1
|
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 2023; 11:1158198. [PMID: 37234200 PMCID: PMC10206224 DOI: 10.3389/fchem.2023.1158198] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Free radicals are reactive oxygen species that constantly circulate through the body and occur as a side effect of many reactions that take place in the human body. Under normal conditions, they are removed from the body by antioxidant processes. If these natural mechanisms are disrupted, radicals accumulate in excess and contribute to the development of many diseases. Methodology: Relevant recent information on oxidative stress, free radicals, reactive oxidative species, and natural and synthetic antioxidants was collected by researching electronic databases such as PubMed / Medline, Web of Science, and Science Direct. Results: According to the analysed studies, this comprehensive review provided a recent update on oxidative stress, free radicals and antioxidants and their impact on the pathophysiology of human diseases. Discussion: To counteract the condition of oxidative stress, synthetic antioxidants must be provided from external sources to supplement the antioxidant defense mechanism internally. Because of their therapeutic potential and natural origin, medicinal plants have been reported as the main source of natural antioxidants phytocompounds. Some non-enzymatic phytocompounds such as flavonoids, polyphenols, and glutathione, along with some vitamins have been reported to possess strong antioxidant activities in vivo and in vitro studies. Thus, the present review describes, in brief, the overview of oxidative stress-directed cellular damage and the unction of dietary antioxidants in the management of different diseases. The therapeutic limitations in correlating the antioxidant activity of foods to human health were also discussed.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty, Kazakhstan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food` Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
2
|
Mendonça JDS, Guimarães RDCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KDC, Hiane PA, de Pádua Melo ES, Vilela MLB, do Nascimento VA. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022; 27:3563. [PMID: 35684500 PMCID: PMC9182375 DOI: 10.3390/molecules27113563] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Antioxidants have drawn the attention of the scientific community due to being related to the prevention of various degenerative diseases. The antioxidant capacity has been extensively studied in vitro, and different methods have been used to assess its activity. However, the main issues related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a key role in the biological system and assessing their bioavailability in the organism. The majority of outcomes in the literature are controversial due to a lack of method standardization and their proper application. Therefore, this study aims to compile the main issues concerning the natural antioxidant field of study, comparing the most common in vitro methods to evaluate the antioxidant activity of natural compounds, demonstrating the antioxidant activity in biological systems and the role of the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of bioactive compounds is evaluated in animal models and human clinical trials.
Collapse
Affiliation(s)
- Jenifer da Silva Mendonça
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Carolina Di Pietro Fernandes
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Elaine Silva de Pádua Melo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
3
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|
4
|
Emam WA, Ali NMM, Kamel ATA, Eladawy MIM, Raafat N. Evaluation of CD147 gene expression, lipid peroxidation, and antioxidants in cases of acute coronary syndrome in Egyptian population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The main mechanism of acute coronary syndrome (ACS) is the rupture of atherosclerotic plaques. Matrix metalloproteinases (MMPs) play an important role in the rupture of the vulnerable plaques. MMP secretion is stimulated by CD147, one of the immunoglobulin families. Malondialdehyde is an important marker of oxidative damage, which is related to the atherosclerotic process. Superoxide dismutase normally prevents the oxidative process. This study was conducted to evaluate the association of ACS with CD147 gene expression, lipid peroxidation, and antioxidants in Egyptian population. The study included 124 people, 62 ACS patients and 62 healthy controls.
Results
CD147 gene expression in the ACS group was significantly increased compared to the control group (p < 0.001). The ACS was 9.71 ± 3.56-fold; the control group was 0.94 ± 0.19-fold. Also, the SOD activity in the ACS group was significantly increased when compared to the control group (t = 16.023, p < 0.001). There was a highly significant increase in the MDA level in ACS groups when compared to the control group (t = 35.536, p < 0.001). There was a highly significant increase in the creatine kinase-MB (CK-MB) and high sensitive troponin I levels in ACS groups when compared to the control group (p < 0.001).
Conclusion
There is a highly significant positive correlation between CK-MB and CD147 in both control and ACS groups (p = <0.001**); also, there is highly significant positive correlation between high sensitive troponin I and CD 147 in both control and ACS groups (p = <0.001**), but we did not find significant correlation between SOD and CD147 or between MDA and CD 147 in both control and ACS groups.
Collapse
|
5
|
Sinning C, Westermann D, Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives. Biomark Med 2017; 11:11031-1040. [DOI: 10.2217/bmm-2017-0110] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress remains a major contributor to myocardial injury after ischemia followed by reperfusion (I/R) as the reperfusion of the myocardial infarction (MI) area inevitably leads to a cascade of I/R injury. This review focused on concepts of the antioxidative defense system and elucidates recent research using antioxidants like vitamin C, E and β-carotene or essential trace elements to activate compounds of antioxidative pathways in the circulation. In this context, important defense mechanisms like superoxide dismutase and glutathione peroxidase will be described. Furthermore, the different mechanisms through which myocardial protection can be addressed, like ischemic postconditioning in myocardial infarction or adjunctive measures like targeted temperature management as well as new theories, including the role of iron in I/R injury, will be discussed.
