1
|
Ock J, Yin GN, Liu FY, Huang Y, Fridayana FR, Vo MN, Ryu JK. Ablation of IGFBP5 expression alleviates neurogenic erectile dysfunction by inducing neurovascular regeneration. Investig Clin Urol 2025; 66:74-86. [PMID: 39791587 PMCID: PMC11729225 DOI: 10.4111/icu.20240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED). MATERIALS AND METHODS Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure. These injections included phosphate-buffered saline, scrambled control short hairpin RNA (shRNA), or shRNA targeting mouse IGFBP5 lentiviral particles. One week after CNI, erectile function was evaluated and the penile tissue was then harvested for histological examination and western blot analysis. Additionally, the major pelvic ganglia (MPG) and dorsal root ganglia (DRG) were cultured for ex vivo neurite outgrowth assays. RESULTS Following CNI, IGFBP5 expression in the cavernous tissues significantly increased, reaching its peak at day 7. First, ablation of IGFBP5 expression promotes neurite sprouting in MPG and DRG when exposed to lipopolysaccharide. Second, ablating IGFBP5 expression in CNI-induced ED mice improved erectile function, likely owing to increased neurovascular contents, including endothelial cells, pericytes, and neuronal processes. Third, ablating IGFBP5 expression in CNI-induced ED mice promoted neurovascular regeneration by increasing cell proliferation, reducing apoptosis, and decreasing Reactive oxygen species production. Finally, western blot analysis demonstrated that IGFBP5 ablation attenuated the JNK/c-Jun signaling pathway, activated the PI3K/AKT signaling pathway, and increased vascular endothelial growth factor and neurotrophic factor expression. CONCLUSIONS Ablating IGFBP5 expression enhanced neurovascular regeneration and ultimately improved erectile function in CNI-induced ED mice.
Collapse
Affiliation(s)
- Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea.
| |
Collapse
|
2
|
Yin GN, Ryu JK. Role of pericytes in regulating penile angiogenesis and nerve regeneration. Asian J Androl 2025; 27:13-19. [PMID: 39162179 DOI: 10.4103/aja202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/19/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Pericytes are multifunctional mural cells that surround the abluminal wall of endothelial cells and are associated with vascular development, vascular permeability, and angiogenesis. Additionally, pericytes demonstrate stem cell-like properties and contribute to neuroinflammatory processes. Pericytes have been extensively studied in the central nervous system. However, specific mechanisms underlying its involvement in various physiological and pathological conditions, especially in erectile dysfunction (ED), remain poorly understood. Advancements in in vitro and in vitro techniques, such as single-cell RNA sequencing, are expanding our understanding of pericytes. Recent studies have shown that pericyte dysfunction is considered an important factor in the pathogenesis of vascular and neurological ED. Therefore, this study aims to analyze the specific role of pericytes in ED, focusing on diabetic and neurogenic ED. This article provides a comprehensive review of research findings on PubMed from 2000 to 2023, concerning pericyte dysfunction in the process of ED, offering valuable insights, and suggesting directions for further research.
Collapse
Affiliation(s)
- Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
3
|
Anita L, Choi MJ, Yin GN, Ock J, Kwon MH, Rho BY, Chung DY, Suh JK, Ryu JK. Photobiomodulation as a Potential Therapy for Erectile Function: A Preclinical Study in a Cavernous Nerve Injury Model. World J Mens Health 2024; 42:842-854. [PMID: 38772533 PMCID: PMC11439795 DOI: 10.5534/wjmh.230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To identify the optimal photobiomodulation (PBM) parameters using molecular, histological, and erectile function analysis in cavernous nerve injury. MATERIALS AND METHODS A cavernous nerve injury was induced in 8-week-old C57BL/6J male mice that were subsequently divided randomly into age-matched control groups. Erectile function tests, penile histology, and Western blotting were performed 2 weeks after surgery and PBM treatment. RESULTS The PBM treatment was administered for five consecutive days with a light-emitted diode (LED) device that delivers 660 nm±3% RED light, and near infra-red 830 nm±2% promptly administered following nerve-crushing surgery and achieved a notable restoration of erectile function approximately 90% of the control values. Subsequent in-vitro and ex-vivo analyses revealed the regeneration of neurovascular connections in both the dorsal root ganglion and major pelvic ganglion, characterized by the sprouting of neurites. Furthermore, the expression levels of neurotrophic, survival, and angiogenic factors exhibited a substantial increase across all groups subjected to PBM treatment. CONCLUSIONS The utilization of PBM employing LED with 660 nm, 830 nm, and combination of both these wavelengths, exhibited significant efficacy to restore erectile function in a murine model of cavernous nerve injury. Thus, the PBM emerges as a potent therapeutic modality with notable advantages such as efficacy, noninvasiveness, and non-pharmacological interventions for erectile dysfunction caused by nerve injury.
