1
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Sládek M, Houdek P, Myung J, Semenovykh K, Dočkal T, Sumová A. The circadian clock in the choroid plexus drives rhythms in multiple cellular processes under the control of the suprachiasmatic nucleus. Fluids Barriers CNS 2024; 21:46. [PMID: 38802875 PMCID: PMC11131265 DOI: 10.1186/s12987-024-00547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
Collapse
Affiliation(s)
- Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kateryna Semenovykh
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Tereza Dočkal
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic.
| |
Collapse
|
3
|
Giannetto C, Arfuso F, Rizzo M, Giudice E, Calapai F, Guercio A, Macaluso G, Giacchino I, Piccione G, Cannella V. Persistence of clock gene expression in peripheral blood in dogs maintained under different photoperiod schedules. Chronobiol Int 2024; 41:369-377. [PMID: 38326980 DOI: 10.1080/07420528.2024.2315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Dogs are the common pets adopted by humans, and their circadian behavior and physiology are influenced by human habits. In many families, there is a change of lifestyle with respect to the natural daylight (NDL) cycle. Exposure to constant light disrupts some central and peripheral circadian rhythms. The aim of the present study was to improve the knowledge about the circadian changes of clock components in the peripheral blood in dogs housed under NDL and constant light (LL) conditions. Blood samples were collected on five female Beagle dogs (2 years old, 14 ± 0.5 kg) every 4 hours for a 24-hour period during an NDL (Sunrise 05:05 h - Sunset 20:55 h) and 24-hour period of constant light (LL). Blood samples were stored in a PAX gene Blood RNA Tube, real-time RT-quantitative polymerase chain reaction was performed to determine Clock, Per1-3, and Cry1-2 gene expression. During the NDL, all genes investigated showed robust diurnal daily rhythmicity. During the constant light, only Clock maintained its daily rhythmicity. Clock acrophase was observed close to sunrise (ZT 0) and was statistically different from the other clock genes except for Per3. Per3 daily oscillations were not statistically significant. No differences were observed among the clock genes tested in the amplitude and robustness values. Our results can be considered preliminary data to provide new insights into the adaptation mechanism of the canine peripheral circadian clock. The persistence of Clock gene expression during the LL indicated the presence of an endogenously generated signal in blood. Because peripheral blood is an easily accessible sample in dogs, the analysis of clock gene expression in this tissue could be useful to investigate the adaptive capacity of this species housed in different environmental conditions linked to the owner's lifestyle.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Chemical, Pharmaceutical and Environmental Scieces, University of Messina, Messina, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giusi Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Ilenia Giacchino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
4
|
Sun J, Sun R. Development of a biomathematical model for human alertness and fatigue risk assessment based on the concept of energy. ERGONOMICS 2023; 66:1829-1844. [PMID: 36576165 DOI: 10.1080/00140139.2022.2163299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Fatigue risk in humans has few biomathematical models, and existing biomathematical models have many shortcomings. We developed a biomathematical model of fatigue risk based on the concept of energy to quantify human alertness from the perspective of energy and used alertness to characterise human psychological fatigue risk. The model allows mathematical modelling of activity processes that concern sleep intensity and quality and distinguishes between intrinsic exertion in the waking state and workload exertion in the workload state. This alertness and fatigue risk biomathematical model predicts changes in human alertness and fatigue risk indices at any point in the day. We applied numerical simulation and model analysis to five cases to validate the potential value of the alertness energy fatigue risk biomathematical model. Practitioner summary: To overcome the shortcomings of current biomathematical models that evaluate fatigue risk, this study developed a biomathematical model of fatigue risk based on the concept of energy to quantify human alertness from the perspective of energy and used alertness to characterise human fatigue risk.Abbreviations: S: The sleep homeostatic process; C: The circadian process; SAFTE: The sleep activity fatigue and task effectiveness model; FAID: The fatigue audit interdyne model; EEG: Electroencephalogram.
Collapse
Affiliation(s)
- Junya Sun
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Ruishan Sun
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
5
|
Bering T, Blancas-Velazquez AS, Rath MF. Circadian Clock Genes Are Regulated by Rhythmic Corticosterone at Physiological Levels in the Rat Hippocampus. Neuroendocrinology 2023; 113:1076-1090. [PMID: 37517388 PMCID: PMC10614510 DOI: 10.1159/000533151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION In the hippocampus, clock gene expression is important for memory and mood; however, the signaling mechanism controlling clock gene expression in the hippocampus is unknown. Recent findings suggest that circadian glucocorticoid rhythms driven by the suprachiasmatic nucleus (SCN) control rhythmic clock gene expression in neurons; in addition, dexamethasone modulates hippocampal clock gene expression. We therefore hypothesized that oscillations of clock genes in the hippocampus could be driven by SCN-controlled circadian rhythms in glucocorticoids. METHODS Temporal profiles of hippocampal clock gene expression were established by quantitative reverse-transcription real-time PCR on rat hippocampi, while cellular distribution was established by in situ hybridization. To determine the effect of rhythmic glucocorticoids on hippocampal clock gene expression, the SCN was lesioned, adrenal glands removed and a 24 h exogenous corticosterone rhythm at physiological levels was reestablished by use of a programmable infusion pump. RESULTS Daily rhythms were detected for Per1, Per2, Bmal1, Nr1d1, and Dbp, while clock gene products were confirmed in both the hippocampus proper and the dentate gyrus. In sham controls, differential hippocampal expression of Per1 and Dbp between ZT3 and ZT15 was detectable. This rhythm was abolished by SCN lesion; however, reestablishing the natural rhythm in corticosterone restored differential rhythmic expression of both Per1 and Dbp. Further, a 6 h phase delay in the corticosterone profile caused a predictable shift in expression of Nr1d1. CONCLUSION Our data show that rhythmic corticosterone can drive hippocampal clock gene rhythms suggesting that the SCN regulates the circadian oscillator of the hippocampus by controlling the circadian rhythm in circulating glucocorticoids.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Aurea Susana Blancas-Velazquez
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| |
Collapse
|
6
|
Kembro JM, Flesia AG, Nieto PS, Caliva JM, Lloyd D, Cortassa S, Aon MA. A dynamically coherent pattern of rhythms that matches between distant species across the evolutionary scale. Sci Rep 2023; 13:5326. [PMID: 37005423 PMCID: PMC10067965 DOI: 10.1038/s41598-023-32286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
We address the temporal organization of circadian and ultradian rhythms, crucial for understanding biological timekeeping in behavior, physiology, metabolism, and alignment with geophysical time. Using a newly developed five-steps wavelet-based approach to analyze high-resolution time series of metabolism in yeast cultures and spontaneous movement, metabolism, and feeding behavior in mice, rats, and quails, we describe a dynamically coherent pattern of rhythms spanning over a broad range of temporal scales (hours to minutes). The dynamic pattern found shares key features among the four, evolutionary distant, species analyzed. Specifically, a branching appearance given by splitting periods from 24 h into 12 h, 8 h and below in mammalian and avian species, or from 14 h down to 0.07 h in yeast. Scale-free fluctuations with long-range correlations prevail below ~ 4 h. Synthetic time series modeling support a scenario of coexisting behavioral rhythms, with circadian and ultradian rhythms at the center of the emergent pattern observed.
Collapse
Affiliation(s)
- J M Kembro
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina
| | - A G Flesia
- Facultad de Matemática, Astronomía, Física y Computación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigación y Estudios de La Matemática (CIEM, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - P S Nieto
- Facultad de Matemática, Astronomía, Física y Computación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J M Caliva
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - D Lloyd
- Schools of Bioscience and Engineering, Cardiff University, Cardiff, Wales, UK
| | - S Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA
| | - M A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA.
