1
|
Yaqoob B, Rodella A, Del Dottore E, Mondini A, Mazzolai B, Pugno NM. Mechanics and optimization of undulatory locomotion in different environments, tuning geometry, stiffness, damping and frictional anisotropy. J R Soc Interface 2023; 20:20220875. [PMID: 36751930 PMCID: PMC9905976 DOI: 10.1098/rsif.2022.0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
One of the oldest yet most common modalities of locomotion known among limbless animals is undulatory, also recognized for its stability compared to legged locomotion. Multiple forms of active mechanisms, e.g. active gait control, and passive mechanisms, e.g. body morphology and material properties, have adapted to different environments. The current research explores the passive role of body stiffness and internal losses in meeting terrain requirements. Furthermore, it addresses the influence of the environment on the resultant gait and how the interplay between various environments and body properties can lead to different speeds. We modelled undulatory locomotion in a dry friction environment where frictional anisotropy determines propulsion. We found that the body stiffness, the moment of inertia, the dry frictional coefficient ratio between normal and tangential frictional constants, and the internal damping of the body play an essential role in optimizing speed and animal adaptability to external conditions. Furthermore, we demonstrate that various known gaits like swimming, crawling and polychaete-like locomotion are achieved as a result of the interaction between body and environment parameters. Moreover, we validated the model by retrieving a corn snake's speed using data from the literature. This study demonstrates that the dependence between morphology, body material properties and environment can be exploited to design long-segmented robots to perform in specialized situations.
Collapse
Affiliation(s)
- Basit Yaqoob
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38122 Trento, Italy
- Laboratory of Bioinspired Soft Robotics, Center for Convergent Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Andrea Rodella
- Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Italy
| | - Emanuela Del Dottore
- Laboratory of Bioinspired Soft Robotics, Center for Convergent Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Alessio Mondini
- Laboratory of Bioinspired Soft Robotics, Center for Convergent Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Barbara Mazzolai
- Laboratory of Bioinspired Soft Robotics, Center for Convergent Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nicola M. Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38122 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
2
|
Parida L. The locomotory characteristics of Caenorhabditis elegans in various external environments: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Abstract
In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.
Collapse
Affiliation(s)
- Kyeong Min Moon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Jimin Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Yurim Seong
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - KyeongJin Kang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| |
Collapse
|
4
|
Fu Q, Mitchel TW, Kim JS, Chirikjian GS, Li C. Continuous body 3-D reconstruction of limbless animals. J Exp Biol 2021; 224:jeb.220731. [PMID: 33536306 DOI: 10.1242/jeb.220731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/18/2021] [Indexed: 01/02/2023]
Abstract
Limbless animals such as snakes, limbless lizards, worms, eels and lampreys move their slender, long bodies in three dimensions to traverse diverse environments. Accurately quantifying their continuous body's 3-D shape and motion is important for understanding body-environment interactions in complex terrain, but this is difficult to achieve (especially for local orientation and rotation). Here, we describe an interpolation method to quantify continuous body 3-D position and orientation. We simplify the body as an elastic rod and apply a backbone optimization method to interpolate continuous body shape between end constraints imposed by tracked markers. Despite over-simplifying the biomechanics, our method achieves a higher interpolation accuracy (∼50% error) in both 3-D position and orientation compared with the widely used cubic B-spline interpolation method. Beyond snakes traversing large obstacles as demonstrated, our method applies to other long, slender, limbless animals and continuum robots. We provide codes and demo files for easy application of our method.
Collapse
Affiliation(s)
- Qiyuan Fu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas W Mitchel
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jin Seob Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory S Chirikjian
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Inhibition Underlies Fast Undulatory Locomotion in Caenorhabditis elegans. eNeuro 2021; 8:ENEURO.0241-20.2020. [PMID: 33361147 PMCID: PMC7986531 DOI: 10.1523/eneuro.0241-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contractions of antagonist muscles, whether along the body axis or within and among limbs, which often involves direct or indirect cross-inhibitory pathways. In the nematode Caenorhabditis elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low-frequency and high-frequency undulation. During low-frequency undulation, GABAergic VD and DD motoneurons show correlated activity patterns, while during high-frequency undulation, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or neuronal reset.
Collapse
|
6
|
Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform. Nat Protoc 2020; 15:2071-2106. [PMID: 32433626 DOI: 10.1038/s41596-020-0321-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/16/2020] [Indexed: 01/23/2023]
Abstract
Caenorhabditis elegans is a valuable model organism in biomedical research that has led to major discoveries in the fields of neurodegeneration, cancer and aging. Because movement phenotypes are commonly used and represent strong indicators of C. elegans fitness, there is an increasing need to replace manual assessments of worm motility with automated measurements to increase throughput and minimize observer biases. Here, we provide a protocol for the implementation of the improved wide field-of-view nematode tracking platform (WF-NTP), which enables the simultaneous analysis of hundreds of worms with respect to multiple behavioral parameters. The protocol takes only a few hours to complete, excluding the time spent culturing C. elegans, and includes (i) experimental design and preparation of samples, (ii) data recording, (iii) software management with appropriate parameter choices and (iv) post-experimental data analysis. We compare the WF-NTP with other existing worm trackers, including those having high spatial resolution. The main benefits of WF-NTP relate to the high number of worms that can be assessed at the same time on a whole-plate basis and the number of phenotypes that can be screened for simultaneously.
Collapse
|
7
|
Steuer Costa W, Van der Auwera P, Glock C, Liewald JF, Bach M, Schüler C, Wabnig S, Oranth A, Masurat F, Bringmann H, Schoofs L, Stelzer EHK, Fischer SC, Gottschalk A. A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics. Nat Commun 2019; 10:4095. [PMID: 31506439 PMCID: PMC6736843 DOI: 10.1038/s41467-019-12098-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022] Open
Abstract
Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system.