Collapse
Affiliation(s)
- Christoph Sinning
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Dirk Westermann
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Peter Clemmensen
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- Department of Regional Health Research, Faculty of Health Sciences, Nykøbing Falster & Odense, Denmark
| |
Collapse
|
6
|
Uhl L, Gerstel A, Chabalier M, Dukan S. Hydrogen peroxide induced cell death: One or two modes of action? Heliyon 2015; 1:e00049. [PMID: 27441232 PMCID: PMC4945851 DOI: 10.1016/j.heliyon.2015.e00049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Imlay and Linn show that exposure of logarithmically growing Escherichia coli to hydrogen peroxide (H2O2) leads to two kinetically distinguishable modes of cell killing. Mode one killing is pronounced near 1 mM concentration of H2O2 and is caused by DNA damage, whereas mode-two killing requires higher concentration (>10 mM). The second mode seems to be essentially due to damage to all macromolecules. This phenomenon has also been observed in Fenton in vitro systems with DNA nicking caused by hydroxyl radical (HO•). To our knowledge, there is currently no mathematical model for predicting mode one killing in vitro or in vivo after H2O2 exposure. We propose a simple model, using Escherichia coli as a model organism and a set of ordinary differential equations. Using this model, we show that available iron and cell density, two factors potentially involved in ROS dynamics, play a major role in the prediction of the experimental results obtained by our team and in previous studies. Indeed the presence of the mode one killing is strongly related to those two parameters. To our knowledge, mode-one death has not previously been explained. Imlay and Linn (Imlay and Linn, 1986) suggested that perhaps the amount of the toxic species was reduced at high concentrations of H2O2 because hydroxyl (or other) radicals might be quenched directly by hydrogen peroxide with the concomitant formation of superoxide anion (a less toxic species). We demonstrate (mathematically and numerically) that free available iron decrease is necessary to explain mode one killing which cannot appear without it and that H2O2 quenching or consumption is not responsible for mode-one death. We are able to follow ROS concentration (particularly responsible for mode one killing) after exposure to H2O2. This model therefore allows us to understand two major parameters involved in the presence or not of the first killing mode.
Collapse
Affiliation(s)
- Lionel Uhl
- Institut de Microbiologie de la Méditerranée - Université Aix-Marseille, Laboratoire de Chimie Bactérienne, CNRS UMR7283, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Audrey Gerstel
- Institut de Microbiologie de la Méditerranée - Université Aix-Marseille, Laboratoire de Chimie Bactérienne, CNRS UMR7283, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Maialène Chabalier
- Institut de Microbiologie de la Méditerranée - Université Aix-Marseille, Laboratoire de Chimie Bactérienne, CNRS UMR7283, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Sam Dukan
- Institut de Microbiologie de la Méditerranée - Université Aix-Marseille, Laboratoire de Chimie Bactérienne, CNRS UMR7283, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
7
|
Komalapriya C, Kaloriti D, Tillmann AT, Yin Z, Herrero-de-Dios C, Jacobsen MD, Belmonte RC, Cameron G, Haynes K, Grebogi C, de Moura APS, Gow NAR, Thiel M, Quinn J, Brown AJP, Romano MC. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans. PLoS One 2015; 10:e0137750. [PMID: 26368573 PMCID: PMC4569071 DOI: 10.1371/journal.pone.0137750] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022] Open
Abstract
The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans.
Collapse
Affiliation(s)
- Chandrasekaran Komalapriya
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Despoina Kaloriti
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Anna T. Tillmann
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Zhikang Yin
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Carmen Herrero-de-Dios
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Mette D. Jacobsen
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rodrigo C. Belmonte
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Gary Cameron
- School of Medicine and Dentistry, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Ken Haynes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Celso Grebogi
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Alessandro P. S. de Moura
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Marco Thiel
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alistair J. P. Brown
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail: (MCR); (AJPB)
| | - M. Carmen Romano
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail: (MCR); (AJPB)
| |
Collapse
|
8
|
Zengin E, Sinning C, Zeller T, Rupprecht HJ, Schnabel RB, Lackner KJ, Blankenberg S, Westermann D, Bickel C. Activity of superoxide dismutase copper/zinc type and prognosis in a cohort of patients with coronary artery disease. Biomark Med 2015; 9:597-604. [DOI: 10.2217/bmm.15.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Superoxide dismutase (SOD) is important to control reactive oxygen species, but the relevance to human disease like coronary artery disease (CAD) and underlying ischemia/reperfusion injury is not clarified. Methods: For this study, 2239 patients with known CAD were prospectively followed with a median follow-up time period of 3.6 years and a maximum of 6.9 years. During follow-up cardiovascular death was reported in 103 cases. Results: SOD activity (log-transformed) was investigated as continuous and categorical variable, showing a significant influence on outcome in the fully adjusted model (p = 0.045). Conclusion: Increased SOD activity beyond the normal range in the human physiology is related to an adverse outcome in patients with CAD.
Collapse
Affiliation(s)
- Elvin Zengin
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Christoph Sinning
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Tanja Zeller
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Hans-J Rupprecht
- Department of Medicine II, GPR Rüsselsheim, Rüsselsheim, Germany
| | - Renate B Schnabel
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Karl-J Lackner
- Institute of Clinical Chemistry & Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Blankenberg
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Dirk Westermann
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Christoph Bickel
- Department of Internal Medicine, Federal Armed Forces Central Hospital, Koblenz, Germany
| |
Collapse
|
9
|
Superoxide dismutase1 levels in North Indian population with age-related macular degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:365046. [PMID: 24363822 PMCID: PMC3864086 DOI: 10.1155/2013/365046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 12/21/2022]
Abstract
Aim. The aim of the study was to estimate the levels of superoxide dismutase1 (SOD1) in patients of age-related macular degeneration (AMD) and examine the role of oxidative stress, smoking, hypertension, and other factors involved in the pathogenesis of AMD. Methods. 115 AMD patients and 61 healthy controls were recruited for this study. Serum SOD1 levels were determined by ELISA and were correlated to various risk factors. Logistic regression model of authenticity, by considering SOD1 as independent variable, has been developed along with ROC curve. Results. The SOD1 levels were significantly higher in AMD patients as compared to those of the controls. The difference was not significant for wet and dry AMD. However, the difference was significant between wet AMD subtypes. Nonsignificance of the Hosmer-Lemeshow goodness of fit statistic (χ2 = 10.516, df = 8, P = 0.231) indicates the appropriateness of logistic regression model to predict AMD. Conclusion. Oxidative stress in AMD patients may mount compensatory response resulting in increased levels of SOD1 in AMD patients. To predict the risk of AMD on the basis of SOD1, a logistic regression model shows authenticity of 78%, and area under the ROC curve (0.827, P = .0001) with less standard error of 0.033 coupled with 95% confidence interval of 0.762–0.891 further validates the model.