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
7
|
Refinetti R, Kenagy GJ. Seasonal patterns of body temperature in response to experimental photoperiod variation in a non-hibernating ground squirrel. J Comp Physiol B 2023; 193:219-226. [PMID: 36840751 DOI: 10.1007/s00360-023-01477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
Unlike numerous other members of the holarctic Tribe Marmotini of the squirrel family (Sciuridae) that typically exhibit spontaneous bouts of torpor that progress into an annual season of hibernation, members of the genus Ammospermophilus (antelope ground squirrels) do not enter torpor, and they remain active throughout the year in nature. We have experimentally evaluated seasonal patterns of variation in the circadian rhythm of body temperature in captive A. leucurus over a two-and-a-half-year period by exposing groups to either a constant daily photoperiod of 12 h light or a seasonally changing photoperiod that cycled between a summer maximum of 16 h per day and a winter minimum of 8 h; ambient air temperature was maintained at 26 °C. All squirrels showed continuous, year-round diurnal locomotor activity, and the group exposed to seasonally changing photoperiod adjusted onset and end of activity to changes in duration of the photoperiod. Animals in both groups showed a marked circadian rhythm of core body temperature with a typical daytime level of about 38 °C and nighttime level of about 35 °C for most of each year, but the group exposed to naturally changing daylength surprisingly reduced the level of its circadian oscillation by about 2 °C at the winter seasonal extreme of shortest daily illumination to a daytime level about 36 °C and a nocturnal level of about 33 °C. Despite this modest experimentally induced reduction in the level of the circadian rhythm of body temperature, we conclude that A. leucurus shows an overall stable annual pattern of circadian rhythmicity of its core body temperature that is consistent with a lack of any other evidence that the species engages in torpor or hibernation.
Collapse
Affiliation(s)
- Roberto Refinetti
- Department of Psychology, University of New Orleans, New Orleans, LA, 70148, USA
| | - G J Kenagy
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
Giannetto C, Cerutti RD, Scaglione MC, Arfuso F, Pennisi M, Giudice E, Piccione G, Zumbo A. Real-Time Measurement of the Daily Total Locomotor Behavior in Calves Reared in an Intensive Management System for the Possible Application in Precision Livestock Farming. Vet Sci 2023; 10:vetsci10010064. [PMID: 36669065 PMCID: PMC9866244 DOI: 10.3390/vetsci10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Housing confinement, adaptation to different light/dark conditions, and social deprivation could modify the amount of total locomotor behavior of calves recommended for their psychophysical health. Total locomotor behavior was recorded by means of an activity data logger every 5 min for 6 consecutive days. To do that eight clinically healthy 30-day-old Holstein calves living in calf boxes under natural photoperiod and environmental conditions were enrolled. ANOVA (analysis of variance) showed a statistical effect of the day of monitoring and animal. In the temporal distribution of the resting-activity frequency, it was observed that the calves presented periods of total locomotor behavior with the existence of two peaks, one between 06:00-07:00 and another between 17:00-18:00, which corresponds to time of food intake. In all animals, a diurnal daily rhythm of total locomotor behavior was observed during time of monitoring. Intrasubject and intersubject variabilities were statistically different in mesor, amplitude, and robustness of rhythm. In conclusion, the total locomotor behavior showed a diurnal daily rhythmicity in 30-day-old calves. The characteristics of rhythm were different from individual to individual and from day to day. The recorded intersubject variability must be taken in consideration during the monitoring of farm animals and justifies the application of the device to each animal, as precision livestock farming suggests.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Raul Delmar Cerutti
- Department of Veterinary Sciences, Universidad National del Litoral, Pellegrini 2750, Argentina
| | | | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Melissa Pennisi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
- Correspondence:
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
9
|
Determining the different phases of torpor from skin- or body temperature data in heterotherms. J Therm Biol 2023; 111:103396. [PMID: 36585072 DOI: 10.1016/j.jtherbio.2022.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Technological innovations have made heat-sensitive data-loggers smaller, more efficient and less expensive, which has led to a growing body of literature that measures the skin- or body temperatures of small animals in their natural environments. Studies of this type on heterothermic endotherms have prompted much debate regarding how to best define 'torpor' expressions from skin- or body temperature data alone. We propose a new quantitative method for defining torpor 'entries', 'arousals' and 'stable torpor periods' whilst comparing the results to 'torpor bout' durations identified using only the torpor cut-off method. By decomposing a torpor bout into 'entries', 'stable torpor periods', and 'active arousals', we avoid biases introduced by using strict threshold temperature values for the onset of torpor, thereby allowing better insight into individual use of torpor. We present our method as an easy-to-use function written in R-code, offering an un-biased and consistent methodology to be applied on skin- or body temperature measurements across datasets and research groups. When testing the function on a large dataset of skin temperature data collected on three bat species in Norway (Plecotus auritus: Nind = 39; Eptesicus nilssonii: Nind = 11; Myotis brandtii: Nind = 10), we identified 461 complete torpor bouts across species. More than 40% of the torpor bouts (Nbouts = 192) did not contain stable torpor periods, because the bats aroused before they had reached a stable skin temperature level. Furthermore, only considering 'torpid' and 'euthermic' temperature values by applying strict cut-off thresholds led to potentially large underestimations of torpor bout durations compared to our quantitative determination of the onset and termination of each torpor bout. We highlight the importance of differentiating between torpor phases, especially for active arousals that can be very energetically expensive and may alter our evaluation of the actual energetic savings gained by an individual employing torpor.
Collapse
|
10
|
Arfuso F, Zumbo A, Castronovo C, Giudice E, Piccione G, Monteverde V, Giannetto C. The housing system influences daily total locomotor activity (TLA) in dairy cows. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2098447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Calogero Castronovo
- Experimental Zooprophylactic Institute of Sicily, “A. Mirri”, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Vincenzo Monteverde
- Experimental Zooprophylactic Institute of Sicily, “A. Mirri”, Palermo, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| |
Collapse
|
11
|
Srimani S, Schmidt CX, Gómez-Serranillos MP, Oster H, Divakar PK. Modulation of Cellular Circadian Rhythms by Secondary Metabolites of Lichens. Front Cell Neurosci 2022; 16:907308. [PMID: 35813500 PMCID: PMC9260025 DOI: 10.3389/fncel.2022.907308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background Most mammalian cells harbor molecular circadian clocks that synchronize physiological functions with the 24-h day-night cycle. Disruption of circadian rhythms, through genetic or environmental changes, promotes the development of disorders like obesity, cardiovascular diseases, and cancer. At the cellular level, circadian, mitotic, and redox cycles are functionally coupled. Evernic (EA) and usnic acid (UA), two lichen secondary metabolites, show various pharmacological activities including anti-oxidative, anti-inflammatory, and neuroprotective action. All these effects have likewise been associated with a functional circadian clock. Hypothesis/Purpose To test, if the lichen compounds EA and UA modulate circadian clock function at the cellular level. Methods We used three different cell lines and two circadian luminescence reporter systems for evaluating dose- and time-dependent effects of EA/UA treatment on cellular clock regulation at high temporal resolution. Output parameters studied were circadian luminescence rhythm period, amplitude, phase, and dampening rate. Results Both compounds had marked effects on clock rhythm amplitudes and dampening independent of cell type, with UA generally showing a higher efficiency than EA. Only in fibroblast cells, significant effects on clock period were observed for UA treated cells showing shorter and EA treated cells showing longer period lengths. Transient treatment of mouse embryonic fibroblasts at different phases had only minor clock resetting effects for both compounds. Conclusion Secondary metabolites of lichen alter cellular circadian clocks through amplitude reduction and increased rhythm dampening.