Collapse
Affiliation(s)
- Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Petrus Van der Auwera
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.,Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Naamsestraat 59 - box 2465, 3000, Leuven, Belgium
| | - Caspar Glock
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.,Max-Planck-Institute for Brain Research, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Maximilian Bach
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Christina Schüler
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Sebastian Wabnig
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.,od green GmbH, Passauerstrasse 34, 4780, Schärding am Inn, Austria
| | - Alexandra Oranth
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Florentin Masurat
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henrik Bringmann
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Department of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Naamsestraat 59 - box 2465, 3000, Leuven, Belgium
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Strasse 13, 60439, Frankfurt, Germany
| | - Sabine C Fischer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.,Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Strasse 13, 60439, Frankfurt, Germany.,Center for Computational and Theoretical Biology (CCTB), University of Würzburg, Campus Hubland Nord 32, 97074, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany. .,Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| |
Collapse
|
8
|
Robinson B, Goetting DL, Cisneros Desir J, Van Buskirk C. aptf-1 mutants are primarily defective in head movement quiescence during C. elegans sleep. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000148. [PMID: 32550461 PMCID: PMC7252393 DOI: 10.17912/micropub.biology.000148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Bryan Robinson
- Department of Biology, California State University Northridge, Northridge CA USA 91330
| | - Desiree L Goetting
- Department of Biology, California State University Northridge, Northridge CA USA 91330
| | - Janine Cisneros Desir
- Department of Biology, California State University Northridge, Northridge CA USA 91330
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Northridge CA USA 91330
| |
Collapse
|
9
|
|
10
|
Karbowski J. Deciphering neural circuits for Caenorhabditis elegans behavior by computations and perturbations to genome and connectome. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Izquierdo EJ, Beer RD. From head to tail: a neuromechanical model of forward locomotion in Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170374. [PMID: 30201838 PMCID: PMC6158225 DOI: 10.1098/rstb.2017.0374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 12/16/2022] Open
Abstract
With 302 neurons and a near-complete reconstruction of the neural and muscle anatomy at the cellular level, Caenorhabditis elegans is an ideal candidate organism to study the neuromechanical basis of behaviour. Yet despite the breadth of knowledge about the neurobiology, anatomy and physics of C. elegans, there are still a number of unanswered questions about one of its most basic and fundamental behaviours: forward locomotion. How the rhythmic pattern is generated and propagated along the body is not yet well understood. We report on the development and analysis of a model of forward locomotion that integrates the neuroanatomy, neurophysiology and body mechanics of the worm. Our model is motivated by experimental analysis of the structure of the ventral cord circuitry and the effect of local body curvature on nearby motoneurons. We developed a neuroanatomically grounded model of the head motoneuron circuit and the ventral nerve cord circuit. We integrated the neural model with an existing biomechanical model of the worm's body, with updated musculature and stretch receptors. Unknown parameters were evolved using an evolutionary algorithm to match the speed of the worm on agar. We performed 100 evolutionary runs and consistently found electrophysiological configurations that reproduced realistic control of forward movement. The ensemble of successful solutions reproduced key experimental observations that they were not designed to fit, including the wavelength and frequency of the propagating wave. Analysis of the ensemble revealed that head motoneurons SMD and RMD are sufficient to drive dorsoventral undulations in the head and neck and that short-range posteriorly directed proprioceptive feedback is sufficient to propagate the wave along the rest of the body.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Eduardo J Izquierdo
- Cognitive Science Program, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Randall D Beer
- Cognitive Science Program, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| |
Collapse
|
12
|
Denham JE, Ranner T, Cohen N. Signatures of proprioceptive control in Caenorhabditis elegans locomotion. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0208. [PMID: 30201846 DOI: 10.1098/rstb.2018.0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhabditis elegans, with a focus on proprioceptively driven neural control. We reveal a fundamental relationship between body elasticity and environmental drag in determining the dynamics of the body and demonstrate the manifestation of this relationship in the context of proprioceptively driven control. By considering characteristics unique to proprioceptive neurons, we predict the signatures of internal gait modulation that contrast with the known signatures of externally or biomechanically modulated gait. We further show that proprioceptive feedback can suppress neuromechanical phase lags during undulatory locomotion, contrasting with well studied advancing phase lags that have long been a signature of centrally generated, feed-forward control.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Jack E Denham
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Ranner
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
13
|
Galimov ER, Pryor RE, Poole SE, Benedetto A, Pincus Z, Gems D. Coupling of Rigor Mortis and Intestinal Necrosis during C. elegans Organismal Death. Cell Rep 2018; 22:2730-2741. [PMID: 29514100 PMCID: PMC5863043 DOI: 10.1016/j.celrep.2018.02.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 11/04/2022] Open
Abstract
Organismal death is a process of systemic collapse whose mechanisms are less well understood than those of cell death. We previously reported that death in C. elegans is accompanied by a calcium-propagated wave of intestinal necrosis, marked by a wave of blue autofluorescence (death fluorescence). Here, we describe another feature of organismal death, a wave of body wall muscle contraction, or death contraction (DC). This phenomenon is accompanied by a wave of intramuscular Ca2+ release and, subsequently, of intestinal necrosis. Correlation of directions of the DC and intestinal necrosis waves implies coupling of these death processes. Long-lived insulin/IGF-1-signaling mutants show reduced DC and delayed intestinal necrosis, suggesting possible resistance to organismal death. DC resembles mammalian rigor mortis, a postmortem necrosis-related process in which Ca2+ influx promotes muscle hyper-contraction. In contrast to mammals, DC is an early rather than a late event in C. elegans organismal death. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Evgeniy R Galimov
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rosina E Pryor
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Sarah E Poole
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alexandre Benedetto
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK; Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK
| | - Zachary Pincus
- Department of Genetics and Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - David Gems
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
14
|
Yang L, Hong T, Zhang Y, Arriola JGS, Nelms BL, Mu R, Li D. A microfluidic diode for sorting and immobilization of Caenorhabditis elegans. Biomed Microdevices 2017; 19:38. [PMID: 28466284 DOI: 10.1007/s10544-017-0175-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Caenorhabditis elegans (C. elegans) is a powerful model organism extensively used in studies of human aging and diseases. Despite the numerous advantages of C. elegans as a model system, two biological characteristics may introduce complexity and variability to most studies: 1. it exhibits different biological features, composition and behaviors at different developmental stages; 2. it has very high mobility. Therefore, synchronization and immobilization of worm populations are often required. Conventionally, these processes are implemented through manual and chemical methods, which can be laborious, time-consuming and of low-throughput. Here we demonstrate a microfluidic design capable of simultaneously sorting worms by size at a throughput of 97±4 worms per minute, and allowing for worm collection or immobilization for further investigations. The key component, a microfluidic diode structure, comprises a curved head and a straight tail, which facilitates worms to enter from the curved end but prevents them from translocating from the straight side. This design remarkably enhances the efficiency and accuracy of worm sorting at relatively low flow rates, and hence provides a practical approach to sort worms even with the presence of egg clusters and debris. In addition, we show that well-sorted worms could be immobilized, kept alive and identically orientated, which could facilitate many C. elegans-based studies.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Tao Hong
- Queensborough Community College, Bayside, NY, 11364, USA
| | - Yin Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | | | - Brian L Nelms
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Richard Mu
- TIGER Institute, College of Engineering, Tennessee State University, Nashville, TN, 37209, USA.
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
15
|
Rakowski F, Karbowski J. Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost. PLoS Comput Biol 2017; 13:e1005834. [PMID: 29155814 PMCID: PMC5714387 DOI: 10.1371/journal.pcbi.1005834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/04/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022] Open
Abstract
The detailed knowledge of C. elegans connectome for 3 decades has not contributed dramatically to our understanding of worm's behavior. One of main reasons for this situation has been the lack of data on the type of synaptic signaling between particular neurons in the worm's connectome. The aim of this study was to determine synaptic polarities for each connection in a small pre-motor circuit controlling locomotion. Even in this compact network of just 7 neurons the space of all possible patterns of connection types (excitation vs. inhibition) is huge. To deal effectively with this combinatorial problem we devised a novel and relatively fast technique based on genetic algorithms and large-scale parallel computations, which we combined with detailed neurophysiological modeling of interneuron dynamics and compared the theory to the available behavioral data. As a result of these massive computations, we found that the optimal connectivity pattern that matches the best locomotory data is the one in which all interneuron connections are inhibitory, even those terminating on motor neurons. This finding is consistent with recent experimental data on cholinergic signaling in C. elegans, and it suggests that the system controlling locomotion is designed to save metabolic energy. Moreover, this result provides a solid basis for a more realistic modeling of neural control in these worms, and our novel powerful computational technique can in principle be applied (possibly with some modifications) to other small-scale functional circuits in C. elegans.