Collapse
|
10
|
Saller S, Kunz L, Berg D, Berg U, Lara H, Urra J, Hecht S, Pavlik R, Thaler CJ, Mayerhofer A. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology. Hum Reprod 2013; 29:555-67. [PMID: 24287819 DOI: 10.1093/humrep/det422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? SUMMARY ANSWER Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. WHAT IS KNOWN ALREADY DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. STUDY DESIGN, SIZE AND DURATION We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. PARTICIPANTS/MATERIALS, SETTING AND METHODS DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. MAIN RESULTS AND ROLE OF CHANCE We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P < 0.05). Agonists of DA receptors (D1 and D2) did not induce ROS. DA, in the concentration range found in follicular fluid, did not induce apoptosis of cultured GCs. Computational modeling suggested, however, that ROS levels in GCs depend on the concentrations of DA and on the cellular uptake and metabolism. In PCOS-derived follicular fluid, the levels of DA were higher (P < 0.05) in GCs, the transcript levels of DAT and MAO-A/B in GCs were 2-fold higher (P < 0.05) and the DA-induced ROS levels were found to be more than 4-fold increased (P < 0.05) compared with non-PCOS cells. Furthermore, DA at a high concentration induced apoptosis in PCOS-derived GCs. LIMITATIONS, REASONS FOR CAUTION While the results in IVF-derived follicular fluid and in GCs reveal for the first time the presence of DA in the human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the periovulatory follicular phase. The full functional importance of DA-induced ROS in small follicles and other compartments of the ovary, especially in PCOS samples, remains to be shown. WIDER IMPLICATIONS OF THE FINDINGS The results identify DA as a factor in the human ovary, which, via ROS generation, could play a role in ovarian physiology and pathology. The results obtained in samples from women with PCOS suggest the involvement of DA, acting via ROS, in this condition. STUDY FUNDING/COMPETING INTERESTS This work was supported by a grant from DFG MA1080/17-3 and in part MA1080/19-1. There are no competing interests.
Collapse
Affiliation(s)
- S Saller
- Anatomy III-Cell Biology, Ludwig Maximilian University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The systems biology of mitochondrial fission and fusion and implications for disease and aging. Biogerontology 2013; 15:1-12. [DOI: 10.1007/s10522-013-9474-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/28/2013] [Indexed: 12/21/2022]
|
12
|
Smith GR, Shanley DP. Computational modelling of the regulation of Insulin signalling by oxidative stress. BMC SYSTEMS BIOLOGY 2013; 7:41. [PMID: 23705851 PMCID: PMC3668293 DOI: 10.1186/1752-0509-7-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 04/19/2013] [Indexed: 12/20/2022]
Abstract
Background Existing models of insulin signalling focus on short term dynamics, rather than the longer term dynamics necessary to understand many physiologically relevant behaviours. We have developed a model of insulin signalling in rodent adipocytes that includes both transcriptional feedback through the Forkhead box type O (FOXO) transcription factor, and interaction with oxidative stress, in addition to the core pathway. In the model Reactive Oxygen Species are both generated endogenously and can be applied externally. They regulate signalling though inhibition of phosphatases and induction of the activity of Stress Activated Protein Kinases, which themselves modulate feedbacks to insulin signalling and FOXO. Results Insulin and oxidative stress combined produce a lower degree of activation of insulin signalling than insulin alone. Fasting (nutrient withdrawal) and weak oxidative stress upregulate antioxidant defences while stronger oxidative stress leads to a short term activation of insulin signalling but if prolonged can have other effects including degradation of the insulin receptor substrate (IRS1) and FOXO. At high insulin the protective effect of moderate oxidative stress may disappear. Conclusion Our model is consistent with a wide range of experimental data, some of which is difficult to explain. Oxidative stress can have effects that are both up- and down-regulatory on insulin signalling. Our model therefore shows the complexity of the interaction between the two pathways and highlights the need for such integrated computational models to give insight into the dysregulation of insulin signalling along with more data at the individual level. A complete SBML model file can be downloaded from BIOMODELS (https://www.ebi.ac.uk/biomodels-main) with unique identifier MODEL1212210000. Other files and scripts are available as additional files with this journal article and can be downloaded from https://github.com/graham1034/Smith2012_insulin_signalling.