Collapse
Affiliation(s)
- Soumi Srimani
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Maria Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Pradeep K. Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Yeung CYC, Dondelinger F, Schoof EM, Georg B, Lu Y, Zheng Z, Zhang J, Hannibal J, Fahrenkrug J, Kjaer M. Circadian regulation of protein cargo in extracellular vesicles. SCIENCE ADVANCES 2022; 8:eabc9061. [PMID: 35394844 PMCID: PMC8993114 DOI: 10.1126/sciadv.abc9061] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/17/2022] [Indexed: 05/19/2023]
Abstract
The circadian clock controls many aspects of physiology, but it remains undescribed whether extracellular vesicles (EVs), including exosomes, involved in cell-cell communications between tissues are regulated in a circadian pattern. We demonstrate a 24-hour rhythmic abundance of individual proteins in small EVs using liquid chromatography-mass spectrometry in circadian-synchronized tendon fibroblasts. Furthermore, the release of small EVs enriched in RNA binding proteins was temporally separated from those enriched in cytoskeletal and matrix proteins, which peaked during the end of the light phase. Last, we targeted the protein sorting mechanism in the exosome biogenesis pathway and established (by knockdown of circadian-regulated flotillin-1) that matrix metalloproteinase 14 abundance in tendon fibroblast small EVs is under flotillin-1 regulation. In conclusion, we have identified proteomic time signatures for small EVs released by tendon fibroblasts, which supports the view that the circadian clock regulates protein cargo in EVs involved in cell-cell cross-talk.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Corresponding author.
| | - Frank Dondelinger
- Centre for Health Informatics, Computation and Statistics, Lancaster University, Lancaster, UK
| | - Erwin M. Schoof
- Proteomics Core, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zhiyong Zheng
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Flesia AG, Nieto PS, Aon MA, Kembro JM. Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology. Methods Mol Biol 2022; 2399:277-341. [PMID: 35604562 DOI: 10.1007/978-1-0716-1831-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The temporal dynamics in biological systems displays a wide range of behaviors, from periodic oscillations, as in rhythms, bursts, long-range (fractal) correlations, chaotic dynamics up to brown and white noise. Herein, we propose a comprehensive analytical strategy for identifying, representing, and analyzing biological time series, focusing on two strongly linked dynamics: periodic (oscillatory) rhythms and chaos. Understanding the underlying temporal dynamics of a system is of fundamental importance; however, it presents methodological challenges due to intrinsic characteristics, among them the presence of noise or trends, and distinct dynamics at different time scales given by molecular, dcellular, organ, and organism levels of organization. For example, in locomotion circadian and ultradian rhythms coexist with fractal dynamics at faster time scales. We propose and describe the use of a combined approach employing different analytical methodologies to synergize their strengths and mitigate their weaknesses. Specifically, we describe advantages and caveats to consider for applying probability distribution, autocorrelation analysis, phase space reconstruction, Lyapunov exponent estimation as well as different analyses such as harmonic, namely, power spectrum; continuous wavelet transforms; synchrosqueezing transform; and wavelet coherence. Computational harmonic analysis is proposed as an analytical framework for using different types of wavelet analyses. We show that when the correct wavelet analysis is applied, the complexity in the statistical properties, including temporal scales, present in time series of signals, can be unveiled and modeled. Our chapter showcase two specific examples where an in-depth analysis of rhythms and chaos is performed: (1) locomotor and food intake rhythms over a 42-day period of mice subjected to different feeding regimes; and (2) chaotic calcium dynamics in a computational model of mitochondrial function.
Collapse
Affiliation(s)
- Ana Georgina Flesia
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones y Estudios de Matemática (CIEM, CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Paula Sofia Nieto
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG, CONICET-UNC), Ciudad Universitaria, Córdoba, Argentina
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, and Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jackelyn Melissa Kembro
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) and Catedra de Química Biológica. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina.
| |
Collapse
|
14
|
Mohamed HMA, Takahashi A, Nishijima S, Adachi S, Murai I, Okamura H, Yamamoto T. CNOT1 regulates circadian behaviour through Per2 mRNA decay in a deadenylation-dependent manner. RNA Biol 2021; 19:703-718. [PMID: 35510877 PMCID: PMC9090297 DOI: 10.1080/15476286.2022.2071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks are an endogenous internal timekeeping mechanism that drives the rhythmic expression of genes, controlling the 24 h oscillatory pattern in behaviour and physiology. It has been recently shown that post-transcriptional mechanisms are essential for controlling rhythmic gene expression. Controlling the stability of mRNA through poly(A) tail length modulation is one such mechanism. In this study, we show that Cnot1, encoding the scaffold protein of the CCR4-NOT deadenylase complex, is highly expressed in the suprachiasmatic nucleus, the master timekeeper. CNOT1 deficiency in mice results in circadian period lengthening and alterations in the mRNA and protein expression patterns of various clock genes, mainly Per2. Per2 mRNA exhibited a longer poly(A) tail and increased mRNA stability in Cnot1+/- mice. CNOT1 is recruited to Per2 mRNA through BRF1 (ZFP36L1), which itself oscillates in antiphase with Per2 mRNA. Upon Brf1 knockdown, Per2 mRNA is stabilized leading to increased PER2 expression levels. This suggests that CNOT1 plays a role in tuning and regulating the mammalian circadian clock.
Collapse
Affiliation(s)
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Iori Murai
- Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
15
|
Farsi H, Harti D, Rachid Achaâban M, Piro M, Ouassat M, Challet E, Pévet P, El Allali K. Seasonal variations in locomotor activity rhythm and diurnal activity in the dromedary camel (Camelus dromedarius) under mesic semi-natural conditions. Chronobiol Int 2021; 39:129-150. [PMID: 34965824 DOI: 10.1080/07420528.2021.1984936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The dromedary camel (Camelus dromedarius) is a large ungulate that copes well with the xeric environment of the desert. Its peculiar adaptation to heat and dehydration is well-known. However, its behavior and general activity is far from being completely understood. The present study was carried out to investigate the ecological effect of the various seasons on the locomotor activity (LA) rhythm and diurnal activity of this species. Six adult female camels were maintained under mesic semi-natural conditions of the environment during four periods of 10 days in each season: autumn, winter, spring and summer. In addition, three female camels were used to test the effect of rain on the LA rhythm during a period of 18 days during the winter. The animal's LA was recorded using the locomotion scoring method. Camels displayed a clear 24.0h LA rhythm throughout the four seasons. Activity was intense during Day-time (6-22 fold higher in comparison to night) and dropped or completely disappeared during nighttime. Mean daytime total activity was significantly higher in the summer as compared to winter. Regardless of the season, the active phase in camels coincided with the time of the photophase and thermophase. Furthermore, the daily duration of the time spent active was directly correlated to the seasonal changes of photoperiod. The diurnal activity remained unchanged over the four seasons. For each season, the start and the end of the active phase were synchronized with the onset of sunrise and sunset. At these time periods, temperature remained incredibly stable with a change ranging from 0.002 to 0.210°C; whereas, changes of light intensity were greater and faster with a change from 0.1 to 600 lux representing a variation of 3215-7192 fold in just 25-29 min. Rainfall affected the pattern of the LA rhythm with occurrence of abnormal nocturnal activity during nighttime disturbing nocturnal rest and sleep. Here we show that the dromedary camel exhibits significant seasonal changes of its activity within daylight hours. However, the diurnal pattern remains unchanged regardless of the season; whereas, abnormal nocturnal activity is observed during periods of rain. The activity onset and offset in this species seems to be primarily driven by the changes in light intensity at dusk and dawn.