Collapse
Affiliation(s)
- Limanjaya Anita
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - JiYeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Beom Yong Rho
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Doo Yong Chung
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea.
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea.
| |
Collapse
|
4
|
Huang Y, Yin GN, Liu FY, Fridayana FR, Niloofar L, Vo MN, Ryu JK. Argonaute 2 restored erectile function and corpus cavernosum mitochondrial function by reducing apoptosis in a mouse model of cavernous nerve injury. Investig Clin Urol 2024; 65:400-410. [PMID: 38978220 PMCID: PMC11231665 DOI: 10.4111/icu.20240077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE To determine whether the overexpression of the Argonaute RNA-induced silencing complex catalytic component 2 (Ago2) improves erectile function in mice after cavernous nerve injury (CNI). MATERIALS AND METHODS Lentiviruses containing Ago2 open reading frame (ORF) mouse clone (Ago2 O/E) were used to overexpress Ago2, and lentiviruses ORF negative control particles (NC) were used as a negative control. Three days before preparing the CNI model, we injected lentiviruses into the penises of 8-week-old male C57BL/6 mice. Animals were then divided into four groups: the sham operation control group and the CNI+phosphate-buffered saline, CNI+NC, and CNI+Ago2 O/E groups. One week later, erectile function was assessed by electrically stimulating cavernous nerves bilaterally and obtaining intracavernous pressure parameters. Penile tissue was also collected for molecular mechanism studies. RESULTS Ago2 overexpression improved erectile function in mice after CNI-induced erectile dysfunction (ED). Immunofluorescence staining and Western blot analysis showed that under Ago2 overexpressing conditions, the contents of endothelial cells, pericytes, and neuronal cells increased in the penile tissues of CNI mice, and this was attributed to reduced apoptosis and ROS production. In addition, we also found that Ago2 overexpression could restore penile mitochondrial function, thereby improving erectile function in CNI-induced ED mice. CONCLUSIONS Our findings demonstrate that Ago2 overexpression can reduce penile cell apoptosis, restore penile mitochondrial function, and improve erectile function in CNI-induced ED mice.
Collapse
Affiliation(s)
- Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Lashkari Niloofar
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Korea.
| |
Collapse
|
5
|
Song G, Hu P, Song J, Liu J, Ruan Y. Molecular pathogenesis and treatment of cavernous nerve injury-induced erectile dysfunction: A narrative review. Front Physiol 2022; 13:1029650. [PMID: 36277218 PMCID: PMC9582663 DOI: 10.3389/fphys.2022.1029650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Erectile dysfunction (ED) is a common complication after radical prostatectomy (RP), and it seriously affects the quality of life in patients and their partners. The primary trigger of postoperative ED is surgical injury to the cavernous nerves that control penile erection and run along the anterolateral aspect of the prostate. Despite the introduction and ongoing innovation of nerve-sparing techniques, a significant number of patients still suffer from moderate cavernous nerve injury (CNI), which is thought to be transient and reversible. Therefore, early postoperative penile rehabilitation therapy may salvage patients’ erectile function by promoting cavernous nerve regeneration and preventing penile structural alterations.Aims: To present a comprehensive overview of the current molecular pathogenesis of CNI-induced ED, as well as novel therapeutic strategies and their potential mechanisms.Methods: A literature search was performed using PubMed. Search terms included erectile dysfunction, cavernous nerve injury, pathogenesis, pathway, and treatment.Results: The NOS/NO pathway, oxidative stress-related pathway, RhoA/ROCK pathway, transforming growth factor-β (TGF-β), sonic hedgehog (Shh), and hydrogen sulfide (H2S) are involved in the molecular pathogenesis of CNI-induced ED. Multiple neurotrophins, including brain-derived nerve growth factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurturin (NTN), were found to promote cavernous nerve regeneration. Emerging therapeutic approaches can be roughly summarized into four categories, namely small molecule and drug, stem cell-based therapy (SCT), micro-energy therapy and platelet-rich plasma (PRP) therapy.Conclusion: These pathways collectively lead to the irreversible damage to the penile structure after CNI. The combined early rehabilitation strategies of promoting upstream nerve regeneration and recovering abnormal molecular signals of downstream penis are presumed to save patients’ erectile function after RP. In future studies, the cross-talk between these molecular pathways needs to be further clarified, and the questions of how denervation injury induces the molecular alterations in the penis also need to be addressed.