Collapse
Affiliation(s)
- Graham R Smith
- Centre for Integrated Systems Biology of Ageing & Nutrition (CISBAN), Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | | |
Collapse
|
13
|
Kar S, Bhandar B, Kavdia M. Impact of SOD in eNOS uncoupling: a two-edged sword between hydrogen peroxide and peroxynitrite. Free Radic Res 2012; 46:1496-513. [PMID: 22998079 DOI: 10.3109/10715762.2012.731052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O(2)(•-)) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO(-)) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O(2)(•-) and ONOO(-) during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O(2)(•-) production and downstream reactions involving NO, O(2)(•-), ONOO(-), H(2)O(2) and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O(2)(•-), ONOO(-) and H(2)O(2) in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O(2)(•-) production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O(2)(•-) concentration by 90% at all [BH(4)]/[TBP] ratios, (iv) SOD reduces ONOO(-) concentration and increases H(2)O(2) concentration during eNOS uncoupling, (v) Catalase can reduce H(2)O(2) concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| | | | | |
Collapse
|
14
|
Kirkwood TBL, Kowald A. The free-radical theory of ageing--older, wiser and still alive: modelling positional effects of the primary targets of ROS reveals new support. Bioessays 2012; 34:692-700. [PMID: 22641614 DOI: 10.1002/bies.201200014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The continuing viability of the free-radical theory of ageing has been questioned following apparently incompatible recent results. We show by modelling positional effects of the generation and primary targets of reactive oxygen species that many of the apparently negative results are likely to be misleading. We conclude that there is instead a need to look more closely at the mechanisms by which free radicals contribute to age-related dysfunction in living systems. There also needs to be deeper understanding of the dynamics of accumulation and removal of the various kinds of molecular damage, in particular mtDNA mutations. Finally, the expectation that free-radical damage on its own might cause ageing needs to be relinquished in favour of the recognition that the free-radical theory is just one of the multiple mechanisms driving the ageing process.
Collapse
Affiliation(s)
- Thomas B L Kirkwood
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
15
|
Abstract
The importance of nitric oxide (NO), superoxide (O2-), and peroxynitrite (ONOO-), interactions in physiologic functions and pathophysiological conditions such as cardiovascular disease, hypertension, and diabetes have been established extensively in in vivo and in vitro studies. Despite intense investigation of NO, O2-, and ONOO- biochemical interactions, fundamental questions regarding the role of these molecules remain unanswered. Mathematical models based on fundamental principles of mass balance and reaction kinetics have provided significant results in the case of NO. However, the models that include interaction of NO, O2-, and ONOO- have been few because of the complexity of these interactions. Not only do these mathematical and computational models provided quantitative knowledge of distributions and concentrations of NO, O2-, and ONOO- under normal physiologic and pathophysiologic conditions, they also can help to answer specific hypotheses. The focus of this review article is on the models that involve more than one of the 3 molecules (NO, O2-, and ONOO-). Specifically, kinetic models of O2- dismutase and tyrosine nitration and biotransport models in the microcirculation are reviewed. In addition, integrated experimental and computational models of dynamics of NO/O2-/ONOO- in diverse systems are reviewed.
Collapse
Affiliation(s)
- Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
16
|
Kowald A, Hamann A, Zintel S, Ullrich S, Klipp E, Osiewacz HD. A systems biological analysis links ROS metabolism to mitochondrial protein quality control. Mech Ageing Dev 2012; 133:331-7. [PMID: 22449407 DOI: 10.1016/j.mad.2012.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
Abstract
The analyses of previously generated Podospora anserina strains in which the mitochondrial superoxide dismutase, PaSOD3, is increased in abundance, revealed unexpected results, which, at first glance, are contradictory to the 'free radical theory of aging' (FRTA). To re-analyze these results, we performed additional experiments and developed a mathematical model consisting of a set of differential equations describing the time course of various ROS (reactive oxygen species), components of the cellular antioxidant system (PaSOD3 and mitochondrial peroxiredoxin, PaPRX1), and PaCLPP, a mitochondrial matrix protease involved in protein quality control. Incorporating these components we could identify a positive feed-back loop and demonstrate that the role of superoxide as the primary ROS responsible for age-related molecular damage is more complicated than originally stated by the FRTA. Our study is a first step towards the integration of the various pathways known to be involved in the control of biological aging.
Collapse
Affiliation(s)
- Axel Kowald
- Humboldt-Universität zu Berlin, Institute for Biology, Theoretical Biophysics, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Raedschelders K, Ansley DM, Chen DDY. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 2011; 133:230-55. [PMID: 22138603 DOI: 10.1016/j.pharmthera.2011.11.004] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia-reperfusion injury is an important cause of impaired heart function in the early postoperative period subsequent to cardiac surgery. Reactive oxygen species (ROS) generation increases during both ischemia and reperfusion and it plays a central role in the pathophysiology of intraoperative myocardial injury. Unfortunately, the cellular source of these ROS during ischemia and reperfusion is often poorly defined. Similarly, individual ROS members tend to be grouped together as free radicals with a uniform reactivity towards biomolecules and with deleterious effects collectively ascribed under the vague umbrella of oxidative stress. This review aims to clarify the identity, origin, and progression of ROS during myocardial ischemia and reperfusion. Additionally, this review aims to describe the biochemical reactions and cellular processes that are initiated by specific ROS that work in concert to ultimately yield the clinical manifestations of myocardial ischemia-reperfusion. Lastly, this review provides an overview of several key cardioprotective strategies that target myocardial ischemia-reperfusion injury from the perspective of ROS generation. This overview is illustrated with example clinical studies that have attempted to translate these strategies to reduce the severity of ischemia-reperfusion injury during coronary artery bypass grafting surgery.
Collapse
Affiliation(s)
- Koen Raedschelders
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine. The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
18
|
Kowald A. The glyoxalase system as an example of a cellular maintenance pathway with relevance to aging. Aging (Albany NY) 2011; 3:17-8. [PMID: 21266742 PMCID: PMC3047133 DOI: 10.18632/aging.100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Alex Kowald
- Humboldt University Berlin, Institute for Biology, Theoretical Biophysics, Germany. ‐berlin.de
| |
Collapse
|
19
|
Gruber J, Ng LF, Fong S, Wong YT, Koh SA, Chen CB, Shui G, Cheong WF, Schaffer S, Wenk MR, Halliwell B. Mitochondrial changes in ageing Caenorhabditis elegans--what do we learn from superoxide dismutase knockouts? PLoS One 2011; 6:e19444. [PMID: 21611128 PMCID: PMC3097207 DOI: 10.1371/journal.pone.0019444] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/29/2011] [Indexed: 11/18/2022] Open
Abstract
One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the “vicious cycle” theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the “vicious cycle” theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the “vicious cycle” theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed.