Collapse
Affiliation(s)
- Hicham Farsi
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Driss Harti
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohamed Rachid Achaâban
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Piro
- Medicine and Surgical Unit of Domestic Animals, Department of Medicine, Surgery and Reproduction, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Ouassat
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | | | - Khalid El Allali
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| |
Collapse
|
16
|
Bering T, Hertz H, Rath MF. The Circadian Oscillator of the Cerebellum: Triiodothyronine Regulates Clock Gene Expression in Granule Cells in vitro and in the Cerebellum of Neonatal Rats in vivo. Front Physiol 2021; 12:706433. [PMID: 34776993 PMCID: PMC8578874 DOI: 10.3389/fphys.2021.706433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The central circadian clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, but an SCN-dependent molecular circadian oscillator is present in the cerebellar cortex. Recent findings suggest that circadian release of corticosterone is capable of driving the circadian oscillator of the rat cerebellum. To determine if additional neuroendocrine signals act to shape cerebellar clock gene expression, we here tested the role of the thyroid hormone triiodothyronine (T3) in regulation of the cerebellar circadian oscillator. In cultured cerebellar granule cells from mixed-gender neonatal rats, T3 treatment affected transcript levels of the clock genes Per2, Arntl, Nr1d1, and Dbp, suggesting that T3 acts directly on granule cells to control the circadian oscillator. We then used two different in vivo protocols to test the role of T3 in adult female rats: Firstly, a single injection of T3 did not influence clock gene expression in the cerebellum. Secondly, we established a surgical rat model combining SCN lesion with a programmable micropump infusing circadian physiological levels of T3; however, rhythmic infusion of T3 did not reestablish differential clock gene expression between day and night in SCN lesioned rats. To test if the effects of T3 observed in vitro were related to the developmental stage, acute injections of T3 were performed in mixed-gender neonatal rats in vivo; this procedure significantly affected cerebellar expression of the clock genes Per1, Per2, Nr1d1, and Dbp. Developmental comparisons showed rhythmic expression of all clock genes analyzed in the cerebellum of adult rats only, whereas T3 responsiveness was limited to neonatal animals. Thus, T3 shapes cerebellar clock gene profiles in early postnatal stages, but it does not represent a systemic circadian regulatory mechanism linking the SCN to the cerebellum throughout life.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Cerutti RD, Giannetto C, Scaglione MC, Sciabarrasi A, Fazio F, Piccione G. Interspecies comparison of daily total locomotor activity between maned wolves (Chrysocyon brachyurus) and domestic dogs (Canis familiaris) maintained in captivity. J Vet Behav 2021. [DOI: 10.1016/j.jveb.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Saoca C, Rizzo M, Giannetto C, Fazio F, Giudice E, Panzera M, Piccione G. Circannual variability of calcium and phosphorus serum levels in foal and calf: a comparison. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1614385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Concetta Saoca
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Messina, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Messina, Italy
| | - Michele Panzera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Messina, Italy
| |
Collapse
|
19
|
Spanò N, Cerutti RD, Rizzo M, Alberghina D, Scaglione MC, Bagilet AS, Giannetto C, Piccione G. Evaluation of the patterns of daily total locomotor activity in maned wolf ( Chryosocyon brachyurus) maintained in captivity. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1608728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and of Morphological and Functional Image, University of Messina, Italy
| | - Raúl Delmar Cerutti
- Department of Veterinary Sciences, Universidad National del Litoral, Santa Fe, Argentina
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Daniela Alberghina
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | | | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Giannetto C, Carcangiu V, Luridiana S, Parmeggiani A, Piccione G. Twenty-four-hour rhythm patterns of plasma melatonin in short-day and long-day breeders maintained under natural environmental conditions. Chronobiol Int 2020; 37:974-979. [PMID: 32482096 DOI: 10.1080/07420528.2020.1772808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Photoperiodic treatments have been of practical interest in controlling seasonal reproduction in sheep, goats and horses. Melatonin is the principal mediator of the environmental photoperiodic message. To investigate the intra- and inter-subject variability of melatonin 24 h rhythm, ten female Italian Saddle horses (8-10 yrs old, mean body weight 525 ± 30 kg), ten female Sarda breed sheep (2-3 yrs old, mean body weight 40.5 ± 2.8 kg) and ten female Sarda breed goats (3-4 yrs old, mean body weight 38.9 ± 4.1 kg), housed individually in a 4 × 4 m soundproof box equipped with 50 × 100 cm opening windows, were subjected to a natural photoperiod of the vernal equinox (sunrise 06:00 h; sunset 18:00 h). Blood samples were collected from each animal, every 3 h over a 48 h period starting at 00:00 h of day 1 and ending at 00:00 h of day 3. Plasma melatonin concentrations were determined by direct radioimmunoassay (MelatoninDirect RIA, Labor Diagnostika Nord GmbH, Nordhorn, Germany). The application of single cosinor method substantiated a circadian rhythm of melatonin with a nocturnal peak in all studied species. The application of two-way ANOVA on the rhythmic parameters indicated statistically significant differences between the three species in all of the cosinor analysis-derived parameters of MESOR, amplitude, acrophase and robustness of rhythm. Analyses of intra- and inter-subject variability indicate that organization of the melatonin 24 h rhythm is characterized by great accuracy of control within and between the individuals of a breed. In conclusion, features of the 24 h rhythm of melatonin among species; however, the 24 h rhythmicity of melatonin each species showed high stability within the various subjects and within the same subject. These findings must be taken into consideration when applying photoperiod and melatonin treatments for breeding purposes.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata , Messina, Italy
| | - Vincenzo Carcangiu
- Department of Veterinary Science, University of Sassari , 07100, Sassari, Italy
| | | | | | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata , Messina, Italy
| |
Collapse
|
21
|
Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin) 2020; 7:321-362. [PMID: 33251281 PMCID: PMC7678948 DOI: 10.1080/23328940.2020.1743605] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
This article reviews the literature on the circadian rhythms of body temperature and whole-organism metabolism. The two rhythms are first described separately, each description preceded by a review of research methods. Both rhythms are generated endogenously but can be affected by exogenous factors. The relationship between the two rhythms is discussed next. In endothermic animals, modulation of metabolic activity can affect body temperature, but the rhythm of body temperature is not a mere side effect of the rhythm of metabolic thermogenesis associated with general activity. The circadian system modulates metabolic heat production to generate the body temperature rhythm, which challenges homeothermy but does not abolish it. Individual cells do not regulate their own temperature, but the relationship between circadian rhythms and metabolism at the cellular level is also discussed. Metabolism is both an output of and an input to the circadian clock, meaning that circadian rhythmicity and metabolism are intertwined in the cell.
Collapse
Affiliation(s)
- Roberto Refinetti
- Department of Psychology, University of New Orleans, New Orleans, LA, USA
| |
Collapse
|
22
|
Vetter L, Cortassa S, O'Rourke B, Armoundas AA, Bedja D, Jende JME, Bendszus M, Paolocci N, Sollot SJ, Aon MA, Kurz FT. Diabetes Increases the Vulnerability of the Cardiac Mitochondrial Network to Criticality. Front Physiol 2020; 11:175. [PMID: 32210835 PMCID: PMC7077512 DOI: 10.3389/fphys.2020.00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial criticality describes a state in which the mitochondrial cardiac network under intense oxidative stress becomes very sensitive to small perturbations, leading from local to cell-wide depolarization and synchronized oscillations that may escalate to the myocardial syncytium generating arrhythmias. Herein, we describe the occurrence of mitochondrial criticality in the chronic setting of a metabolic disorder, type 1 diabetes (T1DM), using a streptozotocin (STZ)-treated guinea pig (GP) animal model. Using wavelet analysis of mitochondrial networks from two-photon microscopy imaging of cardiac myocytes loaded with a fluorescent probe of the mitochondrial membrane potential, we show that cardiomyocytes from T1DM GPs are closer to criticality, making them more vulnerable to cell-wide mitochondrial oscillations as can be judged by the latency period to trigger oscillations after a laser flash perturbation, and their propensity to oscillate. Insulin treatment of T1DM GPs rescued cardiac myocytes to sham control levels of susceptibility, a protective condition that could also be attained with interventions leading to improvement of the cellular redox environment such as preincubation of diabetic cardiac myocytes with the lipid palmitate or a cell-permeable form of glutathione, in the presence of glucose.