Collapse
|
6
|
Xiong LL, Chen L, Deng IB, Zhou XF, Wang TH. P75 neurotrophin receptor as a therapeutic target for drug development to treat neurological diseases. Eur J Neurosci 2022; 56:5299-5318. [PMID: 36017737 DOI: 10.1111/ejn.15810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
The interaction of neurotrophins with their receptors is involved in the pathogenesis and progression of various neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and acute and chronic cerebral damage. The p75 neurotrophin receptor (p75NTR) plays a pivotal role in the development of neurological dysfunctions as a result of its high expression, abnormal processing and signalling. Therefore, p75NTR represents as a vital therapeutic target for the treatment of neurodegeneration, neuropsychiatric disorders and cerebrovascular insufficiency. This review summarizes the current research progress on the p75NTR signalling in neurological deficits. We also summarize the present therapeutic approaches by genetically and pharmacologically targeting p75NTR for the attenuation of pathological changes. Based on the evolving knowledge, the role of p75NTR in the regulation of tau hyperphosphorylation, Aβ metabolism, the degeneration of motor neurons and dopaminergic neurons has been discussed. Its position as a biomarker to evaluate the severity of diseases and as a druggable target for drug development has also been elucidated. Several prototype small molecule compounds were introduced to be crucial in neuronal survival and functional recovery via targeting p75NTR. These small molecule compounds represent desirable agents in attenuating neurodegeneration and cell death as they abolish activation-induced neurotoxicity of neurotrophins via modulating p75NTR signalling. More comprehensive and in-depth investigations on p75NTR-based drug development are required to shed light on effective treatment of numerous neurological disorders.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.,Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Isaac Bul Deng
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Asker H, Yilmaz-Oral D, Oztekin CV, Gur S. An update on the current status and future prospects of erectile dysfunction following radical prostatectomy. Prostate 2022; 82:1135-1161. [PMID: 35579053 DOI: 10.1002/pros.24366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Radical prostatectomy (RP) and radiation treatment are standard options for localized prostate cancer. Even though nerve-sparing techniques have been increasingly utilized in RP, erectile dysfunction (ED) due to neuropraxia remains a frequent complication. Erectile function recovery rates after RP remain unsatisfactory, and many men still suffer despite the availability of various therapies. OBJECTIVE This systematic review aims to summarize the current treatments for post-RP-ED, assess the underlying pathological mechanisms, and emphasize promising therapeutic strategies based on the evidence from basic research. METHOD Evaluation and review of articles on the relevant topic published between 2010 and 2021, which are indexed and listed in the PubMed database. RESULTS Phosphodiesterase type 5 inhibitors, intracavernosal and intraurethral injections, vacuum erection devices, pelvic muscle training, and surgical procedures are utilized for penile rehabilitation. Clinical trials evaluating the efficacy of erectogenic drugs in this setting are conflicting and far from being conclusive. The use of androgen deprivation therapy in certain scenarios after RP further exacerbates the already problematic situation and emphasizes the need for effective treatment strategies. CONCLUSION This article is a detailed overview focusing on the pathophysiology and mechanism of the nerve injury developed during RP and a compilation of various strategies to induce cavernous nerve regeneration to improve erectile function (EF). These strategies include stem cell therapy, gene therapy, growth factors, low-intensity extracorporeal shockwave therapy, immunophilins, and various pharmacological approaches that have induced improvements in EF in experimental models of cavernous nerve injury. Many of the mentioned strategies can improve EF following RP if transformed into clinically applicable safe, and effective techniques with reproducible outcomes.
Collapse
Affiliation(s)
- Heba Asker
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Cetin Volkan Oztekin
- Department of Urology, Faculty of Medicine, University of Kyrenia, Girne, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|