Collapse
Affiliation(s)
- Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mansouri A, Tarhuni A, Larosche I, Reyl-Desmars F, Demeilliers C, Degoul F, Nahon P, Sutton A, Moreau R, Fromenty B, Pessayre D. MnSOD overexpression prevents liver mitochondrial DNA depletion after an alcohol binge but worsens this effect after prolonged alcohol consumption in mice. Dig Dis 2011; 28:756-75. [PMID: 21525761 DOI: 10.1159/000324284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Both acute and chronic alcohol consumption increase reactive oxygen species (ROS) formation and lipid peroxidation, whose products damage hepatic mitochondrial DNA (mtDNA). To test whether manganese superoxide dismutase (MnSOD) overexpression modulates acute and chronic alcohol-induced mtDNA lesions, transgenic MnSOD-overexpressing (TgMnSOD(+++)) mice and wild-type (WT) mice were treated by alcohol, either chronically (7 weeks in drinking water) or acutely (single intragastric dose of 5 g/kg). Acute alcohol administration increased mitochondrial ROS formation, decreased mitochondrial glutathione, depleted and damaged mtDNA, durably increased inducible nitric oxide synthase (NOS) expression, plasma nitrites/nitrates and the nitration of tyrosine residues in complex V proteins and decreased complex V activity in WT mice. These effects were prevented in TgMnSOD(+++) mice. In acutely alcoholized WT mice, mtDNA depletion was prevented by tempol, a superoxide scavenger, L-NAME and 1400W, two NOS inhibitors, or uric acid, a peroxynitrite scavenger. In contrast, chronic alcohol consumption decreased cytosolic glutathione and increased hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls only in ethanol-treated TgMnSOD(+++) mice but not in WT mice. In chronic ethanol-fed TgMnSOD(+++) mice, but not WT mice, mtDNA was damaged and depleted, and the iron chelator, deferoxamine (DFO), prevented this effect. In conclusion, MnSOD overexpression prevents mtDNA depletion after an acute alcohol binge but aggravates this effect after prolonged alcohol consumption, which selectively triggers iron accumulation in TgMnSOD(+++) mice but not in WT mice. In the model of acute alcohol binge, the protective effects of MnSOD, tempol, NOS inhibitors and uric acid suggested a role of the superoxide anion reacting with NO to form mtDNA-damaging peroxynitrite. In the model of prolonged ethanol consumption, the protective effects of DFO suggested the role of iron reacting with hydrogen peroxide to form mtDNA-damaging hydroxyl radical.
Collapse
Affiliation(s)
- Abdellah Mansouri
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon (CRB3), Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Tienen FH, Lindsey PJ, van der Kallen CJ, Smeets HJ. Prolonged Nrf1 overexpression triggers adipocyte inflammation and insulin resistance. J Cell Biochem 2011; 111:1575-85. [PMID: 21053274 DOI: 10.1002/jcb.22889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue is currently being recognized as an important endocrine organ, carrying defects in a number of metabolic diseases. Mitochondria play a key role in normal adipose tissue function and mitochondrial alterations can result in pathology, like lipodystrophy or type 2 diabetes. Although Pgc1α is regarded as the main regulator of mitochondrial function, downstream Nrf1 is the key regulator of mitochondrial biogenesis. Nrf1 is also involved in a wide range of other processes, including proliferation, innate immune response, and apoptosis. To determine transcriptional targets of Nrf1, 3T3-L1 preadipocytes were transfected with either pNrf1 or a control vector. Two days post-confluence, 3T3-L1 preadipocytes were allowed to differentiate. At day 8 of differentiation, Nrf1 overexpressing cells had an increased mtDNA copy number and reduced lipid content. This was not associated with an increased ATP production rate per cell. Using global gene expression analysis, we observed that Nrf1 overexpression stimulated cell proliferation, apoptosis, and cytokine expression. In addition, prolonged Nrf1 induced an adipokine expression profile of insulin resistant adipocytes. Nrf1 has a wide range of transcriptional targets, stimulators as well as inhibitors of adipose tissue functioning. Therefore, post-transcriptional regulation of Nrf1, or stimulating specific Nrf1 targets may be a more suitable approach for stimulating mitochondrial biogenesis and treating adipose tissue defects, instead of directly stimulating Nrf1 expression. In addition, our results show that short-term effects can drastically differ from long-term effects.
