1
|
Anju L, Aruldhas D, Joe IH, John NL. Spectroscopic, quantum mechanical and docking studies on organochlorine insecticides by density functional theory. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
AbouGhaly MHH, Du J, Patel SM, Topp EM. Effects of ionic interactions on protein stability prediction using solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS). Int J Pharm 2019; 568:118512. [PMID: 31301464 DOI: 10.1016/j.ijpharm.2019.118512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Deuterium incorporation in solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS) has been correlated with protein aggregation on storage in sugar-based solid matrices. Here, the effects of sucrose, arginine and histidine buffer on the rate of aggregation of a lyophilized monoclonal antibody (mAb) were assessed using design of experiments (DoE) and response surface methodology. Lyophilized formulations were characterized using ssHDX-MS and Fourier transform infrared spectroscopy (ssFTIR) to assess potential correlation with stability in solid state. The samples were subjected to storage stability at 5 °C and stressed stability at 40 °C/75% RH for 6 months, and the aggregation rate was measured using size exclusion chromatography (SEC). Different levels of arginine had no significant effect on deuterium uptake in ssHDX-MS, although stability studies showed that aggregation rate decreased with increasing arginine concentration. Similarly, when histidine buffer was replaced with phosphate buffer at the same pH and molarity, ssHDX-MS showed no differences in deuterium uptake, but storage stability studies showed a significant increase in aggregation rate. The results suggest that proteins can be stabilized in amorphous solids by ionic interactions which ssHDX-MS does not detect, an important indication of the limitations of the method.
Collapse
Affiliation(s)
- Mohamed H H AbouGhaly
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Jiali Du
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Sajal M Patel
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Austerberry JI, Dajani R, Panova S, Roberts D, Golovanov AP, Pluen A, van der Walle CF, Uddin S, Warwicker J, Derrick JP, Curtis R. The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment. Eur J Pharm Biopharm 2017; 115:18-30. [DOI: 10.1016/j.ejpb.2017.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 01/10/2023]
|
4
|
Nuhu MM, Curtis R. Arginine dipeptides affect insulin aggregation in a pH- and ionic strength-dependent manner. Biotechnol J 2015; 10:404-16. [PMID: 25611817 DOI: 10.1002/biot.201400190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022]
Abstract
Solutions containing arginine or mixtures of arginine and other amino acids are commonly used for protein liquid formulations to overcome problems such as high viscosities, aggregation, and phase separation. The aim of this work is to examine whether the stabilizing properties of arginine can be improved by incorporating the amino acid into a dipeptide. A series of arginine-containing dipeptides have been tested for their ability to suppress insulin aggregation over a range of pH and ionic strength. The aggregation is monitored at room temperature using a combination of turbidimetry and light scattering for solutions at pH 5.5 or 3.7, whereas thermal-induced aggregation is measured at pH 7.5. In addition, intrinsic fluorescence has been used to quantify additive binding to insulin. The dipeptide diArg is the most effective additive in solutions at pH 5.5 and 3.7, whereas the dipeptide Arg-Phe almost completely eliminates thermally-induced aggregation of insulin at pH 7.5 up to temperature of 90°C. Insulin has been chosen as a model system because the molecular forces controlling its aggregation are well known. From this understanding, we are able to provide a molecular basis for how the various dipeptides affect insulin aggregation.
Collapse
Affiliation(s)
- Mariam M Nuhu
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
5
|
Abstract
β-lactam group of antibiotics is the most widely used therapeutic molecules for treating bacterial infections. The main mode of bacterial resistance to β-lactams is by β-lactamases. In the present study, we report our results on the role of cation-π interactions in β-lactamases and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while tyrosine is comparatively higher than phenylalanine and tryptophan in the π group. Our results indicate that cation-π interactions might play an important role in the global conformational stability of β-lactamases.
Collapse
|
6
|
Warwicker J, Charonis S, Curtis RA. Lysine and arginine content of proteins: computational analysis suggests a new tool for solubility design. Mol Pharm 2013; 11:294-303. [PMID: 24283752 PMCID: PMC3885198 DOI: 10.1021/mp4004749] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prediction and engineering of protein solubility is an important but imprecise area. While some features are routinely used, such as the avoidance of extensive non-polar surface area, scope remains for benchmarking of sequence and structural features with experimental data. We study properties in the context of experimental solubilities, protein gene expression levels, and families of abundant proteins (serum albumin and myoglobin) and their less abundant paralogues. A common feature that emerges for proteins with elevated solubility and at higher expression and abundance levels is an increased ratio of lysine content to arginine content. We suggest that the same properties of arginine that give rise to its recorded propensity for specific interaction surfaces also lead to favorable interactions at nonspecific contacts, and thus lysine is favored for proteins at relatively high concentration. A survey of protein therapeutics shows that a significant subset possesses a relatively low lysine to arginine ratio, and therefore may not be favored for high protein concentration. We conclude that modulation of lysine and arginine content could prove a useful and relatively simple addition to the toolkit available for engineering protein solubility in biotechnological applications.