Collapse
Affiliation(s)
- Franciszek Rakowski
- Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Karbowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
- Institute of Applied Mathematics and Mechanics, Department of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
16
|
Analyzing the locomotory gaitprint of Caenorhabditis elegans on the basis of empirical mode decomposition. PLoS One 2017; 12:e0181469. [PMID: 28742107 PMCID: PMC5524362 DOI: 10.1371/journal.pone.0181469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023] Open
Abstract
The locomotory gait analysis of the microswimmer, Caenorhabditis elegans, is a commonly adopted approach for strain recognition and examination of phenotypic defects. Gait is also a visible behavioral expression of worms under external stimuli. This study developed an adaptive data analysis method based on empirical mode decomposition (EMD) to reveal the biological cues behind intricate motion. The method was used to classify the strains of worms according to their gaitprints (i.e., phenotypic traits of locomotion). First, a norm of the locomotory pattern was created from the worm of interest. The body curvature of the worm was decomposed into four intrinsic mode functions (IMFs). A radar chart showing correlations between the predefined database and measured worm was then obtained by dividing each IMF into three parts, namely, head, mid-body, and tail. A comprehensive resemblance score was estimated after k-means clustering. Simulated data that use sinusoidal waves were generated to assess the feasibility of the algorithm. Results suggested that temporal frequency is the major factor in the process. In practice, five worm strains, including wild-type N2, TJ356 (zIs356), CL2070 (dvIs70), CB0061 (dpy-5), and CL2120 (dvIs14), were investigated. The overall classification accuracy of the gaitprint analyses of all the strains reached nearly 89%. The method can also be extended to classify some motor neuron-related locomotory defects of C. elegans in the same fashion.
Collapse
|
17
|
Durotaxis in Nematode Caenorhabditis elegans. Biophys J 2017; 111:666-674. [PMID: 27508449 DOI: 10.1016/j.bpj.2016.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 11/21/2022] Open
Abstract
Durotaxis is a process where cells are able to sense the stiffness of substrates and preferentially migrate toward stiffer regions. Here, we show that the 1-mm-long nematode, Caenorhabditis elegans are also able to detect the rigidity of underlying substrates and always migrate to regions of higher stiffness. Our results indicate that C. elegans are able to judiciously make a decision to stay on stiffer regions. We found that the, undulation frequency, and wavelength of worms, crawling on surfaces show nonmonotonic behavior with increasing stiffness. A number of control experiments were also conducted to verify whether C. elegans are really able to detect the rigidity of substrates or whether the migration to stiffer regions is due to other factors already reported in the literature. As it is known that bacteria and other single-celled organisms exhibit durotaxis toward stiffer surfaces, we conjecture that durotaxis in C. elegans may be one of the strategies developed to improve their chances of locating food.
Collapse
|
18
|
Keaveny EE, Brown AEX. Predicting path from undulations for C. elegans using linear and nonlinear resistive force theory. Phys Biol 2017; 14:025001. [PMID: 28140351 DOI: 10.1088/1478-3975/aa5ce6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A basic issue in the physics of behaviour is the mechanical relationship between an animal and its surroundings. The model nematode C. elegans provides an excellent platform to explore this relationship due to its anatomical simplicity. Nonetheless, the physics of nematode crawling, in which the worm undulates its body to move on a wet surface, is not completely understood and the mathematical models often used to describe this phenomenon are empirical. We confirm that linear resistive force theory, one such empirical model, is effective at predicting a worm's path from its sequence of body postures for forward crawling, reversing, and turning and for a broad range of different behavioural phenotypes observed in mutant worms. Worms recently isolated from the wild have a higher effective drag anisotropy than the laboratory-adapted strain N2 and most mutant strains. This means the wild isolates crawl with less surface slip, perhaps reflecting more efficient gaits. The drag anisotropies required to fit the observed locomotion data (70 ± 28 for the wild isolates) are significantly larger than the values measured by directly dragging worms along agar surfaces (3-10 in Rabets et al (2014 Biophys. J. 107 1980-7)). A proposed nonlinear extension of the resistive force theory model also provides accurate predictions, but does not resolve the discrepancy between the parameters required to achieve good path prediction and the experimentally measured parameters. We confirm that linear resistive force theory provides a good effective model of worm crawling that can be used in applications such as whole-animal simulations and advanced tracking algorithms, but that the nature of the physical interaction between worms and their most commonly studied laboratory substrate remains unresolved.
Collapse
Affiliation(s)
- Eric E Keaveny
- Department of Mathematics, Imperial College London, London, United Kindom
| | | |
Collapse
|
19
|
The effects of groove height and substrate stiffness on C. elegans locomotion. J Biomech 2017; 55:34-40. [PMID: 28279400 DOI: 10.1016/j.jbiomech.2017.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
The physical environment surrounding an animal has a significant impact on its behavior. The nematode Caenorhabditis elegans (C. elegans) has proved to be an excellent choice for understanding the adaptability of organisms crawling on soft surfaces. In this work, we investigate the modulation of C. elegans' behavioral kinematics in response to changes in the stiffness of the substrate and study the effect of grooves incised by the worms on their locomotion speed and efficiency. We measure the height of the grooves created by the animals on surfaces with different rigidity using confocal microscopy. Our results indicate that the kinematic properties of C. elegans, including amplitude (A), wavelength (λ) and frequency (f) of head turns depend strongly on surface properties and the height of the grooves created by them. During crawling, we observe that the animal assumes two distinct shapes depending on the stiffness of substrates. As the stiffness increases, the worm's body shape changes gradually from a 'W' shape, which is characterized by low amplitude curvature to the more common 'S' shape, which is characterized by high amplitude curvature, at intermediate values and back to 'W' on stiffer substrates. Although the efficiency is found to vary monotonically with surface stiffness, the forward velocity shows a non-monotonic behavior with the maximum on a surface, where the animal makes the 'S' shape.
Collapse
|
20
|
Kunert JM, Proctor JL, Brunton SL, Kutz JN. Spatiotemporal Feedback and Network Structure Drive and Encode Caenorhabditis elegans Locomotion. PLoS Comput Biol 2017; 13:e1005303. [PMID: 28076347 PMCID: PMC5226684 DOI: 10.1371/journal.pcbi.1005303] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023] Open
Abstract
Using a computational model of the Caenorhabditis elegans connectome dynamics, we show that proprioceptive feedback is necessary for sustained dynamic responses to external input. This is consistent with the lack of biophysical evidence for a central pattern generator, and recent experimental evidence that proprioception drives locomotion. The low-dimensional functional response of the Caenorhabditis elegans network of neurons to proprioception-like feedback is optimized by input of specific spatial wavelengths which correspond to the spatial scale of real body shape dynamics. Furthermore, we find that the motor subcircuit of the network is responsible for regulating this response, in agreement with experimental expectations. To explore how the connectomic dynamics produces the observed two-mode, oscillatory limit cycle behavior from a static fixed point, we probe the fixed point's low-dimensional structure using Dynamic Mode Decomposition. This reveals that the nonlinear network dynamics encode six clusters of dynamic modes, with timescales spanning three orders of magnitude. Two of these six dynamic mode clusters correspond to previously-discovered behavioral modes related to locomotion. These dynamic modes and their timescales are encoded by the network's degree distribution and specific connectivity. This suggests that behavioral dynamics are partially encoded within the connectome itself, the connectivity of which facilitates proprioceptive control.