Collapse
Affiliation(s)
- Florence H van Tienen
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
22
|
Lauar MR, Colombari DSA, De Paula PM, Colombari E, Cardoso LM, De Luca LA, Menani JV. Inhibition of central angiotensin II-induced pressor responses by hydrogen peroxide. Neuroscience 2010; 171:524-30. [PMID: 20832454 DOI: 10.1016/j.neuroscience.2010.08.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/19/2010] [Accepted: 08/21/2010] [Indexed: 01/10/2023]
Abstract
Hydrogen peroxide (H(2)O(2)), important reactive oxygen species produced endogenously, may have different physiological actions. The superoxide anion (O(2)(·-)) is suggested to be part of the signaling mechanisms activated by angiotensin II (ANG II) and central virus-mediated overexpression of the enzyme superoxide dismutase (that dismutates O(2)(·-) to H(2)O(2)) reduces pressor and dipsogenic responses to central ANG II. Whether this result might reflect elevation of H(2)O(2) rather than depletion of O(2)(·-) has not been addressed. Here we investigated the effects of H(2)O(2) injected intracerebroventricularly (i.c.v.) or ATZ (3-amino-1,2,4-triazole, a catalase inhibitor) injected intravenously (i.v.) or i.c.v. on the pressor responses induced by i.c.v. injections of ANG II. Normotensive male Holtzman rats (280-320 g, n=5-13/group) with stainless steel cannulas implanted in the lateral ventricle were used. Prior injection of H(2)O(2) (5 μmol/1 μl) or ATZ (5 nmol/1 μl) i.c.v. almost abolished the pressor responses induced by ANG II (50 ng/1 μl) also injected i.c.v. (7 ± 3 and 5 ± 3 mm Hg, respectively, vs. control: 19 ± 4 mm Hg). Injection of ATZ (3.6 mmol/kg b.wt.) i.v. also reduced central ANG II-induced pressor responses. Injections of H(2)O(2) i.c.v. and ATZ i.c.v. or i.v. alone produced no effect on baseline arterial pressure. Central ANG II, H(2)O(2) or ATZ did not affect heart rate. The results show that central injections of H(2)O(2) and central or peripheral injections of ATZ reduced the pressor responses induced by i.c.v. ANG II, suggesting that exogenous or endogenous H(2)O(2) may inhibit central pressor mechanisms activated by ANG II.
Collapse
Affiliation(s)
- M R Lauar
- Department of Physiology and Pathology, Dentistry School, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Lucena MI, García-Martín E, Andrade RJ, Martínez C, Stephens C, Ruiz JD, Ulzurrun E, Fernandez MC, Romero-Gomez M, Castiella A, Planas R, Durán JA, De Dios AM, Guarner C, Soriano G, Borraz Y, Agundez JAG. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology 2010; 52:303-12. [PMID: 20578157 DOI: 10.1002/hep.23668] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Drug-induced liver injury (DILI) susceptibility has a potential genetic basis. We have evaluated possible associations between the risk of developing DILI and common genetic variants of the manganese superoxide dismutase (SOD2 Val16Ala) and glutathione peroxidase (GPX1 Pro200Leu) genes, which are involved in mitochondrial oxidative stress management. Genomic DNA from 185 DILI patients assessed by the Council for International Organizations of Medical Science scale and 270 sex- and age-matched controls were analyzed. The SOD2 and GPX1 genotyping was performed using polymerase chain reaction restriction fragment length polymorphism and TaqMan probed quantitative polymerase chain reaction, respectively. The statistical power to detect the effect of variant alleles with the observed odds ratio (OR) was 98.2% and 99.7% for bilateral association of SOD2 and GPX1, respectively. The SOD2 Ala/Ala genotype was associated with cholestatic/mixed damage (OR = 2.3; 95% confidence interval [CI] = 1.4-3.8; corrected P [Pc] = 0.0058), whereas the GPX1 Leu/Leu genotype was associated with cholestatic injury (OR = 5.1; 95%CI = 1.6-16.0; Pc = 0.0112). The presence of two or more combined risk alleles (SOD2 Ala and GPX1 Leu) was more frequent in DILI patients (OR = 2.1; 95%CI = 1.4-3.0; Pc = 0.0006). Patients with cholestatic/mixed injury induced by mitochondria hazardous drugs were more prone to have the SOD2 Ala/Ala genotype (OR = 3.6; 95%CI = 1.4-9.3; Pc = 0.02). This genotype was also more frequent in cholestatic/mixed DILI induced by pharmaceuticals producing quinone-like or epoxide metabolites (OR = 3.0; 95%CI = 1.7-5.5; Pc = 0.0008) and S-oxides, diazines, nitroanion radicals, or iminium ions (OR = 16.0; 95%CI = 1.8-146.1; Pc = 0.009). CONCLUSION Patients homozygous for the SOD2 Ala allele and the GPX1 Leu allele are at higher risk of developing cholestatic DILI. SOD2 Ala homozygotes may be more prone to suffer DILI from drugs that are mitochondria hazardous or produce reactive intermediates.
Collapse
Affiliation(s)
- M Isabel Lucena
- Servicio de Farmacología Clínica y Grupo de Estudio para las Hepatopatias Asociadas a Medicamentos, Coordinating Centre, Facultad de Medicina, Hospital Universitario Virgen de la Victoria, Campus Universitario s/n, Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 2009; 55:1-23. [PMID: 19548119 DOI: 10.1007/s12013-009-9054-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/03/2009] [Indexed: 02/07/2023]
Abstract
It is well known that oxidation caused by reactive oxygen species (ROS) is a major cause of cellular damage and death and has been implicated in cancer, neurodegenerative, and cardiovascular diseases. Small-molecule antioxidants containing sulfur and selenium can ameliorate oxidative damage, and cells employ multiple antioxidant mechanisms to prevent this cellular damage. However, current research has focused mainly on clinical, epidemiological, and in vivo studies with little emphasis on the antioxidant mechanisms responsible for observed sulfur and selenium antioxidant activities. In addition, the antioxidant properties of sulfur compounds are commonly compared to selenium antioxidant properties; however, sulfur and selenium antioxidant activities can be quite distinct, with each utilizing different antioxidant mechanisms to prevent oxidative cellular damage. In the present review, we discuss the antioxidant activities of sulfur and selenium compounds, focusing on several antioxidant mechanisms, including ROS scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Findings of several recent clinical, epidemiological, and in vivo studies highlight the need for future studies that specifically focus on the chemical mechanisms of sulfur and selenium antioxidant behavior.