Collapse
Affiliation(s)
- Jim Warwicker
- Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, U.K
| | | | | |
Collapse
|
7
|
Lima MA, Oliveira-Neto M, Kadowaki MAS, Rosseto FR, Prates ET, Squina FM, Leme AFP, Skaf MS, Polikarpov I. Aspergillus niger β-glucosidase has a cellulase-like tadpole molecular shape: insights into glycoside hydrolase family 3 (GH3) β-glucosidase structure and function. J Biol Chem 2013; 288:32991-3005. [PMID: 24064212 DOI: 10.1074/jbc.m113.479279] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspergillus niger is known to secrete large amounts of β-glucosidases, which have a variety of biotechnological and industrial applications. Here, we purified an A. niger β-glucosidase (AnBgl1) and conducted its biochemical and biophysical analyses. Purified enzyme with an apparent molecular mass of 116 kDa forms monomers in solution as judged by native gel electrophoresis and has a pI value of 4.55, as found for most of the fungi of β-glucosidases. Surprisingly, the small angle x-ray experiments reveal that AnBgl1 has a tadpole-like structure, with the N-terminal catalytic domain and C-terminal fibronectin III-like domain (FnIII) connected by the long linker peptide (∼100 amino acid residues) in an extended conformation. This molecular organization resembles the one adopted by other cellulases (such as cellobiohydrolases, for example) that frequently contain a catalytic domain linked to the cellulose-binding module that mediates their binding to insoluble and polymeric cellulose. The reasons why AnBgl1, which acts on the small soluble substrates, has a tadpole molecular shape are not entirely clear. However, our enzyme pulldown assays with different polymeric substrates suggest that AnBgl1 has little or no capacity to bind to and to adsorb cellulose, xylan, and starch, but it has high affinity to lignin. Molecular dynamics simulations suggested that clusters of residues located in the C-terminal FnIII domain interact strongly with lignin fragments. The simulations showed that numerous arginine residues scattered throughout the FnIII surface play an important role in the interaction with lignin by means of cation-π stacking with the lignin aromatic rings. These results indicate that the C-terminal FnIII domain could be operational for immobilization of the enzyme on the cell wall and for the prevention of unproductive binding of cellulase to the biomass lignin.
Collapse
Affiliation(s)
- Marisa A Lima
- From the Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos 13560-970, SP
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Du QS, Wang QY, Du LQ, Chen D, Huang RB. Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains. Chem Cent J 2013; 7:92. [PMID: 23705926 PMCID: PMC3666963 DOI: 10.1186/1752-153x-7-92] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/20/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In the study of biomolecular structures and interactions the polar hydrogen-π bonds (Hp-π) are an extensive molecular interaction type. In proteins 11 of 20 natural amino acids and in DNA (or RNA) all four nucleic acids are involved in this type interaction. RESULTS The Hp-π in proteins are studied using high level QM method CCSD/6-311 + G(d,p) + H-Bq (ghost hydrogen basis functions) in vacuum and in solutions (water, acetonitrile, and cyclohexane). Three quantum chemical methods (B3LYP, CCSD, and CCSD(T)) and three basis sets (6-311 + G(d,p), TZVP, and cc-pVTZ) are compared. The Hp-π donors include R2NH, RNH2, ROH, and C6H5OH; and the acceptors are aromatic amino acids, peptide bond unit, and small conjugate π-groups. The Hp-π interaction energies of four amino acid pairs (Ser-Phe, Lys-Phe, His-Phe, and Tyr-Phe) are quantitatively calculated. CONCLUSIONS Five conclusion points are abstracted from the calculation results. (1) The common DFT method B3LYP fails in describing the Hp-π interactions. On the other hand, CCSD/6-311 + G(d,p) plus ghost atom H-Bq can yield better results, very close to the state-of-the-art method CCSD(T)/cc-pVTZ. (2) The Hp-π interactions are point to π-plane interactions, possessing much more interaction conformations and broader energy range than other interaction types, such as common hydrogen bond and electrostatic interactions. (3) In proteins the Hp-π interaction energies are in the range 10 to 30 kJ/mol, comparable or even larger than common hydrogen bond interactions. (4) The bond length of Hp-π interactions are in the region from 2.30 to 3.00 Å at the perpendicular direction to the π-plane, much longer than the common hydrogen bonds (~1.9 Å). (5) Like common hydrogen bond interactions, the Hp-π interactions are less affected by solvation effects.