Collapse
Affiliation(s)
- Larissa Vetter
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.,Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, MA, United States
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Steven J Sollot
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
23
|
Bering T, Hertz H, Rath MF. Rhythmic Release of Corticosterone Induces Circadian Clock Gene Expression in the Cerebellum. Neuroendocrinology 2020; 110:604-615. [PMID: 31557761 DOI: 10.1159/000503720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
Neurons of the cerebellar cortex contain a circadian oscillator, with circadian expression of clock genes being controlled by the master clock of the suprachiasmatic nucleus (SCN). However, the signaling pathway connecting the SCN to the cerebellum is unknown. Glucocorticoids exhibit a prominent SCN-dependent circadian rhythm, and high levels of the glucocorticoid receptor have been reported in the cerebellar cortex; we therefore hypothesized that glucocorticoids may control the rhythmic expression of clock genes in the cerebellar cortex. We here applied a novel methodology by combining the electrolytic lesion of the SCN with implantation of a micropump programmed to release corticosterone in a circadian manner mimicking the endogenous hormone profile. By use of this approach, we were able to restore the corticosterone rhythm in SCN-lesioned male rats. Clock gene expression in the cerebellum was abolished in rats with a lesioned SCN, but exogenous corticosterone restored the daily rhythm in clock gene expression in the cerebellar cortex, as revealed by quantitative real-time PCR and radiochemical in situ hybridization for the detection of the core clock genes Per1, Per2, and Arntl. On the contrary, exogenous hormone did not restore circadian rhythms in body temperature and running activity. RNAscope in situ hybridization further revealed that the glucocorticoid receptor colocalizes with clock gene products in cells of the cerebellar cortex, suggesting that corticosterone exerts its actions by binding directly to receptors in neurons of the cerebellum. However, rhythmic clock gene expression in the cerebellum was also detectable in adrenalectomized rats, indicating that additional control mechanisms exist. These data show that the cerebellar circadian oscillator is influenced by SCN-dependent rhythmic release of corticosterone.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
| |
Collapse
|
24
|
Arfuso F, Giannetto C, Giudice E, Rizzo M, Panzera M, Piccione G. Comparative evaluation of daily rhythm of urinary excretion in Equus caballus and Bos taurus by means of fractional clearance. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1505128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, polo Universitario dell’Annunziata, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, polo Universitario dell’Annunziata, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, polo Universitario dell’Annunziata, Messina, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, polo Universitario dell’Annunziata, Messina, Italy
| | - Michele Panzera
- Department of Veterinary Sciences, University of Messina, polo Universitario dell’Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, polo Universitario dell’Annunziata, Messina, Italy
| |
Collapse
|
25
|
Metzger J, Wicht H, Korf HW, Pfeffer M. Seasonal Variations of Locomotor Activity Rhythms in Melatonin-Proficient and -Deficient Mice under Seminatural Outdoor Conditions. J Biol Rhythms 2019; 35:58-71. [PMID: 31625428 DOI: 10.1177/0748730419881922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Locomotor activity patterns of laboratory mice are widely used to analyze circadian mechanisms, but most investigations have been performed under standardized laboratory conditions. Outdoors, animals are exposed to daily changes in photoperiod and other abiotic cues that might influence their circadian system. To investigate how the locomotor activity patterns under outdoor conditions compare to controlled laboratory conditions, we placed 2 laboratory mouse strains (melatonin-deficient C57Bl and melatonin-proficient C3H) in the garden of the Dr. Senckenbergische Anatomie in Frankfurt am Main. The mice were kept singly in cages equipped with an infrared locomotion detector, a hiding box, nesting material, and with food and water ad libitum. The locomotor activity of each mouse was recorded for 1 year, together with data on ambient temperature, light, and humidity. Chronotype, chronotype stability, total daily activity, duration of the activity period, and daily diurnality indices were determined from the actograms. C3H mice showed clear seasonal differences in the chronotype, its stability, the total daily activity, and the duration of the activity period. These pronounced seasonal differences were not observed in the C57Bl. In both strains, the onset of the main activity period was mainly determined by the evening dusk, whereas the offset was influenced by the ambient temperature. The actograms did not reveal infra-, ultradian, or lunar rhythms or a weekday/weekend pattern. Under outdoor conditions, the 2 strains retained their nocturnal locomotor identity as observed in the laboratory. Our results indicate that the chronotype displays a seasonal plasticity that may depend on the melatoninergic system. Photoperiod and ambient temperature are the most potent abiotic entraining cues. The timing of the evening dusk mainly affects the onset of the activity period; the ambient temperature during this period influences the latter's duration. Humidity, overall light intensities, and human activities do not affect the locomotor behavior.
Collapse
Affiliation(s)
- Joshua Metzger
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Horst-Werner Korf
- Institut für Anatomie I, Fachbereich Medizin, Heinrich Heine Universität, Düsseldorf, Germany
| | - Martina Pfeffer
- Institut für Anatomie II, Fachbereich Medizin, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
26
|
Boyles JG. A Brief Introduction to Methods for Describing Body Temperature in Endotherms. Physiol Biochem Zool 2019; 92:365-372. [DOI: 10.1086/703420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
El Allali K, Farsi H, Piro M, Rachid Achaâban M, Ouassat M, Challet E, Pévet P. Smartphone and a freely available application as a new tool to record locomotor activity rhythm in large mammals and humans. Chronobiol Int 2019; 36:1047-1057. [PMID: 31088178 DOI: 10.1080/07420528.2019.1609980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Daily pattern of locomotor activity (LA), one of the most studied rhythms in humans and rodents, has not been widely investigated in large mammals. This is partly due to the high cost and breakability of used automatic devices. Since last decade, smartphones are becoming ubiquitous. Meanwhile, several applications detecting activity by using internal sensors were made available. In this study, we assumed that this device could be a cheaper and easier way to measure the LA rhythm in humans and large mammals, like camel and goat. A smartphone application (Nokia Mate Health), normally used to quantify physical activities in humans, was chosen for the study. To validate the rhythm data obtained from the smartphone, LA rhythm was simultaneously recorded using an automatic device, the Actiwatch-Mini®. Results showed that the smartphone provided a clear and significant daily rhythm of LA. The visual assessment of the superimposed LA rhythm's curves in all three species showed that the smartphone application displayed similar rhythms as those recorded by the Actiwatch-Mini. Highly significant positive correlation (p≤ 0.0001) exists between the two recording rhythms. The daily periods were both the same at 24.0 h. Acrophases were also significantly similar and occurring around mid-day: 11:40 ± 0.35 h vs 11:41 ± 0.35 h for the camel, 11:25 ± 0.19 h vs 11:37 ± 0.25 h for the goat and 13:04 ± 0.11 h vs 13:51 ± 0.28 h for humans using smartphone and Actiwatch, respectively. The related mesor and amplitude were also close between the two recording devices. Results indicate clearly that using smartphones constitutes a reliable cheap tool to study LA rhythm for chronobiology studies, especially in laboratories facing lack of funding.
Collapse
Affiliation(s)
- Khalid El Allali
- a Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences , Hassan II Agronomy and Veterinary Institute , Rabat , Morocco
| | - Hicham Farsi
- a Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences , Hassan II Agronomy and Veterinary Institute , Rabat , Morocco
| | - Mohammed Piro
- b Medicine and Surgical Unit of Domestic Animals, Department of Medicine, Surgery and Reproduction , Hassan II Agronomy and Veterinary Institute , Rabat , Morocco
| | - Mohamed Rachid Achaâban
- a Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences , Hassan II Agronomy and Veterinary Institute , Rabat , Morocco
| | - Mohammed Ouassat
- a Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences , Hassan II Agronomy and Veterinary Institute , Rabat , Morocco
| | - Etienne Challet
- c Institute for Cellular and Integrative Neurosciences , CNRS and University of Strasbourg , Strasbourg , France
| | - Paul Pévet
- c Institute for Cellular and Integrative Neurosciences , CNRS and University of Strasbourg , Strasbourg , France
| |
Collapse
|
28
|
Telling the Time with a Broken Clock: Quantifying Circadian Disruption in Animal Models. BIOLOGY 2019; 8:biology8010018. [PMID: 30901884 PMCID: PMC6466320 DOI: 10.3390/biology8010018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 03/09/2019] [Indexed: 12/31/2022]
Abstract
Circadian rhythms are approximately 24 h cycles in physiology and behaviour that enable organisms to anticipate predictable rhythmic changes in their environment. These rhythms are a hallmark of normal healthy physiology, and disruption of circadian rhythms has implications for cognitive, metabolic, cardiovascular and immune function. Circadian disruption is of increasing concern, and may occur as a result of the pressures of our modern 24/7 society—including artificial light exposure, shift-work and jet-lag. In addition, circadian disruption is a common comorbidity in many different conditions, ranging from aging to neurological disorders. A key feature of circadian disruption is the breakdown of robust, reproducible rhythms with increasing fragmentation between activity and rest. Circadian researchers have developed a range of methods for estimating the period of time series, typically based upon periodogram analysis. However, the methods used to quantify circadian disruption across the literature are not consistent. Here we describe a range of different measures that have been used to measure circadian disruption, with a particular focus on laboratory rodent data. These methods include periodogram power, variability in activity onset, light phase activity, activity bouts, interdaily stability, intradaily variability and relative amplitude. The strengths and limitations of these methods are described, as well as their normal ranges and interrelationships. Whilst there is an increasing appreciation of circadian disruption as both a risk to health and a potential therapeutic target, greater consistency in the quantification of disrupted rhythms is needed.