Collapse
Affiliation(s)
- James M. Kunert
- Department of Physics, University of Washington, Seattle, Washington, United States of America
| | - Joshua L. Proctor
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| | - Steven L. Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
21
|
Brouilly N, Lecroisey C, Martin E, Pierson L, Mariol MC, Qadota H, Labouesse M, Streichenberger N, Mounier N, Gieseler K. Ultra-structural time-course study in the C. elegans model for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process. Hum Mol Genet 2015; 24:6428-45. [PMID: 26358775 DOI: 10.1093/hmg/ddv353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization.
Collapse
Affiliation(s)
- Nicolas Brouilly
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Claire Lecroisey
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Edwige Martin
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Laura Pierson
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Marie-Christine Mariol
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Hiroshi Qadota
- Department of Pathology, Emory University, 615 Michael Street, Whitehead 165, Atlanta, GA 30322, USA
| | - Michel Labouesse
- Intitut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 964, 1 rue Laurent Fries, BP 10142, 67404 Illkirch CEDEX, France and
| | | | - Nicole Mounier
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Kathrin Gieseler
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France,
| |
Collapse
|
22
|
Butler VJ, Branicky R, Yemini E, Liewald JF, Gottschalk A, Kerr RA, Chklovskii DB, Schafer WR. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans. J R Soc Interface 2015; 12:20140963. [PMID: 25551155 PMCID: PMC4277086 DOI: 10.1098/rsif.2014.0963] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control.
Collapse
Affiliation(s)
- Victoria J. Butler
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Janelia Farm Research Campus HHMI, Ashburn, VA 20147, USA
| | - Robyn Branicky
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Eviatar Yemini
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jana F. Liewald
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Rex A. Kerr
- Janelia Farm Research Campus HHMI, Ashburn, VA 20147, USA
- e-mail:
| | | | - William R. Schafer
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Janelia Farm Research Campus HHMI, Ashburn, VA 20147, USA
| |
Collapse
|
23
|
Rabets Y, Backholm M, Dalnoki-Veress K, Ryu WS. Direct measurements of drag forces in C. elegans crawling locomotion. Biophys J 2015; 107:1980-1987. [PMID: 25418179 DOI: 10.1016/j.bpj.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022] Open
Abstract
With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.
Collapse
Affiliation(s)
- Yegor Rabets
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Matilda Backholm
- Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada; Laboratoire de Physico-Chimie Théorique, UMR Centre National de la Recherche Scientifique 7083 GULLIVER, ESPCI, Paris, France
| | - William S Ryu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Backholm M, Ryu WS, Dalnoki-Veress K. The nematode C. elegans as a complex viscoelastic fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:118. [PMID: 25957177 DOI: 10.1140/epje/i2015-15036-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The viscoelastic material properties of the model organism C. elegans were probed with a micropipette deflection technique and modelled with the standard linear solid model. Dynamic relaxation measurements were performed on the millimetric nematode to investigate its viscous characteristics in detail. We show that the internal properties of C. elegans can not be fully described by a simple Newtonian fluid. Instead, a power-law fluid model was implemented and shown to be in excellent agreement with experimental results. The nematode exhibits shear thinning properties and its complex fluid characteristics were quantified. The bending-rate dependence of the internal damping coefficient of C. elegans could affect its gait modulation in different external environments.
Collapse
Affiliation(s)
- Matilda Backholm
- Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
25
|
Koren Y, Sznitman R, Arratia PE, Carls C, Krajacic P, Brown AEX, Sznitman J. Model-independent phenotyping of C. elegans locomotion using scale-invariant feature transform. PLoS One 2015; 10:e0122326. [PMID: 25816290 PMCID: PMC4376858 DOI: 10.1371/journal.pone.0122326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior.
Collapse
Affiliation(s)
- Yelena Koren
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Israel
| | - Raphael Sznitman
- Ophthalmic Technology Group, ARTORG Center, University of Bern, Switzerland
| | - Paulo E. Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Christopher Carls
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg WV, USA
| | - Predrag Krajacic
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg WV, USA
| | - André E. X. Brown
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, UK
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Israel
- * E-mail:
| |
Collapse
|
26
|
Greenblum A, Sznitman R, Fua P, Arratia PE, Sznitman J. Caenorhabditis elegans segmentation using texture-based models for motility phenotyping. IEEE Trans Biomed Eng 2014; 61:2278-89. [PMID: 25051545 DOI: 10.1109/tbme.2014.2298612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With widening interests in using model organisms for reverse genetic approaches and biomimmetic microrobotics, motility phenotyping of the nematode Caenorhabditis elegans is expanding across a growing array of locomotive environments. One ongoing bottleneck lies in providing users with automatic nematode segmentations of C. elegans in image sequences featuring complex and dynamic visual cues, a first and necessary step prior to extracting motility phenotypes. Here, we propose to tackle such automatic segmentation challenges by introducing a novel texture factor model (TFM). Our approach revolves around the use of combined intensity- and texture-based features integrated within a probabilistic framework. This strategy first provides a coarse nematode segmentation from which a Markov random field model is used to refine the segmentation by inferring pixels belonging to the nematode using an approximate inference technique. Finally, informative priors can then be estimated and integrated in our framework to provide coherent segmentations across image sequences. We validate our TFM method across a wide range of motility environments. Not only does TFM assure comparative performances to existing segmentation methods on traditional environments featuring static backgrounds, it importantly provides state-of-the-art C. elegans segmentations for dynamic environments such as the recently introduced wet granular media. We show how such segmentations may be used to compute nematode "skeletons" from which motility phenotypes can then be extracted. Overall, our TFM method provides users with a tangible solution to tackle the growing needs of C. elegans segmentation in challenging motility environments.
Collapse
|
27
|
Why do sleeping nematodes adopt a hockey-stick-like posture? PLoS One 2014; 9:e101162. [PMID: 25025212 PMCID: PMC4099128 DOI: 10.1371/journal.pone.0101162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022] Open
Abstract
A characteristic posture is considered one of the behavioral hallmarks of sleep, and typically includes functional features such as support for the limbs and shielding of sensory organs. The nematode C. elegans exhibits a sleep-like state during a stage termed lethargus, which precedes ecdysis at the transition between larval stages. A hockey-stick-like posture is commonly observed during lethargus. What might its function be? It was previously noted that during lethargus, C. elegans nematodes abruptly rotate about their longitudinal axis. Plausibly, these “flips” facilitate ecdysis by assisting the disassociation of the old cuticle from the new one. We found that body-posture during lethargus was established using a stereotypical motor program and that body bends during lethargus quiescence were actively maintained. Moreover, flips occurred almost exclusively when the animals exhibited a single body bend, preferentially in the anterior or mid section of the body. We describe a simple biomechanical model that imposes the observed lengths of the longitudinally directed body-wall muscles on an otherwise passive elastic rod. We show that this minimal model is sufficient for generating a rotation about the anterior-posterior body axis. Our analysis suggests that posture during lethargus quiescence may serve a developmental role in facilitating flips and that the control of body wall muscles in anterior and posterior body regions are distinct.
