1
|
Jiang B, Hou W, Xia N, Peng F, Wang X, Chen C, Zhou Y, Zheng X, Wu X. Inhibitory effect of 980-nm laser on neural activity of the rat's cochlear nucleus. NEUROPHOTONICS 2019; 6:035009. [PMID: 31482103 PMCID: PMC6710856 DOI: 10.1117/1.nph.6.3.035009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Near-infrared radiation (NIR) has been described as one of the highest-resolution tools for neuromodulation. However, the poor tissue penetration depth of NIR has limited its further application on some of the deeper layer neurons in vivo. A 980-nm short-wavelength NIR (SW-NIR) with high penetration depth was employed, and its inhibitory effect on neurons was investigated in vivo. In experiments, SW-NIR was implemented on the rat's cochlear nucleus (CN), the auditory pathway was activated by pure-tones through the rat's external auditory canal, and the neural responses were recorded in the inferior colliculus by a multichannel electrode array. Neural firing rate (FR) and the first spike latency (FSL) were analyzed to evaluate the optically induced neural inhibition. Meanwhile, a two-layered finite element, consisting of a fluid layer and a gray matter layer, was established to model the optically induced temperature changes in CN; different stimulation paradigms were used to compare the inhibitory efficiency of SW-NIR. Results showed that SW-NIR could reversibly inhibit acoustically induced CN neural activities: with the increase of laser radiant exposures energy, neural FR decreased significantly and FSL lengthened steadily. Significant inhibition occurred when the optical pulse stimulated prior to the acoustic stimulus. Results indicated that the inhibition relies on the establishment time of the temperature field. Moreover, our preliminary results suggest that short-wavelength infrared could regulate the activities of neurons beyond the neural tissues laser irradiated through neural networks and conduction in vivo. These findings may provide a method for accurate neuromodulation in vivo.
Collapse
Affiliation(s)
- Bin Jiang
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
| | - Wensheng Hou
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
- Chongqing University, Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, China
| | - Nan Xia
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Qingdao University, Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao, Shandong, China
| | - Fei Peng
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
| | - Xing Wang
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
| | - Chunye Chen
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
| | - Yi Zhou
- Chinese Army Medical University, Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xiaolin Zheng
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
- Chongqing University, Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, China
| | - Xiaoying Wu
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
- Chongqing University, Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, China
| |
Collapse
|
2
|
Grabowski T, Pasławska U, Poźniak B, Świtała M. Models describing metronidazole pharmacokinetics in relation to hemodynamics in turkeys. Res Vet Sci 2017; 112:167-171. [DOI: 10.1016/j.rvsc.2017.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/28/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
|
3
|
Wang MQ, Xia QL, Wu XY, Wang X, Zheng XL, Hou WS. Optical stimulation of primary motor cortex with 980nm infrared neural stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6143-6. [PMID: 25571399 DOI: 10.1109/embc.2014.6945031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To explore the penetration depth with short-wavelength infrared light, 980 nm pulse infrared light was used to stimulate the primary motor cortex of rat. The heating model was created to simulate the temperature distribution for 1875 nm and 980 nm infrared neural stimulation. Post-stimulus time histogram was used to observe the neural response induced by Infrared neural stimulation on primary motor cortex. The model predicted the penetration depth of 980 nm was deep into 1.2 mm. Cortical neural located between 500 μm to 1000 μm were successfully activated by 980 nm INS. The preliminary results suggested that, 980 nm pulse INS could serve as a candidate for deep tissue stimulation.
Collapse
|
4
|
Tholance Y, Barcelos G, Quadrio I, Renaud B, Dailler F, Perret-Liaudet A. Analytical validation of microdialysis analyzer for monitoring glucose, lactate and pyruvate in cerebral microdialysates. Clin Chim Acta 2010; 412:647-54. [PMID: 21185817 DOI: 10.1016/j.cca.2010.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cerebral microdialysis is a valuable tool for neurochemical monitoring of acute brain injury. We performed an independent analytical validation of glucose, lactate and pyruvate methods on the new ISCUS(flex) new analyzer developed by CMA Microdialysis. METHODS Evaluation of analytical parameters included limit of detection, limit of quantification, linearity, intra- and inter-assay imprecision expressed as the coefficient of variation (CV), recovery, inter-sample and inter-reagent contamination, drug and bilirubin interferences, sample stability, method comparison. RESULTS Linearity ranges were 0.1-25 mmol/L, 0.2-12 mmol/L and 19-1500 μmol/L for glucose, lactate and pyruvate respectively. For critical threshold, intra- and inter-assay CVs were 3.1/4.5% for glucose (1 mmol/L), 3.5/4% for lactate (4 mmol/L) and 3.3/4.3% for pyruvate (100 μmol/L). Inter-assay CVs for lactate/pyruvate (LPR) and lactate/glucose (LGR) ratios were 5.9% and 6.0% respectively. For glucose, lactate, pyruvate, LPR and LGR, the reference change values (RCV) were 20%, 26%, 20%, 27% and 28% respectively. Practically, variations below 27% between two successive LPR values could not be interpreted as significant. CONCLUSION These data prove that ISCUS(flex) has the qualities required for clinical application in neuro-intensive care. Correct clinical interpretation of data need the implementation of a strict quality control program and strong cooperation between clinicians and biologists.
