1
|
Zhang L, Li F, Zhao D, Duan L, Bai W, Yan B. Research trends and focus of prosthetic joint infections from 2013 to 2023: bibliometric and visualization studies. Front Microbiol 2024; 15:1507340. [PMID: 39760080 PMCID: PMC11695429 DOI: 10.3389/fmicb.2024.1507340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Background Postoperative infections in artificial joints provide considerable difficulties in the field of orthopedics, especially after joint replacement procedures. These infections rank among the most severe postoperative consequences, frequently leading to treatment ineffectiveness and reduced quality of life for surgery patients. Consequently, it is crucial to acquire knowledge about worldwide research trends in this area in order to educate clinical practices and improve therapeutic techniques. This work exploits bibliometric analysis to investigate the present state, developing patterns, and main areas of focus in research on artificial joint infection. Objective To analyze the research trends, hotspots, and international collaborations on artificial joint infections worldwide from 2013 to 2023. Methods Extractions of raw data were made from the WoSCC (Web of Science Core Collection) database. Detailed information collected includes the quantity of publications, authors, citations, publication year, h-index, references, country/region, journal, and keywords. Analysis of the data was conducted using VOSviewer version 1.6.10.0 and CiteSpace version 6.3.R1. Results A total of 1,799 articles published between 2013 and 2023 were included in this analysis, showing a steady increase in publication with the United States leading at 553 articles. Infection rates and topics such as biofilm formation and antimicrobial resistance were highly cited, with Mayo Clinic contributing 65 articles as the most prolific institution. Conclusion Research on biofilm infections, antibiotic resistance, and new biomarkers is a key focus, particularly on disrupting biofilms and enhancing diagnostics. There's growing attention in biomarkers like α-defensins and exosomal miRNAs for PJI diagnosis, pointing to new clinical uses. Studies on antimicrobial-coated prosthetics and topical agents are also gaining importance in treatment strategies.
Collapse
Affiliation(s)
- Liwen Zhang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Li
- Department of Orthopedics, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| | - Diqian Zhao
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Duan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Bai
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| | - Bing Yan
- Department of Orthopedics, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| |
Collapse
|
2
|
Arado GM, Amatto PDPG, Marins M, Rizzi ES, França SDC, Coppede JDS, Carmona F, Pereira AMS. Anti-inflammatory and/or immunomodulatory activities of Uncaria tomentosa (cat's claw) extracts: A systematic review and meta-analysis of in vivo studies. Front Pharmacol 2024; 15:1378408. [PMID: 38881881 PMCID: PMC11176511 DOI: 10.3389/fphar.2024.1378408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 06/18/2024] Open
Abstract
Background Uncaria tomentosa (Willd. ex Schult.) DC. (Rubiaceae) is traditionally used by Amazonian indigenous groups to treat inflammatory diseases. To date, there are no systematic reviews and meta-analyses on the use of U. tomentosa for inflammation control in animals supporting the traditional knowledge about this species. This study was conducted to evaluate the effect of U. tomentosa extracts in modulating inflammatory mediators and to determine which types of inflammatory diseases can be treated by this species. Methods We conducted a systematic review and meta-analysis of preclinical studies published before 26 July 2023, identified in PubMed, Embase, and Scopus. Four independent reviewers extracted the data and assessed the risks of bias. The effects of U. tomentosa on inflammatory diseases and the inflammatory mediators involved were extracted from the studies. Standardized mean differences (SMD) and 95% confidence intervals (95%CI) of the outcomes were estimated. The meta-analyses were conducted using RevMan 5.4 (Cochrane Collaboration). This protocol was registered in PROSPERO (CRD42023450869). Results Twenty-four of 523 studies were included. U. tomentosa extracts decreased the cytokines interleukin (IL)-6 (SMD: -0.72, 95%CI: -1.15, -0.29, p = 0.001) and transcription factor nuclear factor kappa-B (NF-κB) (SMD: -1.19, 95%CI: -1.89, -0.48, p = 0.001). However, the extracts did not significantly alter IL-1 (SMD: -0.16, 95%CI: -0.87, +0.56, p = 0.67), IL-10 (SMD: -0.05, 95%CI:-0.35, 0.45, p = 0.80), or tumor necrosis factor-alpha (TNF-α) levels (SMD: 0.18, 95%CI: -0.25, 0.62, p = 0.41). Conclusion Many extracts of stem bark, roots, and leaves of U. tomentosa, mostly aqueous and hydroethanolic, exhibited anti-inflammatory and/or immunomodulatory activities and low toxicity. The extracts decreased NF-κB and IL-6. These findings suggest that this species has the potential to treat inflammatory diseases in which these markers are increased, according to the ethnopharmacological use. These activities are not related to a specific class of compounds. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=450869, Identifier CRD42023450869.