Collapse
|
28
|
Buonanno M, Garty G, Grad M, Gendrel M, Hobert O, Brenner DJ. Microbeam irradiation of C. elegans nematode in microfluidic channels. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:531-537. [PMID: 23942865 PMCID: PMC3809145 DOI: 10.1007/s00411-013-0485-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
To perform high-throughput studies on the biological effects of ionizing radiation in vivo, we have implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows the immobilization of worms with minimal stress for a rapid and controlled microbeam irradiation of multiple samples in parallel. Adapted from an established design, our microfluidic clamp consists of 16 tapered channels with 10-μm-thin bottoms to ensure charged particle traversal. Worms are introduced into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel guarantees that young adult worms are immobilized within minutes without the use of anesthesia. After site-specific irradiation with the microbeam, the worms can be released by reversing the flow direction in the clamp and collected for analysis of biological endpoints such as repair of radiation-induced DNA damage. For such studies, minimal sample manipulation and reduced use of drugs such as anesthetics that might interfere with normal physiological processes are preferable. By using our microfluidic device that allows simultaneous immobilization and imaging for irradiation of several whole living samples on a single clamp, here we show that 4.5-MeV proton microbeam irradiation induced DNA damage in wild-type C. elegans, as assessed by the formation of Rad51 foci that are essential for homologous repair of radiation-induced DNA damage.
Collapse
Affiliation(s)
- M Buonanno
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, P.O. Box 21, Irvington, NY, 10533, USA,
| | | | | | | | | | | |
Collapse
|
29
|
Rakowski F, Srinivasan J, Sternberg PW, Karbowski J. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. Front Comput Neurosci 2013; 7:128. [PMID: 24106473 PMCID: PMC3788333 DOI: 10.3389/fncom.2013.00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022] Open
Abstract
Caenorhabditis elegans is the only animal for which a detailed neural connectivity diagram has been constructed. However, synaptic polarities in this diagram, and thus, circuit functions are largely unknown. Here, we deciphered the likely polarities of seven pre-motor neurons implicated in the control of worm's locomotion, using a combination of experimental and computational tools. We performed single and multiple laser ablations in the locomotor interneuron circuit and recorded times the worms spent in forward and backward locomotion. We constructed a theoretical model of the locomotor circuit and searched its all possible synaptic polarity combinations and sensory input patterns in order to find the best match to the timing data. The optimal solution is when either all or most of the interneurons are inhibitory and forward interneurons receive the strongest input, which suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory, i.e., they have probably similar number of inhibitory and excitatory connections to distant targets. The method used here has a general character and thus can be also applied to other neural systems consisting of small functional networks.
Collapse
Affiliation(s)
- Franciszek Rakowski
- Interdisciplinary Center for Mathematical and Computational Modeling, University of Warsaw Warsaw, Poland
| | | | | | | |
Collapse
|
30
|
Nagy S, Wright C, Tramm N, Labello N, Burov S, Biron D. A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by G(αs) signaling. eLife 2013; 2:e00782. [PMID: 23840929 PMCID: PMC3699835 DOI: 10.7554/elife.00782] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/28/2013] [Indexed: 11/25/2022] Open
Abstract
Despite their simplicity, longitudinal studies of invertebrate models are rare. We thus sought to characterize behavioral trends of Caenorhabditis elegans, from the mid fourth larval stage through the mid young adult stage. We found that, outside of lethargus, animals exhibited abrupt switching between two distinct behavioral states: active wakefulness and quiet wakefulness. The durations of epochs of active wakefulness exhibited non-Poisson statistics. Increased Gαs signaling stabilized the active wakefulness state before, during and after lethargus. In contrast, decreased Gαs signaling, decreased neuropeptide release, or decreased CREB activity destabilized active wakefulness outside of, but not during, lethargus. Taken together, our findings support a model in which protein kinase A (PKA) stabilizes active wakefulness, at least in part through two of its downstream targets: neuropeptide release and CREB. However, during lethargus, when active wakefulness is strongly suppressed, the native role of PKA signaling in modulating locomotion and quiescence may be minor. DOI:http://dx.doi.org/10.7554/eLife.00782.001 The roundworm C. elegans is a key model organism in neuroscience. It has a simple nervous system, made up of just 302 neurons, and was the first multicellular organism to have its genome fully sequenced. The lifecycle of C. elegans begins with an embryonic stage, followed by four larval stages and then adulthood, and worms can progress through this cycle in only three days. However, relatively little is known about how the behaviour of the worms varies across these distinct developmental phases. The body wall of C. elegans contains pairs of muscles that extend along its length, and when waves of muscle contraction travel along its body, the worm undergoes a sinusoidal pattern of movement. A signalling cascade involving a molecule called protein kinase A is thought to help control these movements, and upregulation of this cascade has been shown to increase locomotion. Now, Nagy et al. have analysed the movement of C. elegans during these different stages of development. This involved developing an image processing tool that can analyze the position and posture of a worm’s body in each of three million (or more) images per day. Using this tool, which is called PyCelegans, Nagy et al. identified two behavioral macro-states in one of the larval forms of C. elegans: these states, which can persist for hours, are referred to as active wakefulness and quiet wakefulness. During periods of active wakefulness, the worms spent most (but not all) of their time moving forwards; during quiet wakefulness, they remained largely still. The worms switched abruptly between these two states, and the transition seemed to be regulated by PKA signaling. By using PyCelegans to compare locomotion in worms with mutations in genes encoding various components of this pathway, Nagy et al. showed that mutants with increased PKA activity spent more time in a state of active wakefulness, while the opposite was true for worms with mutations that reduced PKA activity. In addition to providing new insights into the control of locomotion in C. elegans, this study has provided a new open-source PyCelegans suite of tools, which are available to be extended and adapted by other researchers for new uses. DOI:http://dx.doi.org/10.7554/eLife.00782.002
Collapse
Affiliation(s)
- Stanislav Nagy
- Institute for Biophysical Dynamics, University of Chicago , Chicago , United States
| | | | | | | | | | | |
Collapse
|
31
|
Johari S, Nock V, Alkaisi MM, Wang W. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. LAB ON A CHIP 2013; 13:1699-707. [PMID: 23511608 DOI: 10.1039/c3lc41403e] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The understanding of force interplays between an organism and its environment is imperative in biological processes. Noticeably scarce from the study of C. elegans locomotion is the measurement of the nematode locomotion forces together with other important locomotive metrics. To bridge the current gap, we present the investigation of C. elegans muscular forces and locomotion metrics (speed, amplitude and wavelength) in one single assay. This assay uses polydimethylsiloxane (PDMS) micropillars as force sensing elements and, by variation of the pillar arrangement, introduces microstructure. To show the usefulness of the assay, twelve wild-type C. elegans sample worms were tested to obtain a total of 4665 data points. The experimental results lead to several key findings. These include: (1) maximum force is exerted when the pillar is in contact with the middle part of the worm body, (2) C. elegans locomotion forces are highly dependent on the structure of the surrounding environment, (3) the worms' undulation frequency and locomotion speed increases steadily from the narrow spacing of 'honeycomb' design to the wider spacing of 'lattice' pillar arrangement, and (4) C. elegans maintained their natural sinusoidal movement in the microstructured device, despite the existence of PDMS micropillars. The assay presented here focuses on wild type C. elegans, but the method can be easily applied to its mutants and other organisms. In addition, we also show that, by inverting the measurement device, worm locomotion behaviour can be studied in various substrate environments normally unconducive to flexible pillar fabrication. The quantitative measurements demonstrated in this work further improve the understanding of C. elegans mechanosensation and locomotion.
