1
|
Richardson EL, White CR, Marshall DJ. A comparative analysis testing Werner's theory of complex life cycles. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emily L. Richardson
- Centre for Geometric Biology/School of Biological Sciences Monash University Melbourne Victoria Australia
| | - Craig R. White
- Centre for Geometric Biology/School of Biological Sciences Monash University Melbourne Victoria Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology/School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
2
|
Shapiro JT, Víquez-R L, Leopardi S, Vicente-Santos A, Mendenhall IH, Frick WF, Kading RC, Medellín RA, Racey P, Kingston T. Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses 2021; 13:1356. [PMID: 34372562 PMCID: PMC8310020 DOI: 10.3390/v13071356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022] Open
Abstract
Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany;
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Winifred F. Frick
- Bat Conservation International, Austin, TX 78746, USA;
- Department of Ecology and Evolution, University of California, Santa Cruz, CA 95060, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rodrigo A. Medellín
- Institute of Ecology, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Paul Racey
- The Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Benesh DP, Parker GA, Chubb JC, Lafferty KD. Trade-Offs with Growth Limit Host Range in Complex Life-Cycle Helminths. Am Nat 2020; 197:E40-E54. [PMID: 33523790 DOI: 10.1086/712249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractParasitic worms with complex life cycles have several developmental stages, with each stage creating opportunities to infect additional host species. Using a data set for 973 species of trophically transmitted acanthocephalans, cestodes, and nematodes, we confirmed that worms with longer life cycles (i.e., more successive hosts) infect a greater diversity of host species and taxa (after controlling for study effort). Generalism at the stage level was highest for middle life stages, the second and third intermediate hosts of long life cycles. By simulating life cycles in real food webs, we found that middle stages had more potential host species to infect, suggesting that opportunity constrains generalism. However, parasites usually infected fewer host species than expected from simulated cycles, suggesting that generalism has costs. There was no trade-off in generalism from one stage to the next, but worms spent less time growing and developing in stages where they infected more taxonomically diverse hosts. Our results demonstrate that life-cycle complexity favors high generalism and that host use across life stages is determined by both ecological opportunity and life-history trade-offs.
Collapse
|
4
|
Akiyama YB, Mizuno M, Shirai M. Laboratory evidence suggests glochidia metamorphosis in Sinanodonta japonica (Bivalvia: Unionidae) is supported by gills, but no other tissues of the host Gymnogobius urotaenia (Perciformes: Gobiidae). MOLLUSCAN RESEARCH 2018. [DOI: 10.1080/13235818.2017.1406298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yoshihiro B. Akiyama
- Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
- Coastal, Marine and Disaster Prevention Department, National Institute for Land and Infrastructure Management, Kanagawa, Japan
| | - Maki Mizuno
- School of Informatics and Sciences, Nagoya University, Aichi, Japan
| | - Masaki Shirai
- Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| |
Collapse
|
5
|
Abstract
SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
Collapse
|
6
|
The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases. Molecules 2015; 20:15392-433. [PMID: 26305243 PMCID: PMC6332049 DOI: 10.3390/molecules200815392] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs) are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs) are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.
Collapse
|
7
|
Su J, Zhou F, Lu DB. A circular analysis of chronobiology of Schistosoma japonicum cercarial emergence from hilly areas of Anhui, China. Exp Parasitol 2013; 135:421-5. [PMID: 23988664 DOI: 10.1016/j.exppara.2013.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/07/2013] [Accepted: 08/11/2013] [Indexed: 11/17/2022]
Abstract
About 46 mammal species have been suspected as reservoir hosts for Schistosoma japonicum and therefore the track of the target parasites, in relation to definitive host species, may be of great importance in terms of theoretical and practical implications. The circadian rhythm of cercariae emergence, a genetically controlled behavior for parasites to adapt to their definitive hosts, may seem to be a perfect biological marker for S. japonicum. In this study, a late (or nocturnal) cercarial emergence pattern was observed on the parasites from one hilly region in Anhui of China, where rodents serve as reservoirs, and on the first generation of the parasites. Moreover, by using the circular statistics, the homogeneity of parasites in such trait was also demonstrated. All these provide evidence for the genetically controlled biological trait, which seems essential in the investigation of macro- or micro-dynamics of parasite transmission of interest. This is particularly true in the case of S. japonicum when multiple parasite isolates or strains are more likely to exist.
Collapse
Affiliation(s)
- Jing Su
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou 215123, China
| | | | | |
Collapse
|
8
|
Variability in the intensity of nematode larvae from gastrointestinal tissues of a natural herbivore. Parasitology 2013; 140:632-40. [PMID: 23351661 DOI: 10.1017/s0031182012001898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The migration of infective nematode larvae into the tissues of their hosts has been proposed as a mechanism of reducing larval mortality and increase parasite lifetime reproductive success. Given that individual hosts differ in the level of exposure, strength of immune response and physiological conditions we may expect the number of larvae in tissue to vary both between and within hosts. We used 2 gastrointestinal nematode species common in the European rabbit (Oryctolagus cuniculus) and examined how the number of larvae in the tissue changed with the immune response, parasite intensity-dependent constraints in the lumen and seasonal weather factors, in rabbits of different age, sex and breeding status. For both nematode species, larvae from the gastrointestinal tissue exhibited strong seasonal and host age-related patterns with fewer larvae recovered in summer compared to winter and more in adults than in juveniles. The number of larvae of the 2 nematodes was positively associated with intensity of parasite infection in the lumen and antibody responses while it was negatively related with air temperature and rainfall. Host sex, reproductive status and co-infection with the second parasite species contributed to increase variability between hosts. We concluded that heterogeneities in host conditions are a significant cause of variability of larval abundance in the gastrointestinal tissues. These findings can have important consequences for the dynamics of nematode infections and how parasite's life-history strategies adjust to host changes.