Collapse
Affiliation(s)
- Gustavo Marin Arado
- Department of Biotechnology, University of Ribeirão Preto, Sao Paulo, Brazil
| | | | - Mozart Marins
- Department of Biotechnology, University of Ribeirão Preto, Sao Paulo, Brazil
| | - Elen Sanchez Rizzi
- Department of Biotechnology, University of Ribeirão Preto, Sao Paulo, Brazil
| | | | | | - Fábio Carmona
- Department of Pediatrics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Cardoneanu A, Burlui AM, Macovei LA, Bratoiu I, Richter P, Rezus E. Targeting Systemic Sclerosis from Pathogenic Mechanisms to Clinical Manifestations: Why IL-6? Biomedicines 2022; 10:biomedicines10020318. [PMID: 35203527 PMCID: PMC8869570 DOI: 10.3390/biomedicines10020318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic sclerosis (SS) is a chronic autoimmune disorder, which has both cutaneous and systemic clinical manifestations. The disease pathogenesis includes a triad of manifestations, such as vasculopathy, autoimmunity, and fibrosis. Interleukin-6 (IL-6) has a special role in SS development, both in vascular damage and in the development of fibrosis. In the early stages, IL-6 participates in vascular endothelial activation and apoptosis, leading to the release of damage-associated molecular patterns (DAMPs), which maintain inflammation and autoimmunity. Moreover, IL-6 plays an important role in the development of fibrotic changes by mediating the transformation of fibroblasts into myofibroblasts. All of these are associated with disabling clinical manifestations, such as skin thickening, pulmonary fibrosis, pulmonary arterial hypertension (PAH), heart failure, and dysphagia. Tocilizumab is a humanized monoclonal antibody that inhibits IL-6 by binding to the specific receptor, thus preventing its proinflammatory and fibrotic actions. Anti-IL-6 therapy with Tocilizumab is a new hope for SS patients, with data from clinical trials supporting the favorable effect, especially on skin and lung damage.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence:
| | - Alexandra Maria Burlui
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
4
|
IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca 2+ through the noncanonical STAT3 pathway. Proc Natl Acad Sci U S A 2021; 118:2103444118. [PMID: 34507993 DOI: 10.1073/pnas.2103444118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.
Collapse
|
5
|
Qin M, Wang D, Fang Y, Zheng Z, Liu X, Wu F, Wang L, Li X, Hui B, Ma S, Tang W, Pan X. Current Perspectives on B Lymphocytes in the Immunobiology of Hepatocellular Carcinoma. Front Oncol 2021; 11:647854. [PMID: 34235074 PMCID: PMC8256159 DOI: 10.3389/fonc.2021.647854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune cells infiltrating tumors are capable of significantly impacting carcinogenesis through cancer promotion and anticancer responses. There are many aspects of hepatocellular carcinoma (HCC) related T lymphocytes that are undergoing extensive studies, whereas the effect exerted by B lymphocytes remains a less researched area. In this study, the latest research on the effect of B lymphocytes as they infiltrate tumors in relation to HCC is presented. Their prognosis-related importance is analyzed, along with their function in the tumor microenvironment (TME), as well as the way that B cell biology can be employed to help create a B cell therapy strategy for HCC.