Collapse
|
29
|
Goh GH, Maloney SK, Mark PJ, Blache D. Episodic Ultradian Events-Ultradian Rhythms. BIOLOGY 2019; 8:E15. [PMID: 30875767 PMCID: PMC6466064 DOI: 10.3390/biology8010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/24/2019] [Accepted: 03/09/2019] [Indexed: 11/16/2022]
Abstract
In the fast lane of chronobiology, ultradian events are short-term rhythms that have been observed since the beginning of modern biology and were quantified about a century ago. They are ubiquitous in all biological systems and found in all organisms, from unicellular organisms to mammals, and from single cells to complex biological functions in multicellular animals. Since these events are aperiodic and last for a few minutes to a few hours, they are better classified as episodic ultradian events (EUEs). Their origin is unclear. However, they could have a molecular basis and could be controlled by hormonal inputs-in vertebrates, they originate from the activity of the central nervous system. EUEs are receiving increasing attention but their aperiodic nature requires specific sampling and analytic tools. While longer scale rhythms are adaptations to predictable changes in the environment, in theory, EUEs could contribute to adaptation by preparing organisms and biological functions for unpredictability.
Collapse
Affiliation(s)
- Grace H Goh
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | - Shane K Maloney
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | - Peter J Mark
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | - Dominique Blache
- School of Agriculture and Environment and UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| |
Collapse
|
30
|
Refinetti R, Earle G, Kenagy G. Exploring determinants of behavioral chronotype in a diurnal-rodent model of human physiology. Physiol Behav 2019; 199:146-153. [DOI: 10.1016/j.physbeh.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022]
|
31
|
Farsi H, Harti D, Achaâban MR, Piro M, Ouassat M, Challet E, Pévet P, El Allali K. Validation of locomotion scoring as a new and inexpensive technique to record circadian locomotor activity in large mammals. Heliyon 2018; 4:e00980. [PMID: 30582033 PMCID: PMC6287081 DOI: 10.1016/j.heliyon.2018.e00980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The locomotor activity (LA) rhythm, widely studied in rodents, has not been fully investigated in large mammals. This is due to the high cost and the brittleness of the required devices. Alternatively, the locomotion scoring method (SM), consisting of attribution of a score to various levels of activity would be a consistent method to assess the circadian LA rhythm in such species. New method To test this, a SM with a score ranging from 0 to 5 has been developed and used in two domestic large mammals, the camel and the goat. One minute interval scoring was performed using visual screening and monitoring of infra-red camera recording videos and carried out by two evaluators. Results The SM provides a clear daily LA rhythm that has been validated using an automate device, the Actiwatch-Mini. The obtained curves and actograms were indeed highly similar to those acquired from the Actiwatch-Mini. Moreover, there were no statistical differences in the period and acrophase. The period was exactly of 24.0h and the acrophases occurred at 12h05 ± 00h03 and 12h14 ± 00h07 for the camel and at 13h13 ± 00h09 and 12h57 ± 00h09 for the goat using SM and Actiwatch-Mini respectively. Comparison with existing methods Compared to the automatic system, the SM is inexpensive and has the advantage of describing all types of performed movements. Conclusions The new developed SM is highly reliable and sufficiently accurate to assess conveniently the LA rhythm and specific behaviors in large mammals. This opens new perspectives to study chronobiology in animal models of desert, tropical and equatorial zones.
Collapse
Affiliation(s)
- H Farsi
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Institute, BP: 6202, Rabat-Instituts, 10101, Rabat, Morocco
| | - D Harti
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Institute, BP: 6202, Rabat-Instituts, 10101, Rabat, Morocco
| | - M R Achaâban
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Institute, BP: 6202, Rabat-Instituts, 10101, Rabat, Morocco
| | - M Piro
- Medicine and Surgical Unit of Domestic Animals, Department of Medicine, Surgery and Reproduction, Hassan II Agronomy and Veterinary Institute, BP: 6202, Rabat-Instituts, 10101, Rabat, Morocco
| | - M Ouassat
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Institute, BP: 6202, Rabat-Instituts, 10101, Rabat, Morocco
| | - E Challet
- Institute for Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - P Pévet
- Institute for Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - K El Allali
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Institute, BP: 6202, Rabat-Instituts, 10101, Rabat, Morocco
| |
Collapse
|
32
|
Byrne JEM, Bullock B, Brydon A, Murray G. A psychometric investigation of the sleep, circadian rhythms, and mood (SCRAM) questionnaire. Chronobiol Int 2018; 36:265-275. [PMID: 30395721 DOI: 10.1080/07420528.2018.1533850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The sleep, circadian rhythms, and mood (SCRAM) questionnaire (Byrne, Bullock et al., 2017) was designed to concurrently measure individual differences in three clinically important functions: diurnal preference, sleep quality, and mood. The 15-item questionnaire consists of three 5-item scales named Morningness, Good Sleep, and Depressed Mood. The overarching aim of the current project was to investigate the validity and reliability of the questionnaire. Here, we report on associations investigated in three data sets. Study 1 (N = 70, 80% females) was used to examine the test-retest reliability of the questionnaire, finding strong test-retest reliability of the three scales over a 2-week period (r's ranging from 0.73 to 0.86). Study 2 (N = 183, 80% females) enabled us to examine the construct validity of the SCRAM scales against well-validated self-report measures of diurnal preference, sleep quality, and depression. Strong correlations were found between each SCRAM scale and their respective measure in bivariate analyses, and associations were robust after the inclusion of the remaining two SCRAM scales as predictors in regression analyses. Data from Study 3 (N = 42, 100% males) were used to measure the extent to which SCRAM scores correlated with objective measures of sleep-wake behavior using actigraphy. Morningness was found to be related to earlier sleep onset and offset times, and Good Sleep was related to higher sleep efficiency but to no other measures of sleep quality; Depressed Mood was not related to actigraphy measures. The findings provide provisional support for construct validity and reliability of the SCRAM questionnaire as a measure of diurnal preference, sleep quality, and depressed mood. Future research into the psychometrics of SCRAM should test the questionnaire's discriminant and predictive validity in clinical samples.
Collapse
Affiliation(s)
- Jamie E M Byrne
- a Centre for Mental Health , Swinburne University of Technology , Hawthorn , Australia
| | - Ben Bullock
- a Centre for Mental Health , Swinburne University of Technology , Hawthorn , Australia
| | - Aida Brydon
- a Centre for Mental Health , Swinburne University of Technology , Hawthorn , Australia
| | - Greg Murray
- a Centre for Mental Health , Swinburne University of Technology , Hawthorn , Australia
| |
Collapse
|
33
|
Zakari FO, Ayo JO, Rekwot PI, Kawu MU, Minka NS, Olaifa FH, Ibrahim MJ, Avazi DO. Daily rhythmicity of behavioral responses in donkeys of different age groups during the cold-dry (harmattan) and hot-dry seasons in a tropical savannah. J Vet Behav 2018. [DOI: 10.1016/j.jveb.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Harbison ST, Kumar S, Huang W, McCoy LJ, Smith KR, Mackay TFC. Genome-Wide Association Study of Circadian Behavior in Drosophila melanogaster. Behav Genet 2018; 49:60-82. [PMID: 30341464 PMCID: PMC6326971 DOI: 10.1007/s10519-018-9932-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Circadian rhythms influence physiological processes from sleep–wake cycles to body temperature and are controlled by highly conserved cycling molecules. Although the mechanistic basis of the circadian clock has been known for decades, the extent to which circadian rhythms vary in nature and the underlying genetic basis for that variation is not well understood. We measured circadian period (Ʈ) and rhythmicity index in the Drosophila Genetic Reference Panel (DGRP) and observed extensive genetic variation in both. Seven DGRP lines had sexually dimorphic arrhythmicity and one line had an exceptionally long Ʈ. Genome-wide analyses identified 584 polymorphisms in 268 genes. We observed differences among transcripts for nine genes predicted to interact among themselves and canonical clock genes in the long period line and a control. Mutations/RNAi knockdown targeting these genes also affected circadian behavior. Our observations reveal that complex genetic interactions influence high levels of variation in circadian phenotypes.
Collapse
Affiliation(s)
- Susan T Harbison
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, Building 10, Room 7D13, 10 Center Drive, Bethesda, MD, 20892-1640, USA.