Collapse
Affiliation(s)
- Qi-Shi Du
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
- Gordon Life Science Institute, San Diego, CA 92130, USA
| | - Qing-Yan Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
- Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Li-Qin Du
- Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dong Chen
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
- Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ri-Bo Huang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
- Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
9
|
Dimitrijević BP, Borozan SZ, Stojanović SĐ. π–π and cation–π interactions in protein–porphyrin complex crystal structures. RSC Adv 2012. [DOI: 10.1039/c2ra21937a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Shah D, Li J, Shaikh AR, Rajagopalan R. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation. Biotechnol Prog 2011; 28:223-31. [DOI: 10.1002/btpr.710] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/21/2011] [Indexed: 11/06/2022]
|
11
|
Ramanathan K, Shanthi V, Sethumadhavan R. A compact review on the comparison of conventional and non-conventional interactions on the structural stability of therapeutic proteins. Interdiscip Sci 2011; 3:144-60. [PMID: 21541844 DOI: 10.1007/s12539-011-0082-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 11/28/2022]
Abstract
Therapeutic proteins carry out the most difficult tasks in living cells. They do so by interacting specifically with other molecules. This requires that they fold to a unique and more stable conformation. A prerequisite for comprehending the folding processes in their immense complexity entails a thorough understanding of many weak interactions. The purpose of this review is to systematically study the role of weak interactions such as cation-π, C-H......π, N-H......π and O-H......π, in the set of 49 therapeutic proteins. The importance of many of these interactions (for example, cationic residues interacting with π system) is revealed by the higher degree of conservation observed for them in protein structures. These interactions are mainly formed by long-range contacts and significant percentage of cation-π, C-H......π, N-H......π and O-H......π interacting residues had one or more stabilization centers. Further, a comparison of conventional and nonconventional interactions in the present data set unambiguously highlights the significance of these weak interactions in the structural stability of therapeutic proteins. We propose that the incorporation of the entirety of these interactions leads to a more complete description of the problem, and that this could provide new perspectives and new possible answers.
Collapse
Affiliation(s)
- K Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | | |
Collapse
|
12
|
Elumalai P, Rajasekaran M, Liu HL, Chen C. Investigation of cation-π interactions in sugar-binding proteins. PROTOPLASMA 2010; 247:13-24. [PMID: 20379838 DOI: 10.1007/s00709-010-0132-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
Cation-π interaction is a non-covalent binding force that plays a significant role in protein stability and drug-receptor interactions. In this work, we have investigated the structural role of cation-π interactions in sugar-binding proteins (SBPs). We observed 212 cation-π interactions in 53 proteins out of 59 SBPs in dataset. There is an average one energetically significant cation-π interaction for every 66 residues in SBPs. In addition, Arg is highly preferred to form cation-π interactions, and the average energy of Arg-Trp is high among six pairs. Long-range interactions are predominant in the analyzed cation-π interactions. Comparatively, all interaction pairs favor to accommodate in strand conformations. The analysis of solvent accessible area indicates that most of the aromatic residues are found on buried or partially buried whereas cationic residues were found mostly on the exposed regions of protein. The cation-π interactions forming residues were found that around 43% of cation-π residues had highly conserved with the conservation score ≥6. Almost cationic and π-residues equally share in the stabilization center. Sugar-binding site analysis in available complexes showed that the frequency of Trp and Arg is high, suggesting the potential role of these two residues in the interactions between proteins and sugar molecules. Our observations in this study could help to further understand the structural stability of SBPs.
Collapse
Affiliation(s)
- Pavadai Elumalai
- Graduate Institute of Biotechnology, National Taipei University of Technology, 1 Sec. 3 ZhongXiao E. Rd., Taipei, Taiwan
| | | | | | | |
Collapse
|
13
|
Li J, Garg M, Shah D, Rajagopalan R. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions. J Chem Phys 2010; 133:054902. [DOI: 10.1063/1.3469790] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Exploring the Role of C–H….π Interactions on the Structural Stability of Single Chain “All-Alpha” Proteins. Appl Biochem Biotechnol 2009; 160:1473-83. [DOI: 10.1007/s12010-009-8584-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 02/18/2009] [Indexed: 11/29/2022]
|