Collapse
|
25
|
Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates. Toxicol Appl Pharmacol 2009; 234:326-38. [DOI: 10.1016/j.taap.2008.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 10/15/2008] [Accepted: 11/04/2008] [Indexed: 02/05/2023]
|
26
|
Matthijssens F, Back P, Braeckman BP, Vanfleteren JR. Prooxidant activity of the superoxide dismutase (SOD)-mimetic EUK-8 in proliferating and growth-arrested Escherichia coli cells. Free Radic Biol Med 2008; 45:708-15. [PMID: 18573332 DOI: 10.1016/j.freeradbiomed.2008.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/07/2008] [Accepted: 05/24/2008] [Indexed: 01/31/2023]
Abstract
Numerous studies have aimed to alleviate oxidative stress in a wide range of organisms by increasing superoxide dismutase (SOD) activity. However, experimental approaches have yielded contradictory evidence, and kinetics models have shown that increases in SOD activity may increase, decrease, or not change hydrogen peroxide (H2O2) production, depending on the balance of the various processes that produce and consume superoxide (O2-). In this study we tested whether administration of EUK-8, a synthetic mimetic of the SOD enzyme, can protect starving Escherichia coli cells against stasis-induced oxidative stress. Surprisingly, administration of EUK-8 to starving E. coli cells enhances the production of reactive oxygen species (ROS), resulting in a massive increase of oxidative damage and replicative death of the bacteria. Our results confirm that manipulation of ROS levels by increasing SOD activity does not necessarily result in a consequent decline of oxidative stress and can yield opposite results in a relatively simple model system such as starving E. coli cells.
Collapse
Affiliation(s)
- Filip Matthijssens
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
27
|
Chávez MD, Lakshmanan N, Kavdia M. Impact of superoxide dismutase on nitric oxide and peroxynitrite levels in the microcirculation--a computational model. ACTA ACUST UNITED AC 2008; 2007:1022-6. [PMID: 18002134 DOI: 10.1109/iembs.2007.4352468] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interactions of free radicals such as superoxide (O2-), nitric oxide (NO), and peroxynitrite (ONOO-) are important in pathophysiological conditions such as hypertension, atherosclerosis, diabetes and the resulting cardiovascular diseases. Excessive levels of superoxide during oxidative stress cause a reduction in NO bioavailability by forming peroxynitrite and resulting in endothelial dysfunction. Superoxide dismutase (SOD) competes with NO for superoxide, and reduces the formation of peroxynitrite. In this study, we developed a mathematical model for free radical transport within and around an arteriolar vessel based on the fundamental principles of mass balance, reaction kinetics, and vascular geometry. We used the model to study the effect of the three types of SOD, viz. CuZn-SOD, Mn-SOD and extra cellular-SOD, on the bioavailability of NO. Results indicate that SOD location and concentration in the arteriole significantly affect superoxide concentration. The model predicts that a reduction in SOD levels results in increased superoxide and peroxynitrite concentrations and decreased NO concentration in the vessel. The results also suggest a role of SOD in the amelioration of oxidative stress and NO bioavailability in microcirculation. This model will help in furthering our knowledge of endothelial dysfunction in pathological conditions and the impact of specific SODs on free radical interactions.
Collapse
|
28
|
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477-503. [PMID: 17640558 DOI: 10.1016/j.freeradbiomed.2007.03.034] [Citation(s) in RCA: 783] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 12/11/2022]
Abstract
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
29
|
Azzi A. Molecular mechanism of alpha-tocopherol action. Free Radic Biol Med 2007; 43:16-21. [PMID: 17561089 DOI: 10.1016/j.freeradbiomed.2007.03.013] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/01/2007] [Accepted: 03/19/2007] [Indexed: 12/22/2022]
Abstract
The inability of other antioxidants to substitute for alpha-tocopherol in a number of cellular reactions, the lack of a compensatory antioxidant response in the gene expression under conditions of alpha-tocopherol deficiency, the unique uptake of alpha-tocopherol relative to the other tocopherols and its slower catabolism, and the striking differences in the molecular function of the different tocopherols and tocotrienols, observed in vitro, unrelated to their antioxidant properties, are all data in support of a nonantioxidant molecular function of alpha-tocopherol. Furthermore, in vivo studies have also shown that alpha-tocopherol is not able, at physiological concentrations, to protect against oxidant-induced damage or prevent disease allegedly caused by oxidative damage. Alpha-tocopherol appears to act as a ligand of not yet identified specific proteins (receptors, transcription factors) capable of regulating signal transduction and gene expression.
Collapse
Affiliation(s)
- Angelo Azzi
- Vascular Biology Laboratory, Office 622, JM USDA-HNRCA at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
30
|
Liochev SI, Fridovich I. The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med 2007; 42:1465-9. [PMID: 17448892 DOI: 10.1016/j.freeradbiomed.2007.02.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 11/21/2022]
Abstract
Numerous reports of the effects of overproduction of SODs have been explained on the basis of increased H2O2 production by the catalyzed dismutation of O2-. In this review we consider the effects of increasing [SOD] on H2O2 formation and question this explanation.