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Lenovia J McCoy
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kirklin R Smith
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| |
Collapse
|
35
|
Pfeffer M, Zimmermann Z, Gispert S, Auburger G, Korf HW, von Gall C. Impaired Photic Entrainment of Spontaneous Locomotor Activity in Mice Overexpressing Human Mutant α-Synuclein. Int J Mol Sci 2018; 19:E1651. [PMID: 29865270 PMCID: PMC6032049 DOI: 10.3390/ijms19061651] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/17/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor and non-motor symptoms. Sleep disorders are the most frequent and challenging non-motor symptoms in PD patients, and there is growing evidence that they are a consequence of disruptions within the circadian system. PD is characterized by a progressive degeneration of the dorsal vagal nucleus and midbrain dopaminergic neurons together with an imbalance of many other neurotransmitters. Mutations in α-synuclein (SNCA), a protein modulating SNARE complex-dependent neurotransmission, trigger dominantly inherited PD variants and sporadic cases of PD. The A53T SNCA missense mutation is associated with an autosomal dominant early-onset familial PD. To test whether this missense mutation affects the circadian system, we analyzed the spontaneous locomotor behavior of non-transgenic wildtype mice and transgenic mice overexpressing mutant human A53T α-synuclein (A53T). The mice were subjected to entrained- and free-running conditions as well as to experimental jet lag. Furthermore, the vesicular glutamate transporter 2 (VGLUT2) in the suprachiasmatic nucleus (SCN) was analyzed by immunohistochemistry. Free-running circadian rhythm and, thus, circadian rhythm generation, were not affected in A53T mice. A53T mice entrained to the light⁻dark cycle, however, with an advanced phase angle of 2.65 ± 0.5 h before lights off. Moreover, re-entrainment after experimental jet lag was impaired in A53T mice. Finally, VGLUT2 immunoreaction was reduced in the SCN of A53T mice. These data suggest an impaired light entrainment of the circadian system in A53T mice.
Collapse
Affiliation(s)
- Martina Pfeffer
- Institut für Anatomie II, Fachbereich Medizin, Heinrich Heine Universität, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | - Zuzana Zimmermann
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Horst-Werner Korf
- Institut für Anatomie I, Fachbereich Medizin, Heinrich Heine Universität, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | - Charlotte von Gall
- Institut für Anatomie II, Fachbereich Medizin, Heinrich Heine Universität, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
36
|
Abstract
Although inbred domesticated strains of rats and mice serve as traditional mammalian animal models in biomedical research, the nocturnal habits of these rodents make them inappropriate for research that requires a model with human-like diurnal activity rhythms. We conducted a literature review and recorded locomotor activity data from four rodent species that are generally considered to be diurnally active, the Mongolian gerbil ( Meriones unguiculatus), the degu ( Octodon degus), the African (Nile) grass rat ( Arvicanthis niloticus), and the antelope ground squirrel ( Ammospermophilus leucurus). Our data collected under 12-hour light/dark cycles confirmed and expanded the existing literature in showing that the activity rhythms of antelope ground squirrels and African grass rats are stronger and more concentrated in the light phase of the light/dark cycle than the activity rhythms of Mongolian gerbils and degus, making the former two species preferable and more reliable as models of consistent diurnal activity in the laboratory. Among the two more strongly diurnal species, antelope ground squirrels are more exclusively diurnal and have more robust activity rhythms than African grass rats. Although animals of these two species are not currently available from commercial suppliers, African grass rats are indigenous to a wide area across the north of Africa and thus available to researchers in the eastern hemisphere, whereas antelope ground squirrels can be found throughout much of western North America's desert country and, therefore, are more easily accessible to North American researchers.
Collapse
Affiliation(s)
- Roberto Refinetti
- 1 Circadian Rhythm Laboratory, Department of Psychological Science, Boise State University, USA
| | - G J Kenagy
- 2 Department of Biology and Burke Museum, University of Washington, USA
| |
Collapse
|
37
|
Souza LC, Martynhak BJ, Bassani TB, Turnes JDM, Machado MM, Moura E, Andreatini R, Vital MA. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats. Physiol Behav 2018; 188:298-310. [DOI: 10.1016/j.physbeh.2018.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
|
38
|
Scaglione MC, Cerutti RD, Arfuso F, Rizzo M, Pugliese M, Piccione G. Daily rhythm of some haematological parameters in Holstein bovine maintained under natural conditions in southern hemisfere. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1440769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Raúl Delmar Cerutti
- Department of Veterinary Sciences, Universidad National del Litoral, Santa Fe, Argentina
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Michela Pugliese
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Bering T, Carstensen MB, Wörtwein G, Weikop P, Rath MF. The Circadian Oscillator of the Cerebral Cortex: Molecular, Biochemical and Behavioral Effects of Deleting the Arntl Clock Gene in Cortical Neurons. Cereb Cortex 2018; 28:644-657. [PMID: 28052921 DOI: 10.1093/cercor/bhw406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
A molecular circadian oscillator resides in neurons of the cerebral cortex, but its role is unknown. Using the Cre-LoxP method, we have here abolished the core clock gene Arntl in those neurons. This mouse represents the first model carrying a deletion of a circadian clock component specifically in an extrahypothalamic cell type of the brain. Molecular analyses of clock gene expression in the cerebral cortex of the Arntl conditional knockout mouse revealed disrupted circadian expression profiles, whereas clock gene expression in the suprachiasmatic nucleus was still rhythmic, thus showing that Arntl is required for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Services of the Capital Region of Denmark, DK-2100 Copenhagen, Denmark
| | - Mikkel Bloss Carstensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Gitta Wörtwein
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1014 Copenhagen, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Services of the Capital Region of Denmark, DK-2100 Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
40
|
Refinetti R, Kenagy G. Circadian rhythms of body temperature and locomotor activity in the antelope ground squirrel, Ammospermophilus leucurus. J Therm Biol 2018; 72:67-72. [DOI: 10.1016/j.jtherbio.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/06/2018] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
|
41
|
Antonio SB, Cerutti RD, Scaglione MC, Piccione G, Refinetti R. Daily rhythmicity of behavior of nine species of South American feral felids in captivity. Physiol Behav 2017; 180:107-112. [PMID: 28842189 DOI: 10.1016/j.physbeh.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022]
Abstract
The authors analyzed the daily activity rhythms of the domestic cat and of eight of the ten feral felid species that are indigenous to South America. All species showed daily rhythmicity of activity in captivity under a natural light-dark cycle. The robustness of the rhythmicity varied from species to species, but the grand mean of 34% was within the range of robustness previously described for mammalian species ranging in size from mice to cattle. There was not a sharp division between diurnal and nocturnal felids. Instead, what was found was a gradient of diurnality going from the predominantly nocturnal margay (72% of activity counts during the night) to the predominantly diurnal jaguarundi (87% of activity counts during the day) with the remaining species lying in between these two extremes. The ecological implications of temporal niche variations are discussed.