Collapse
Affiliation(s)
- Shazlina Johari
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
32
|
Shingai R, Furudate M, Hoshi K, Iwasaki Y. Evaluation of Head Movement Periodicity and Irregularity during Locomotion of Caenorhabditis elegans. Front Behav Neurosci 2013; 7:20. [PMID: 23518645 PMCID: PMC3604732 DOI: 10.3389/fnbeh.2013.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022] Open
Abstract
Caenorhabditis elegans is suitable for studying the nervous system, which controls behavior. C. elegans shows sinusoidal locomotion on an agar plate. The head moves not only sinusoidally but also more complexly, which reflects regulation of the head muscles by the nervous system. The head movement becomes more irregular with senescence. To date, the head movement complexity has not been quantitatively analyzed. We propose two simple methods for evaluation of the head movement regularity on an agar plate using image analysis. The methods calculate metrics that are a measure of how the head end movement is correlated with body movement. In the first method, the length along the trace of the head end on the agar plate between adjacent intersecting points of the head trace and the quasi-midline of the head trace, which was made by sliding an averaging window of 1/2 the body wavelength, was obtained. Histograms of the lengths showed periodic movement of the head and deviation from it. In the second method, the intersections between the trace of the head end and the trace of the 5 (near the pharynx) or 50% (the mid-body) point from the head end in the centerline length of the worm image were marked. The length of the head trace between adjacent intersections was measured, and a histogram of the lengths was produced. The histogram for the 5% point showed deviation of the head end movement from the movement near the pharynx. The histogram for the 50% point showed deviation of the head movement from the sinusoidal movement of the body center. Application of these methods to wild type and several mutant strains enabled evaluation of their head movement periodicity and irregularity, and revealed a difference in the age-dependence of head movement irregularity between the strains. A set of five parameters obtained from the histograms reliably identifies differences in head movement between strains.
Collapse
Affiliation(s)
- Ryuzo Shingai
- Laboratory of Bioscience, Faculty of Engineering, Iwate University Morioka, Iwate, Japan
| | | | | | | |
Collapse
|
33
|
Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm. Proc Natl Acad Sci U S A 2013; 110:4528-33. [PMID: 23460699 DOI: 10.1073/pnas.1219965110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Undulatory motion is common to many creatures across many scales, from sperm to snakes. These organisms must push off against their external environment, such as a viscous medium, grains of sand, or a high-friction surface; additionally they must work to bend their own body. A full understanding of undulatory motion, and locomotion in general, requires the characterization of the material properties of the animal itself. The material properties of the model organism Caenorhabditis elegans were studied with a micromechanical experiment used to carry out a three-point bending measurement of the worm. Worms at various developmental stages (including dauer) were measured and different positions along the worm were probed. From these experiments we calculated the viscoelastic properties of the worm, including the effective spring constant and damping coefficient of bending. C. elegans moves by propagating sinusoidal waves along its body. Whereas previous viscoelastic approaches to describe the undulatory motion have used a Kelvin-Voigt model, where the elastic and viscous components are connected in parallel, our measurements show that the Maxwell model, where the elastic and viscous components are in series, is more appropriate. The viscous component of the worm was shown to be consistent with a non-Newtonian, shear-thinning fluid. We find that as the worm matures it is well described as a self-similar elastic object with a shear-thinning damping term and a stiffness that becomes smaller as one approaches the tail.
Collapse
|
34
|
Iwanir S, Tramm N, Nagy S, Wright C, Ish D, Biron D. The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. Sleep 2013; 36:385-95. [PMID: 23449971 DOI: 10.5665/sleep.2456] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
STUDY OBJECTIVES The nematode C. elegans develops through four larval stages before it reaches adulthood. At the transition between stages and before it sheds its cuticle, it exhibits a sleep-like behavior during a stage termed lethargus. The objectives of this study were to characterize in detail behavioral patterns and physiological activity of a command interneuron during lethargus. MEASUREMENTS AND RESULTS We found that lethargus behavior was composed of bouts of quiescence and motion. The duration of individual bouts ranged from 2 to 100 seconds, and their dynamics exhibited local homeostasis: the duration of bouts of quiescence positively correlated with the duration of bouts of motion that immediately preceded them in a cAMP-dependent manner. In addition, we identified a characteristic body posture during lethargus: the average curvature along the body of L4 lethargus larvae was lower than that of L4 larvae prior to lethargus, and the positions of body bends were distributed non-uniformly along the bodies of quiescent animals. Finally, we found that the AVA interneurons, a pair of backward command neurons, mediated locomotion patterns during L4 lethargus in similar fashion to their function in L4 larvae prior to lethargus. Interestingly, in both developmental stages backward locomotion was initiated and terminated asymmetrically with respect to AVA intraneuronal calcium concentration. CONCLUSIONS The complex behavioral patterns during lethargus can be dissected to quantifiable elements, which exhibit rich temporal dynamics and are actively regulated by the nervous system. Our findings support the identification of lethargus as a sleep-like state. CITATION Iwanir S; Tramm N; Nagy S; Wright C; Ish D; Biron D. The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. SLEEP 2013;36(3):385-395.
Collapse
Affiliation(s)
- Shachar Iwanir
- Department of Physics, James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Mitochondria have been classically characterized as organelles with responsibility for cellular energy production in the form of ATP, but they are also the organelles through which apoptotic signaling occurs. Cell stress stimuli can result in outer membrane permeabilization, after which mitochondria release numerous proteins involved in apoptotic signaling, including cytochrome c, apoptosis-inducing factor, endonuclease G, Smac/DIABLO and Omi/HtrA2. Cell fate is determined by signaling through apoptotic proteins within the Bcl-2 (B-cell lymphoma 2) protein family, which converges on mitochondria. Many cancerous cells display abnormal levels of Bcl-2 protein family member expression that results in defective apoptotic signaling. Alterations in bioenergetic function also contribute to cancer as well as numerous other disorders. Recent evidence indicates that several pro-apoptotic proteins localized within mitochondria, as well as proteins within the Bcl-2 protein family, can influence mitochondrial bioenergetic function. This review focuses on the emerging roles of these proteins in the control of mitochondrial activity.
Collapse
Affiliation(s)
- S M Kilbride
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | |
Collapse
|
36
|
Padmanabhan V, Khan ZS, Solomon DE, Armstrong A, Rumbaugh KP, Vanapalli SA, Blawzdziewicz J. Locomotion of C. elegans: a piecewise-harmonic curvature representation of nematode behavior. PLoS One 2012; 7:e40121. [PMID: 22792224 PMCID: PMC3391229 DOI: 10.1371/journal.pone.0040121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase.