Collapse
Affiliation(s)
- Stefan I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
31
|
Perrone S, Longini M, Bellieni CV, Centini G, Kenanidis A, De Marco L, Petraglia F, Buonocore G. Early oxidative stress in amniotic fluid of pregnancies with Down syndrome. Clin Biochem 2006; 40:177-80. [PMID: 17208212 DOI: 10.1016/j.clinbiochem.2006.10.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Some evidence suggests that oxidative stress, due to an imbalance between oxidants and antioxidants, occurs in babies with Down syndrome (DS). This study tests the hypothesis that oxidative stress occurs early in DS pregnancies. DESIGN AND METHODS Isoprostanes (IPs), a new marker of free radical-catalyzed lipid peroxidation, were measured in amniotic fluid from pregnancies with normal, growth restricted and DS fetuses, diagnosed by karyotype analysis of amniotic cells cultured. RESULTS A nine-fold increase in IP concentrations was found in amniotic fluid of pregnancies with DS fetuses. This increase (595.15; 542.96-631.64 pg/ml, median; 95% CI), was greater than in pregnancies with fetal growth-restricted fetuses (155; 130.57-172.23 pg/ml, median; 95% CI) and normal fetuses (67; 49.82-98.38 pg/ml, median; 95% CI; p<0.0001). CONCLUSIONS The study reveals that oxidative stress occurs early in pregnancy and supports the idea of testing whether prenatal antioxidant therapy may prevent or delay the onset of oxidative stress diseases in the DS population.
Collapse
Affiliation(s)
- S Perrone
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Policlinico Le Scotte, V.le Bracci 36, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Buettner GR, Ng CF, Wang M, Rodgers VGJ, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med 2006; 41:1338-50. [PMID: 17015180 PMCID: PMC2443724 DOI: 10.1016/j.freeradbiomed.2006.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/09/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
The principal source of hydrogen peroxide in mitochondria is thought to be from the dismutation of superoxide via the enzyme manganese superoxide dismutase (MnSOD). However, the nature of the effect of SOD on the cellular production of H(2)O(2) is not widely appreciated. The current paradigm is that the presence of SOD results in a lower level of H(2)O(2) because it would prevent the non-enzymatic reactions of superoxide that form H(2)O(2). The goal of this work was to: a) demonstrate that SOD can increase the flux of H(2)O(2), and b) use kinetic modelling to determine what kinetic and thermodynamic conditions result in SOD increasing the flux of H(2)O(2). We examined two biological sources of superoxide production (xanthine oxidase and coenzyme Q semiquinone, CoQ(*-) that have different thermodynamic and kinetic properties. We found that SOD could change the rate of formation of H(2)O(2) in cases where equilibrium-specific reactions form superoxide with an equilibrium constant (K) less than 1. An example is the formation of superoxide in the electron transport chain (ETC) of the mitochondria by the reaction of ubisemiquinone radical with dioxygen. We measured the rate of release of H(2)O(2) into culture medium from cells with differing levels of MnSOD. We found that the higher the level of SOD, the greater the rate of accumulation of H(2)O(2). Results with kinetic modelling were consistent with this observation; the steady-state level of H(2)O(2) increases if K<1, for example CoQ(*-)+O(2)-->CoQ+O(2)(*-). However, when K>1, e.g. xanthine oxidase forming O(2)(*-), SOD does not affect the steady state-level of H(2)O(2). Thus, the current paradigm that SOD will lower the flux of H(2)O(2) does not hold for the ETC. These observations indicate that MnSOD contributes to the flux of H(2)O(2) in cells and thereby is involved in establishing the cellular redox environment and thus the biological state of the cell.
Collapse
Affiliation(s)
- Garry R Buettner
- Free Radical and Radiation Biology Program, EMRB 68, The University of Iowa, Iowa City, IA 52242-1101, USA.
| | | | | | | | | |
Collapse
|
33
|
Gardner R, Moradas-Ferreira P, Salvador A. Why does superoxide dismutase overexpression often increase hydrogen peroxide concentrations? An alternative explanation. J Theor Biol 2006; 242:798-800. [PMID: 16753183 DOI: 10.1016/j.jtbi.2006.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 03/25/2006] [Accepted: 04/07/2006] [Indexed: 01/19/2023]
|
34
|
Ordoñez FJ, Rosety M, Rosety-Rodriguez M. Regular exercise did not modify significantly superoxide dismutase activity in adolescents with Down's syndrome. Br J Sports Med 2006; 40:717-8. [PMID: 16864566 PMCID: PMC2579468 DOI: 10.1136/bjsm.2005.024315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Superoxide dismutase (SOD) overexpression in people with Down's syndrome negatively modifies the equilibrium SOD/glutathione peroxidase+catalase, which may ultimately lead to an increased hydroxyl radical formation. OBJECTIVE To assess the influence of regular exercise on erythrocyte SOD activity to determine the ability of exercise to attenuate increased oxidative damage. METHOD Thirty one male adolescents with Down's syndrome (mean (SD) age 16.3 (1.1) years) performed a 12 week training programme (three days a week), consisting of a warm up, exercise at a work intensity of 60-75% of peak heart rate (the latter calculated from 194.5 - (0.56 x age)), and a cool down period. The reduction of cytochrome c at 550 nm was used to monitor SOD activity in the supernatant of erythrocyte haemolysates. RESULTS Mean (SD) SOD activity in non-exercised adolescents with Down's syndrome was 679.0 (82) U/g haemoglobin (95% confidence interval 642.2 to 715.8). After the 12 week training programme, it had increased to 706.8 (91) U/g haemoglobin (95% confidence interval 663.9 to 749.8). This increase was not significant (p = 0.099). CONCLUSION Regular exercise did not significantly increase SOD activity and consequently did not affect the unbalanced equilibrium SOD/glutathione peroxidase+catalase observed in patients with Down's syndrome. Further studies are required to assess the behaviour of other antioxidant enzymes included in this pathway in order to highlight potential benefits of regular exercise in redox metabolism of patients with Down's syndrome.
Collapse
Affiliation(s)
- F J Ordoñez
- School of Sport Medicine, University of Cadiz, San Fernando (Cadiz), Spain
| | | | | |
Collapse
|
35
|
|