Collapse
Affiliation(s)
- Miaomiao Qin
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danping Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiying Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shijie Ma
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Orecchini E, Mondanelli G, Orabona C, Volpi C, Adorisio S, Calvitti M, Thuy TT, Delfino DV, Belladonna ML. Artocarpus tonkinensis Extract Inhibits LPS-Triggered Inflammation Markers and Suppresses RANKL-Induced Osteoclastogenesis in RAW264.7. Front Pharmacol 2021; 11:593829. [PMID: 33551802 PMCID: PMC7862131 DOI: 10.3389/fphar.2020.593829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Artocarpus tonkinensis (At) leaf decoction, a traditional remedy prepared in North Vietnam by the Hmong ethnic group, is a tea extract rich in bioactive compounds that may have therapeutic effects in arthritis and backache. Indeed, it has been demonstrated that At is able to inhibit Th17 lymphocytes development and to protect mice in an experimental model of collagen-induced arthritis. By resorting to macrophage in vitro models of inflammation and osteoclastogenesis, we showed that At extract significantly reduced nitric oxide synthase 2 (NOS2) activity and IL-6 production by RAW 264.7 murine cells. Moreover, At demonstrated an anti-osteoclastogenic effect, as revealed by complete inhibition of TRAP-positive osteoclast formation and decreased expression of key osteoclast-related genes. This At activity likely relies on the inhibition of RANK downstream signaling pathway, as the activation of non-receptor tyrosine kinase Src is reduced upon RANKL-At exposure. Protective effect of At against bone loss was also enlightened in vivo by collagen-induced arthritis (CIA) experiment demonstrating that, although paw edema was only weakly opposed by drinking At decoction, bone and cartilage were well preserved in CIA+At mice and joint tissue expressed decreased levels of osteoclast marker genes respect to CIA control group. Maesopsin 4-O-β-D-glucoside (i.e., TAT-2, one of the main decoction bioactive components) was capable to contrast NOS2 activity, IL-6 expression and osteoclast formation, too, albeit to a lesser extent when compared to At decoction. Overall, this study enlightens another At cell target, macrophages, beside Th17 lymphocytes, and suggests that the anti-arthritic beneficial effects of At decoction largely derives from its ability to counteract not only inflammation, but also osteoclastogenesis.
Collapse
Affiliation(s)
- Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sabrina Adorisio
- Department of Medicine and Surgery, Foligno Nursing School, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Trinh Thi Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Domenico V Delfino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | |
Collapse
|
7
|
Kucukoglu K, Faydalı N, Bul D. What are the drugs having potential against COVID-19? Med Chem Res 2020; 29:1935-1955. [PMID: 32929317 PMCID: PMC7481551 DOI: 10.1007/s00044-020-02625-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
A disease emerged in the city of Wuhan, Hubei Province, Central China in the last month of 2019. It was pneumonia caused by a newly emerged coronavirus called COVID-19, later. Coronaviruses are enveloped RNA viruses belong to the Betacoronavirus family and infected birds, humans, and other mammals. In March 2020, the World Health Organization declared the COVID-19 outbreak could be characterized as a global pandemic because the disease spread, and a large number of people were infected and died in many countries on different continents by virtue of this new virus. Now, intensive work is underway about the pathogenic mechanisms and epidemiological properties of COVID-19, and a great effort is made to develop effective specific therapeutic drugs, vaccines, and/or treatment strategies against these diseases. Herein, we have focused on all treatment options available against COVID-19 pneumonia in this text.
Collapse
Affiliation(s)
- Kaan Kucukoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Selcuk University, Konya, Turkey
| | - Nagihan Faydalı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Selcuk University, Konya, Turkey
| | - Dilek Bul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Selcuk University, Konya, Turkey
| |
Collapse
|