Collapse
Affiliation(s)
- Yannick Tholance
- HCL, Centre de Biologie et de Pathologie Est, Laboratoire de Neurobiologie, Lyon, France.
| | | | | | | | | | | |
Collapse
|
5
|
Gaohua L, Kimura H. A mathematical model of brain glucose homeostasis. Theor Biol Med Model 2009; 6:26. [PMID: 19943948 PMCID: PMC2801528 DOI: 10.1186/1742-4682-6-26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 11/27/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG) regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. METHODS In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB) adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. RESULTS It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. CONCLUSION Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.
Collapse
Affiliation(s)
- Lu Gaohua
- Brain Science Institute, the Institute of Physical and Chemical Research (RIKEN) 2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-0003, Japan
| | - Hidenori Kimura
- Brain Science Institute, the Institute of Physical and Chemical Research (RIKEN) 2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-0003, Japan
| |
Collapse
|
6
|
Gaohua L, Kimura H. A mathematical model of respiratory and biothermal dynamics in brain hypothermia treatment. IEEE Trans Biomed Eng 2008; 55:1266-78. [PMID: 18390318 DOI: 10.1109/tbme.2007.912400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain hypothermia treatment (BHT) requires proper mechanical ventilation and therapeutic cooling. The cooling strategy for BHT has been mainly discussed in the literature while little information is available on the respiratory management. We first developed a mathematical model that integrates the respiratory and biothermal dynamics to discuss the simultaneous managements of mechanical ventilation and therapeutic cooling. The effect of temperature on the linear approximations of hemoglobin-oxygen dissociation, together with temperature dependency of metabolism, is introduced during modeling to combine the respiratory system with the biothermal system. By comparing its transient behavior with published data, the model is verified qualitatively and then quantitatively. Second, model-based simulation of the current respiratory management in BHT suggests reduction of minute ventilation in reference to cooled brain temperature to stabilize the states of blood and brain oxygenation. Lastly, the relationship between cooling temperature and minute ventilation is approximated by a linear first-order transfer function of static gain 0.61min(-1) degrees C(-1) and time constant 8.9 h, which is used to develop a feedforward control to tune the mechanical ventilator in concert with temperature regulation of the cooling blanket. Discussion of the model encourages further studies that provide direct evidence from clinical experiments.
Collapse
Affiliation(s)
- Lu Gaohua
- Bio-Mimetic Control Research Center, Institute of Physical and Chemical Research, Nagoya, Japan.
| | | |
Collapse
|
7
|
Gaohua L, Kimura H. Simulation of propofol anaesthesia for intracranial decompression using brain hypothermia treatment. Theor Biol Med Model 2007; 4:46. [PMID: 18045501 PMCID: PMC2217543 DOI: 10.1186/1742-4682-4-46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/29/2007] [Indexed: 11/10/2022] Open
Abstract
Background Although propofol is commonly used for general anaesthesia of normothermic patients in clinical practice, little information is available in the literature regarding the use of propofol anaesthesia for intracranial decompression using brain hypothermia treatment. A novel propofol anaesthesia scheme is proposed that should promote such clinical application and improve understanding of the principles of using propofol anaesthesia for hypothermic intracranial decompression. Methods Theoretical analysis was carried out using a previously-developed integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems. Propofol kinetics is described using a framework similar to that of this model and combined with the thermoregulation subsystem through the pharmacodynamic relationship between the blood propofol concentration and the thermoregulatory threshold. A propofol anaesthesia scheme for hypothermic intracranial decompression was simulated using the integrative model. Results Compared to the empirical anaesthesia scheme, the proposed anaesthesia scheme can reduce the required propofol dosage by more than 18%. Conclusion The integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems is effective in analyzing the use of propofol anaesthesia for hypothermic intracranial decompression. This propofol infusion scheme appears to be more appropriate for clinical application than the empirical one.
Collapse
Affiliation(s)
- Lu Gaohua
- Bio-Mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN) Nagoya, 463-0003, Japan.
| | | |
Collapse
|