS & LIMITATIONS This is a large-sample, randomized, controlled, noninferiority trial study. Short-term follow-up and mostly younger patients are the main limitations. CONCLUSION Low-intensity pulsed ultrasound therapy thrice and twice per week showed equivalent therapeutic effects and safety for mild-to-moderate ED in a young and generally healthy population. This therapy warrants further investigation of its potential value in rehabilitation of ED.
Collapse
|
16
|
Guo Y, Gil Z. The Role of Extracellular Vesicles in Cancer-Nerve Crosstalk of the Peripheral Nervous System. Cells 2022; 11:cells11081294. [PMID: 35455973 PMCID: PMC9027707 DOI: 10.3390/cells11081294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Although the pathogenic operations of cancer–nerve crosstalk (e.g., neuritogenesis, neoneurogensis, and perineural invasion—PNI) in the peripheral nervous system (PNS) during tumorigenesis, as well as the progression of all cancer types is continuing to emerge as an area of unique scientific interest and study, extensive, wide-ranging, and multidisciplinary investigations still remain fragmented and unsystematic. This is especially so in regard to the roles played by extracellular vesicles (EVs), which are lipid bilayer-enclosed nano- to microsized particles that carry multiple-function molecular cargos, facilitate intercellular communication in diverse processes. Accordingly, the biological significance of EVs has been greatly elevated in recent years, as there is strong evidence that they could contribute to important and possibly groundbreaking diagnostic and therapeutic innovations. This can be achieved and the pace of discoveries accelerated through cross-pollination from existing knowledge and studies regarding nervous system physiology and pathology, as well as thoroughgoing collaborations between oncologists, neurobiologists, pathologists, clinicians, and researchers. This article offers an overview of current and recent past investigations on the roles of EVs in cancer–nerve crosstalk, as well as in neural development, physiology, inflammation, injury, and regeneration in the PNS. By highlighting the mechanisms involved in physiological and noncancerous pathological cellular crosstalk, we provide hints that may inspire additional translational studies on cancer–nerve interplay.
Collapse
Affiliation(s)
- Yuanning Guo
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel;
| | - Ziv Gil
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel;
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel
- Correspondence: ; Tel.: +972-4-854-2480
| |
Collapse
|
17
|
Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073869. [PMID: 35409228 PMCID: PMC8998690 DOI: 10.3390/ijms23073869] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Soft tissue defects are common following trauma and tumor extirpation. These injuries can result in poor functional recovery and lead to a diminished quality of life. The healing of skin and muscle is a complex process that, at present, leads to incomplete recovery and scarring. Regenerative medicine may offer the opportunity to improve the healing process and functional outcomes. Barriers to regenerative strategies have included cost, regulatory hurdles, and the need for cell-based therapies. In recent years, exosomes, or extracellular vesicles, have gained tremendous attention in the field of soft tissue repair and regeneration. These nanosized extracellular particles (30-140 nm) can break the cellular boundaries, as well as facilitate intracellular signal delivery in various regenerative physiologic and pathologic processes. Existing studies have established the potential of exosomes in regenerating tendons, skeletal muscles, and peripheral nerves through different mechanisms, including promoting myogenesis, increasing tenocyte differentiation and enhancing neurite outgrowth, and the proliferation of Schwann cells. These exosomes can be stored for immediate use in the operating room, and can be produced cost efficiently. In this article, we critically review the current advances of exosomes in soft tissue (tendons, skeletal muscles, and peripheral nerves) healing. Additionally, new directions for clinical applications in the future will be discussed.
Collapse
Affiliation(s)
- Rou Wan
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Arif Hussain
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
18
|
Luo L, Wu Z, Wang Y, Li H. Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. J Nanobiotechnology 2021; 19:422. [PMID: 34906146 PMCID: PMC8670141 DOI: 10.1186/s12951-021-01171-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have confirmed the great application potentials of small extracellular vesicles (sEVs) in biological medical field, especially in tissue repair and regeneration. However, the production capability of sEVs by noncancerous cells is very limited, while their dosage requirements in disease treatments are usually very high. Meanwhile, as cell aging, the sEV production capability of cells decreases and the biological function of sEVs changes accordingly. In addition, for special applications, sEVs carrying desired bioactive substances should be designed to perform their expected biological function. Therefore, improving the production of sEVs and precisely regulating their biological function are of great significance for promoting the clinical applications of sEVs. In this review, some of the current classic strategies in affecting the cellular behaviors of donor cells and subsequently regulating the production and biological function of their sEVs are summarized, including gene engineering methods, stress-inducing conditions, chemical regulators, physical methods, and biomaterial stimulations. Through applying these strategies, increased yield of sEVs with required biological function can be obtained for disease treatment and tissue repair, such as bone regeneration, wound healing, nerve function recovery and cancer treatment, which could not only reduce the harvest cost of sEV but promote the practical applications of sEVs in clinic.
Collapse
Affiliation(s)
- Lei Luo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhi Wu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Haiyan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
- Chemical and Environmental Engineering Department, School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
19
|
Yan LT, Yang ZH, Lin H, Jiang J, Jiang R. Effects of androgen on extracellular vesicles from endothelial cells in rat penile corpus cavernosum. Andrology 2021; 9:1010-1017. [PMID: 33484224 DOI: 10.1111/andr.12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The explicit mechanism of erectile dysfunction caused by low androgen status is unknown. It was reported that eNOS was expressed in extracellular vesicles (EVs). Androgen may regulate erectile function by affect the release of EVs from endothelial cells. OBJECTIVES To investigate whether androgen affects the production of EVs and nitric oxide (NO) in endothelial cells of rat penile corpus cavernosum. MATERIALS AND METHODS Endothelial cells of rat penile corpus cavernosum were isolated and purified from 6-week-old healthy male Sprague Dawley (SD) rats. Endothelial cells were treated with different concentrations of dihydrotestosterone (DHT) in a cell culture medium as follows: no-androgen group (NA group, DHT 0 nmol/L), very-low androgen group (VLA group, DHT 0.1 nmol/L), low androgen group (LA group, DHT 1 nmol/L), and physiological concentrations androgen group (PA group, DHT 10 nmol/L). After 24 h, EVs of supernatant in each group were isolated and identified. The content of EVs and NO in the supernatant and the expression of CD9, CD63, TSG101, and eNOS in EVs were detected. RESULTS Positive expression of CD9, CD63, TSG101, and eNOS was found in isolated EVs. The concentration of EVs was lower in the NA group compared with other groups (p < 0.01). The expression of eNOS and the concentration of NO was lower in the NA group than that in other groups (p < 0.05); it was lower in the VLA group than that in the LA group (p < 0.05) and lower in LA group than that in PA group (p < 0.05). When the concentration of DHT in endothelial cell culture medium ranged from 0 to 10 nmol/L, the concentration of DHT was positively correlated with the content of EVs and NO. CONCLUSION Decrease in eNOS-expressing EVs is one mechanism of NO reduction in endothelial cells of rat corpus cavernosum caused by low androgen levels.
Collapse
Affiliation(s)
- Ling-Tao Yan
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi-Hui Yang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haocheng Lin
- Department of Urology and Andrology, Peking University Third Hospital, Beijing, China
| | - Jun Jiang
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nephropathy Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|