Collapse
Affiliation(s)
- Venkat Padmanabhan
- Venkat Padmanabhan Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
37
|
Shen XN, Sznitman J, Krajacic P, Lamitina T, Arratia PE. Undulatory locomotion of Caenorhabditis elegans on wet surfaces. Biophys J 2012; 102:2772-81. [PMID: 22735527 DOI: 10.1016/j.bpj.2012.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022] Open
Abstract
The physical and biomechanical principles that govern undulatory movement on wet surfaces have important applications in physiology, physics, and engineering. The nematode Caenorhabditis elegans, with its highly stereotypical and functionally distinct sinusoidal locomotory gaits, is an excellent system in which to dissect these properties. Measurements of the main forces governing the C. elegans crawling gait on lubricated surfaces have been scarce, primarily due to difficulties in estimating the physical features at the nematode-gel interface. Using kinematic data and a hydrodynamic model based on lubrication theory, we calculate both the surface drag forces and the nematode's bending force while crawling on the surface of agar gels within a preexisting groove. We find that the normal and tangential surface drag coefficients during crawling are ∼222 and 22, respectively, and the drag coefficient ratio is ∼10. During crawling, the calculated internal bending force is time-periodic and spatially complex, exhibiting a phase lag with respect to the nematode's body bending curvature. This phase lag is largely due to viscous drag forces, which are higher during crawling as compared to swimming in an aqueous buffer solution. The spatial patterns of bending force generated during either swimming or crawling correlate well with previously described gait-specific features of calcium signals in muscle. Further, our analysis indicates that one may be able to control the motility gait of C. elegans by judiciously adjusting the magnitude of the surface drag coefficients.
Collapse
Affiliation(s)
- X N Shen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
38
|
Kroetz SM, Srinivasan J, Yaghoobian J, Sternberg PW, Hong RL. The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. PLoS One 2012; 7:e34464. [PMID: 22563372 PMCID: PMC3338501 DOI: 10.1371/journal.pone.0034464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background The genetic tractability and the species-specific association with beetles make the nematode Pristionchus pacificus an exciting emerging model organism for comparative studies in development and behavior. P. pacificus differs from Caenorhabditis elegans (a bacterial feeder) by its buccal teeth and the lack of pharyngeal grinders, but almost nothing is known about which genes coordinate P. pacificus feeding behaviors, such as pharyngeal pumping rate, locomotion, and fat storage. Methodology/Principal Findings We analyzed P. pacificus pharyngeal pumping rate and locomotion behavior on and off food, as well as on different species of bacteria (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus). We found that the cGMP-dependent protein kinase G (PKG) Ppa-EGL-4 in P. pacificus plays an important role in regulating the pumping rate, mouth form dimorphism, the duration of forward locomotion, and the amount of fat stored in intestine. In addition, Ppa-EGL-4 interacts with Ppa-OBI-1, a recently identified protein involved in chemosensation, to influence feeding and locomotion behavior. We also found that C. crescentus NA1000 increased pharyngeal pumping as well as fat storage in P. pacificus. Conclusions The PKG EGL-4 has conserved functions in regulating feeding behavior in both C. elegans and P. pacificus nematodes. The Ppa-EGL-4 also has been co-opted during evolution to regulate P. pacificus mouth form dimorphism that indirectly affect pharyngeal pumping rate. Specifically, the lack of Ppa-EGL-4 function increases pharyngeal pumping, time spent in forward locomotion, and fat storage, in part as a result of higher food intake. Ppa-OBI-1 functions upstream or parallel to Ppa-EGL-4. The beetle-associated omnivorous P. pacificus respond differently to changes in food state and food quality compared to the exclusively bacteriovorous C. elegans.
Collapse
Affiliation(s)
- Silvina M. Kroetz
- Department of Biology, California State University Northridge, Northridge, California, United States of America
| | - Jagan Srinivasan
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jonathan Yaghoobian
- Department of Biology, California State University Northridge, Northridge, California, United States of America
| | - Paul W. Sternberg
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Ray L. Hong
- Department of Biology, California State University Northridge, Northridge, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Boyle JH, Berri S, Cohen N. Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Front Comput Neurosci 2012; 6:10. [PMID: 22408616 PMCID: PMC3296079 DOI: 10.3389/fncom.2012.00010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/07/2012] [Indexed: 11/13/2022] Open
Abstract
Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. We present a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimental predictions, in particular with respect to non-linearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body.
Collapse
Affiliation(s)
| | | | - Netta Cohen
- School of Computing, University of LeedsLeeds, UK
- Institute of Membrane and Systems Biology, University of LeedsLeeds, UK
| |
Collapse
|
40
|
Majmudar T, Keaveny EE, Zhang J, Shelley MJ. Experiments and theory of undulatory locomotion in a simple structured medium. J R Soc Interface 2012; 9:1809-23. [PMID: 22319110 DOI: 10.1098/rsif.2011.0856] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Undulatory locomotion of micro-organisms through geometrically complex, fluidic environments is ubiquitous in nature and requires the organism to negotiate both hydrodynamic effects and geometrical constraints. To understand locomotion through such media, we experimentally investigate swimming of the nematode Caenorhabditis elegans through fluid-filled arrays of micro-pillars and conduct numerical simulations based on a mechanical model of the worm that incorporates hydrodynamic and contact interactions with the lattice. We show that the nematode's path, speed and gait are significantly altered by the presence of the obstacles and depend strongly on lattice spacing. These changes and their dependence on lattice spacing are captured, both qualitatively and quantitatively, by our purely mechanical model. Using the model, we demonstrate that purely mechanical interactions between the swimmer and obstacles can produce complex trajectories, gait changes and velocity fluctuations, yielding some of the life-like dynamics exhibited by the real nematode. Our results show that mechanics, rather than biological sensing and behaviour, can explain some of the observed changes in the worm's locomotory dynamics.
Collapse
Affiliation(s)
- Trushant Majmudar
- Courant Institute of Mathematical Sciences, 251 Mercer Street, New York University, New York, NY 10012, USA.
| | | | | | | |
Collapse
|
41
|
Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A 2011; 108:17504-9. [PMID: 21969584 PMCID: PMC3198358 DOI: 10.1073/pnas.1108673108] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many animals, including humans, select alternate forms of motion (gaits) to move efficiently in different environments. However, it is unclear whether primitive animals, such as nematodes, also use this strategy. We used a multifaceted approach to study how the nematode Caenorhabditis elegans freely moves into and out of water. We demonstrate that C. elegans uses biogenic amines to switch between distinct crawling and swimming gaits. Dopamine is necessary and sufficient to initiate and maintain crawling after swimming. Serotonin is necessary and sufficient to transition from crawling to swimming and to inhibit a set of crawl-specific behaviors. Further study of locomotory switching in C. elegans and its dependence on biogenic amines may provide insight into how gait transitions are performed in other animals.
Collapse
Affiliation(s)
- Andrés Vidal-Gadea
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Stephen Topper
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Layla Young
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Ashley Crisp
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Leah Kressin
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Erin Elbel
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Thomas Maples
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Martin Brauner
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Karen Erbguth
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Abram Axelrod
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712; and
| | - Alexander Gottschalk
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dionicio Siegel
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712; and
| | | |
Collapse
|
42
|
Sobkowiak R, Kowalski M, Lesicki A. Concentration- and time-dependent behavioral changes in Caenorhabditis elegans after exposure to nicotine. Pharmacol Biochem Behav 2011; 99:365-70. [DOI: 10.1016/j.pbb.2011.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/05/2011] [Accepted: 05/13/2011] [Indexed: 11/25/2022]
|
43
|
Morandotti M. Self-propelled micro-swimmers in a Brinkman fluid. JOURNAL OF BIOLOGICAL DYNAMICS 2011; 6 Suppl 1:88-103. [PMID: 22873677 DOI: 10.1080/17513758.2011.611260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We prove an existence, uniqueness, and regularity result for the motion of a self-propelled micro-swimmer in a particulate viscous medium, modelled as a Brinkman fluid. A suitable functional setting is introduced to solve the Brinkman system for the velocity field and the pressure of the fluid by variational techniques. The equations of motion are written by imposing a self-propulsion constraint, thus allowing the viscous forces and torques to be the only ones acting on the swimmer. From an infinite-dimensional control on the shape of the swimmer, a system of six ordinary differential equations for the spatial position and the orientation of the swimmer is obtained. This is dealt with standard techniques for ordinary differential equations, once the coefficients are proved to be measurable and bounded. The main result turns out to extend an analogous result previously obtained for the Stokes system.