Collapse
|
9
|
Benesh DP, Chubb JC, Parker GA. Complex Life Cycles: Why Refrain from Growth before Reproduction in the Adult Niche? Am Nat 2013; 181:39-51. [DOI: 10.1086/668592] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Benesh DP, Hafer N. Growth and ontogeny of the tapeworm Schistocephalus solidus in its copepod first host affects performance in its stickleback second intermediate host. Parasit Vectors 2012; 5:90. [PMID: 22564512 PMCID: PMC3403952 DOI: 10.1186/1756-3305-5-90] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background For parasites with complex life cycles, size at transmission can impact performance in the next host, thereby coupling parasite phenotypes in the two consecutive hosts. However, a handful of studies with parasites, and numerous studies with free-living, complex-life-cycle animals, have found that larval size correlates poorly with fitness under particular conditions, implying that other traits, such as physiological or ontogenetic variation, may predict fitness more reliably. Using the tapeworm Schistocephalus solidus, we evaluated how parasite size, age, and ontogeny in the copepod first host interact to determine performance in the stickleback second host. Methods We raised infected copepods under two feeding treatments (to manipulate parasite growth), and then exposed fish to worms of two different ages (to manipulate parasite ontogeny). We assessed how growth and ontogeny in copepods affected three measures of fitness in fish: infection probability, growth rate, and energy storage. Results Our main, novel finding is that the increase in fitness (infection probability and growth in fish) with larval size and age observed in previous studies on S. solidus seems to be largely mediated by ontogenetic variation. Worms that developed rapidly (had a cercomer after 9 days in copepods) were able to infect fish at an earlier age, and they grew to larger sizes with larger energy reserves in fish. Infection probability in fish increased with larval size chiefly in young worms, when size and ontogeny are positively correlated, but not in older worms that had essentially completed their larval development in copepods. Conclusions Transmission to sticklebacks as a small, not-yet-fully developed larva has clear costs for S. solidus, but it remains unclear what prevents the evolution of faster growth and development in this species.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | |
Collapse
|
11
|
Intensity-dependent host mortality: what can it tell us about larval growth strategies in complex life cycle helminths? Parasitology 2011; 138:913-25. [DOI: 10.1017/s0031182011000370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYComplex life cycle helminths use their intermediate hosts as both a source of nutrients and as transportation. There is an assumed trade-off between these functions in that parasite growth may reduce host survival and thus transmission. The virulence of larval helminths can be assessed by experimentally increasing infection intensities and recording how parasite biomass and host mortality scale with intensity. I summarize the literature on these relationships in larval helminths and I provide an empirical example using the nematodeCamallanus lacustrisin its copepod first host. In all species studied thus far, includingC. lacustris, overall parasite volume increases with intensity. Although a few studies observed host survival to decrease predictably with intensity, several studies found no intensity-dependent mortality or elevated mortality only at extreme intensities. For instance, no intensity-dependent mortality was observed in male copepods infected withC. lacustris, whereas female survival was reduced only at high intensities (>3) and only after worms were fully developed. These observations suggest that at low, natural intensity levels parasites do not exploit intermediate hosts as much as they presumably could and that increased growth would not obviously entail survival costs.
Collapse
|
12
|
The dynamics of macroparasite host-self-infection: a study of the patterns and processes of pinworm (Oxyuridae) aggregation. Parasitology 2011; 138:619-27. [PMID: 21349221 DOI: 10.1017/s0031182011000096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Among parasites, Taylor's power law identifies a tight relationship in aggregation of macroparasite infection intensity with few exceptions; notably, the nematode family Oxyuridae tends to have higher than expected aggregation. Oxyuridae infect a wide range of mammalian hosts and have a unique reproductive strategy that involves conventional horizontal transmission, as well as re-infection of an already infected host. We asked the question, do the unique aspects of pinworm life-history explain an exception to the widely observed patterns of aggregation of parasite populations? METHODS We empirically examined the differences among Oxyuridae (genus: Syphacia) compared with other helminth (genus: Heligmosomoides) parasite aggregations in 2 rodent hosts with similar ecology: the yellow-necked mouse (Apodemus flavicollis) from Trento, Italy and the white-footed mouse (Peromyscus leucopus) from Pennsylvania, USA. To investigate the effects of pinworm life-history characteristics on generating aggregation, we present a stochastic model that explores aggregation under a range of host-self-infection, parasite death, and transmission scenarios. RESULTS Oxyuridae parasites had consistently greater aggregation compared to other nematodes regardless of host or parasite species identity, and pinworm aggregation exceeded the range of macroparasite aggregation described previously. CONCLUSIONS Our simulations demonstrate that host-self-infection, on its own, is sufficient to generate aggregation values greater than the predicted values.
Collapse
|
13
|
Living in intermediate hosts: evolutionary adaptations in larval helminths. Trends Parasitol 2010; 26:93-102. [DOI: 10.1016/j.pt.2009.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/22/2009] [Accepted: 11/24/2009] [Indexed: 11/17/2022]
|