Collapse
Affiliation(s)
- Sciabarrasi Bagilet Antonio
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina; Estación Biológica Experimental Granja La Esmeralda, 3000 Santa Fe, Argentina
| | - Raúl Delmar Cerutti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | | | - Giuseppe Piccione
- Laboratorio di Cronofisiologia Veterinaria, Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, 98168 Messina, Italy
| | - Roberto Refinetti
- Circadian Rhythm Laboratory, Department of Psychological Science, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
42
|
Bering T, Carstensen MB, Rath MF. Deleting the Arntl clock gene in the granular layer of the mouse cerebellum: impact on the molecular circadian clockwork. J Neurochem 2017; 142:841-856. [PMID: 28707700 DOI: 10.1111/jnc.14128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
Abstract
The suprachiasmatic nucleus houses the central circadian clock and is characterized by the timely regulated expression of clock genes. However, neurons of the cerebellar cortex also contain a circadian oscillator with circadian expression of clock genes being controlled by the suprachiasmatic nucleus. It has been suggested that the cerebellar circadian oscillator is involved in food anticipation, but direct molecular evidence of the role of the circadian oscillator of the cerebellar cortex is currently unavailable. To investigate the hypothesis that the circadian oscillator of the cerebellum is involved in circadian physiology and food anticipation, we therefore by use of Cre-LoxP technology generated a conditional knockout mouse with the core clock gene Arntl deleted specifically in granule cells of the cerebellum, since expression of clock genes in the cerebellar cortex is mainly located in this cell type. We here report that deletion of Arntl heavily influences the molecular clock of the cerebellar cortex with significantly altered and arrhythmic expression of other central clock and clock-controlled genes. On the other hand, daily expression of clock genes in the suprachiasmatic nucleus was unaffected. Telemetric registrations in different light regimes did not detect significant differences in circadian rhythms of running activity and body temperature between Arntl conditional knockout mice and controls. Furthermore, food anticipatory behavior did not differ between genotypes. These data suggest that Arntl is an essential part of the cerebellar oscillator; however, the oscillator of the granular layer of the cerebellar cortex does not control traditional circadian parameters or food anticipation.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Services of the Capital Region of Denmark, Copenhagen, Denmark
| | - Mikkel Bloss Carstensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Mizumoto N, Fuchikawa T, Matsuura K. Pairing strategy after today’s failure: unpaired termites synchronize mate search using photic cycles. POPUL ECOL 2017. [DOI: 10.1007/s10144-017-0584-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Abstract
This article is part of a Journal of Biological Rhythms series exploring analysis and statistics topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article on time series analysis for biological rhythms, we describe some methods for assessing the rhythmic properties of time series, including tests of whether a time series is indeed rhythmic. Because biological rhythms can exhibit significant fluctuations in their period, phase, and amplitude, their analysis may require methods appropriate for nonstationary time series, such as wavelet transforms, which can measure how these rhythmic parameters change over time. We illustrate these methods using simulated and real time series.
Collapse
Affiliation(s)
- Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, MA, USA
| |
Collapse
|
45
|
The fractal organization of ultradian rhythms in avian behavior. Sci Rep 2017; 7:684. [PMID: 28386121 PMCID: PMC5429634 DOI: 10.1038/s41598-017-00743-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/14/2017] [Indexed: 01/23/2023] Open
Abstract
Living systems exhibit non-randomly organized biochemical, physiological, and behavioral processes that follow distinctive patterns. In particular, animal behavior displays both fractal dynamics and periodic rhythms yet the relationship between these two dynamic regimens remain unexplored. Herein we studied locomotor time series of visually isolated Japanese quails sampled every 0.5 s during 6.5 days (>106 data points). These high-resolution, week-long, time series enabled simultaneous evaluation of ultradian rhythms as well as fractal organization according to six different analytical methods that included Power Spectrum, Enright, Empirical Mode Decomposition, Wavelet, and Detrended Fluctuation analyses. Time series analyses showed that all birds exhibit circadian rhythms. Although interindividual differences were detected, animals presented ultradian behavioral rhythms of 12, 8, 6, 4.8, 4 h and/or lower and, irrespective of visual isolation, synchronization between these ultradian rhythms was observed. Moreover, all birds presented similar overall fractal dynamics (for scales ∼30 s to >4.4 h). This is the first demonstration that avian behavior presents fractal organization that predominates at shorter time scales and coexists with synchronized ultradian rhythms. This chronobiological pattern is advantageous for keeping the organism’s endogenous rhythms in phase with internal and environmental periodicities, notably the feeding, light-dark and sleep-wake cycles.
Collapse
|
46
|
Pfeffer M, Korf HW, Wicht H. The Role of the Melatoninergic System in Light-Entrained Behavior of Mice. Int J Mol Sci 2017; 18:ijms18030530. [PMID: 28257037 PMCID: PMC5372546 DOI: 10.3390/ijms18030530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/16/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023] Open
Abstract
The role of endogenous melatonin for the control of the circadian system under entrained conditions and for the determination of the chronotype is still poorly understood. Mice with deletions in the melatoninergic system (melatonin deficiency or the lack of melatonin receptors, respectively) do not display any obvious defects in either their spontaneous (circadian) or entrained (diurnal) rhythmic behavior. However, there are effects that can be detected by analyzing the periodicity of the locomotor behaviors in some detail. We found that melatonin-deficient mice (C57Bl), as well as melatonin-proficient C3H mice that lack the melatonin receptors (MT) 1 and 2 (C3H MT1,2 KO), reproduce their diurnal locomotor rhythms with significantly less accuracy than mice with an intact melatoninergic system. However, their respective chronotypes remained unaltered. These results show that one function of the endogenous melatoninergic system might be to stabilize internal rhythms under conditions of a steady entrainment, while it has no effects on the chronotype.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Circadian Rhythm
- Light
- Male
- Melatonin/biosynthesis
- Melatonin/deficiency
- Mice
- Mice, Knockout
- Motor Activity
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
Collapse
Affiliation(s)
- Martina Pfeffer
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Horst-Werner Korf
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Cowan M, Paullada-Salmerón JA, López-Olmeda JF, Sánchez-Vázquez FJ, Muñoz-Cueto JA. Effects of pinealectomy on the neuroendocrine reproductive system and locomotor activity in male European sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:1-12. [PMID: 28188883 DOI: 10.1016/j.cbpa.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
Abstract
The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction.
Collapse
Affiliation(s)
- Mairi Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| |
Collapse
|
48
|
Fischer D, Vetter C, Roenneberg T. A novel method to visualise and quantify circadian misalignment. Sci Rep 2016; 6:38601. [PMID: 27929109 PMCID: PMC5144069 DOI: 10.1038/srep38601] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
The circadian clock governs virtually all processes in the human body, including sleep-wake behaviour. Circadian misalignment describes the off-set between sleep-wake cycles and clock-regulated physiology. This strain is predominantly caused by external (societal) demands including shift work, early school start times and fast travels across time zones. Sleeping at the ‘wrong’ internal time can jeopardise health and safety, and we therefore need a good quantification of this phenomenon. Here, we propose a novel method to quantify the mistiming of sleep-wake rhythms and demonstrate its versatility in day workers and shift workers. Based on a single time series, our Composite Phase Deviation method unveils distinct, subject- and schedule-specific geometries (‘islands and pancakes’) that illustrate how modern work times interfere with sleep. With increasing levels of circadian strain, the resulting shapes change systematically from small, connected forms to large and fragmented patterns. Our method shows good congruence with published measures of circadian misalignment (i.e., Inter-daily Stability and ‘Behavioural Entrainment’), but offers added value as to its requirements, e.g., being computable for sleep logs and questionnaires. Composite Phase Deviations will help to understand the mechanisms that link ‘living against the clock’ with health and disease on an individual basis.
Collapse
Affiliation(s)
- Dorothee Fischer
- Institute for Medical Psychology, Ludwig-Maximilian-University, Goethestr. 31, 80336 Munich, DE
| | - Céline Vetter
- Institute for Medical Psychology, Ludwig-Maximilian-University, Goethestr. 31, 80336 Munich, DE
| | - Till Roenneberg
- Institute for Medical Psychology, Ludwig-Maximilian-University, Goethestr. 31, 80336 Munich, DE
| |
Collapse
|
49
|
Refinetti R. Western diet affects the murine circadian system possibly through the gastrointestinal microbiota. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1254873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Pfeffer M, Gispert S, Auburger G, Wicht H, Korf HW. Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiol Int 2016; 34:129-137. [PMID: 27791392 DOI: 10.1080/07420528.2016.1245666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In Drosophila melanogaster, Ataxin-2 is a crucial activator of Period and is involved in the control of circadian rhythms. However, in mammals the function of Ataxin-2 is unknown despite its involvement in the inherited neurogenerative disease Spinocerebellar Ataxia type 2 in humans. Therefore, we analyzed locomotor behavior of Atxn2-deficient mice and their WT littermates under entrained- and free-running conditions as well as after experimental jet lag. Furthermore, we compared the PER1 and PER2 immunoreaction (IR) in the SCN. Atxn2-/- mice showed an unstable rhythmicity of locomotor activity, but the level of PER1 and PER2 IR in the SCN did not differ between genotypes.
Collapse
Affiliation(s)
- Martina Pfeffer
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Suzana Gispert
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Georg Auburger
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Helmut Wicht
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Horst-Werner Korf
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|