Collapse
Affiliation(s)
- Marco Morandotti
- SISSA-International School for Advanced Studies, Sector of Functional Analysis and Applications, Via Bonomea 265, Trieste, Italy.
| |
Collapse
|
44
|
Parashar A, Lycke R, Carr JA, Pandey S. Amplitude-modulated sinusoidal microchannels for observing adaptability in C. elegans locomotion. BIOMICROFLUIDICS 2011; 5:24112. [PMID: 21772935 DOI: 10.1063/1.3604391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/03/2011] [Indexed: 02/05/2023]
Abstract
In this paper, we present a movement-based assay to observe adaptability in Caenorhabditis elegans locomotion behavior. The assay comprises a series of sinusoidal microchannels with a fixed wavelength and modulating (increasing or decreasing) amplitude. The channel width is comparable to the body diameter of the organism. Worms are allowed to enter the channel from the input port and migrate toward the output port. Within channel sections that closely match the worm's natural undulations, the worm movement is relatively quick and steady. As the channel amplitude increases or decreases along the device, the worm faces difficulty in generating the propulsive thrust, begins to slow down and eventually fails to move forward. A set of locomotion parameters (i.e., average forward velocity, number and duration of stops, range of contact angle, and cut-off region) is defined for worm locomotion in modulated sinusoidal channels and extracted from the recorded videos. The device is tested on wild-type C. elegans (N2) and two mutants (lev-8 and unc-38). We anticipate this passive, movement-based assay can be used to screen nematodes showing difference in locomotion phenotype.
Collapse
Affiliation(s)
- Archana Parashar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
45
|
Petzold B, Park SJ, Ponce P, Roozeboom C, Powell C, Goodman M, Pruitt B. Caenorhabditis elegans body mechanics are regulated by body wall muscle tone. Biophys J 2011; 100:1977-85. [PMID: 21504734 PMCID: PMC3077690 DOI: 10.1016/j.bpj.2011.02.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 02/07/2011] [Accepted: 02/22/2011] [Indexed: 11/27/2022] Open
Abstract
Body mechanics in the nematode Caenorhabditis elegans are central to both mechanosensation and locomotion. Previous work revealed that the mechanics of the outer shell, rather than internal hydrostatic pressure, dominates stiffness. This shell is comprised of the cuticle and the body wall muscles, either of which could contribute to the body mechanics. Here, we tested the hypothesis that the muscles are an important contributor by modulating muscle tone using optogenetic and pharmacological tools, and measuring animal stiffness using piezoresistive microcantilevers. As a proxy for muscle tone, we measured changes in animal length under the same treatments. We found that treatments that induce muscle contraction generally resulted in body shortening and stiffening. Conversely, methods to relax the muscles more modestly increased length and decreased stiffness. The results support the idea that body wall muscle activation contributes significantly to and can modulate C. elegans body mechanics. Modulation of body stiffness would enable nematodes to tune locomotion or swimming gaits and may have implications in touch sensation.
Collapse
Affiliation(s)
- Bryan C. Petzold
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Sung-Jin Park
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Pierre Ponce
- Department of Electrical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Clifton Roozeboom
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Chloé Powell
- Department of Molecular and Cellular Physiology, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| |
Collapse
|
46
|
An elasto-hydrodynamical model of friction for the locomotion of Caenorhabditis elegans. J Biomech 2011; 44:1117-22. [DOI: 10.1016/j.jbiomech.2011.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/23/2022]
|
47
|
Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 2010; 107:20323-8. [PMID: 21048086 DOI: 10.1073/pnas.1003016107] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm's body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm's elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust.
Collapse
|
48
|
Sznitman R, Gupta M, Hager GD, Arratia PE, Sznitman J. Multi-environment model estimation for motility analysis of Caenorhabditis elegans. PLoS One 2010; 5:e11631. [PMID: 20661478 PMCID: PMC2908547 DOI: 10.1371/journal.pone.0011631] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/23/2010] [Indexed: 11/30/2022] Open
Abstract
The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode ‘skeletons’ for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and ‘skeletonizing’ across a wide range of motility assays.
Collapse
Affiliation(s)
- Raphael Sznitman
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Manaswi Gupta
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gregory D. Hager
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paulo E. Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Josué Sznitman
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
49
|
Sznitman J, Purohit PK, Krajacic P, Lamitina T, Arratia PE. Material properties of Caenorhabditis elegans swimming at low Reynolds number. Biophys J 2010; 98:617-26. [PMID: 20159158 DOI: 10.1016/j.bpj.2009.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/02/2009] [Accepted: 11/06/2009] [Indexed: 10/19/2022] Open
Abstract
Undulatory locomotion, as seen in the nematode Caenorhabditis elegans, is a common swimming gait of organisms in the low Reynolds number regime, where viscous forces are dominant. Although the nematode's motility is expected to be a strong function of its material properties, measurements remain scarce. Here, the swimming behavior of C. elegans is investigated in experiments and in a simple model. Experiments reveal that nematodes swim in a periodic fashion and generate traveling waves that decay from head to tail. The model is able to capture the experiments' main features and is used to estimate the nematode's Young's modulus E and tissue viscosity eta. For wild-type C. elegans, we find E approximately 3.77 kPa and eta approximately -860 Pa.s; values of eta for live C. elegans are negative because the tissue is generating rather than dissipating energy. Results show that material properties are sensitive to changes in muscle functional properties, and are useful quantitative tools with which to more accurately describe new and existing muscle mutants.
Collapse
Affiliation(s)
- J Sznitman
- Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
50
|
Berri S, Boyle JH, Tassieri M, Hope IA, Cohen N. Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP JOURNAL 2009; 3:186-93. [PMID: 19639043 DOI: 10.2976/1.3082260] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022]
Abstract
The ability of an animal to locomote through its environment depends crucially on the interplay between its active endogenous control and the physics of its interactions with the environment. The nematode worm Caenorhabditis elegans serves as an ideal model system for studying the respective roles of neural control and biomechanics, as well as the interaction between them. With only 302 neurons in a hard-wired neural circuit, the worm's apparent anatomical simplicity belies its behavioural complexity. Indeed, C. elegans exhibits a rich repertoire of complex behaviors, the majority of which are mediated by its adaptive undulatory locomotion. The conventional wisdom is that two kinematically distinct C. elegans locomotion behaviors-swimming in liquids and crawling on dense gel-like media-correspond to distinct locomotory gaits. Here we analyze the worm's motion through a series of different media and reveal a smooth transition from swimming to crawling, marked by a linear relationship between key locomotion metrics. These results point to a single locomotory gait, governed by the same underlying control mechanism. We further show that environmental forces play only a small role in determining the shape of the worm, placing conditions on the minimal pattern of internal forces driving locomotion.
Collapse
|