1
|
Asar Y, Sauquet H, Ho SYW. Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution. Syst Biol 2023; 72:1337-1356. [PMID: 37695237 PMCID: PMC10924723 DOI: 10.1093/sysbio/syad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Wilson JD, Bond JE, Harvey MS, Ramírez MJ, Rix MG. Correlation with a limited set of behavioral niches explains the convergence of somatic morphology in mygalomorph spiders. Ecol Evol 2023; 13:e9706. [PMID: 36636427 PMCID: PMC9830016 DOI: 10.1002/ece3.9706] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web-building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.
Collapse
Affiliation(s)
- Jeremy D. Wilson
- Biodiversity and Geosciences ProgramQueensland Museum Collections and Research CentreHendraQueenslandAustralia
| | - Jason E. Bond
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mark S. Harvey
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Martín J. Ramírez
- Museo Argentino de Ciencias NaturalesConsejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Michael G. Rix
- Biodiversity and Geosciences ProgramQueensland Museum Collections and Research CentreHendraQueenslandAustralia
| |
Collapse
|
3
|
Wilson JD, Mongiardino Koch N, Ramírez MJ. Chronogram or phylogram for ancestral state estimation? Model‐fit statistics indicate the branch lengths underlying a binary character’s evolution. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy D. Wilson
- Biodiversity and Geosciences Program, Queensland Museum South Brisbane, Queensland 4101 Australia
- Museo Argentino de Ciencias Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Angel Gallardo 470, C1405DJR Buenos Aires Argentina
| | - Nicolás Mongiardino Koch
- Department of Earth & Planetary Sciences Yale University 210 Whitney Avenue, New Haven, CT 06511 USA
- Scripps Institution of Oceanography University of California San Diego, 8750 Biological Grade, La Jolla, CA 92037 USA
| | - Martín J. Ramírez
- Museo Argentino de Ciencias Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Angel Gallardo 470, C1405DJR Buenos Aires Argentina
| |
Collapse
|
4
|
Abstract
Reconstructing the history of biodiversity has been hindered by often-separate analyses of stem and crown groups of the clades in question that are not easily understood within the same unified evolutionary framework. Here, we investigate the evolutionary history of birds by analyzing three supertrees that combine published phylogenies of both stem and crown birds. Our analyses reveal three distinct large-scale increases in the diversification rate across bird evolutionary history. The first increase, which began between 160 and 170 Ma and reached its peak between 130 and 135 Ma, corresponds to an accelerated morphological evolutionary rate associated with the locomotory systems among early stem birds. This radiation resulted in morphospace occupation that is larger and different from their close dinosaurian relatives, demonstrating the occurrence of a radiation among early stem birds. The second increase, which started ∼90 Ma and reached its peak between 65 and 55 Ma, is associated with rapid evolution of the cranial skeleton among early crown birds, driven differently from the first radiation. The third increase, which occurred after ∼40 to 45 Ma, has yet to be supported by quantitative morphological data but gains some support from the fossil record. Our analyses indicate that the bird biodiversity evolution was influenced mainly by long-term climatic changes and also by major paleobiological events such as the Cretaceous-Paleogene (K-Pg) extinction.
Collapse
|
5
|
Demongeot J, Moreira A, Seligmann H. Negative CG dinucleotide bias: An explanation based on feedback loops between Arginine codon assignments and theoretical minimal RNA rings. Bioessays 2020; 43:e2000071. [PMID: 33319381 DOI: 10.1002/bies.202000071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Theoretical minimal RNA rings are candidate primordial genes evolved for non-redundant coding of the genetic code's 22 coding signals (one codon per biogenic amino acid, a start and a stop codon) over the shortest possible length: 29520 22-nucleotide-long RNA rings solve this min-max constraint. Numerous RNA ring properties are reminiscent of natural genes. Here we present analyses showing that all RNA rings lack dinucleotide CG (a mutable, chemically instable dinucleotide coding for Arginine), bearing a resemblance to known CG-depleted genomes. CG in "incomplete" RNA rings (not coding for all coding signals, with only 3-12 nucleotides) gradually decreases towards CG absence in complete, 22-nucleotide-long RNA rings. Presumably, feedback loops during RNA ring growth during evolution (when amino acid assignment fixed the genetic code) assigned Arg to codons lacking CG (AGR) to avoid CG. Hence, as a chemical property of base pairs, CG mutability restructured the genetic code, thereby establishing itself as genetically encoded biological information.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France
| | - Andrés Moreira
- Departamento de Informática, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Demongeot J, Seligmann H. Comparisons between small ribosomal RNA and theoretical minimal RNA ring secondary structures confirm phylogenetic and structural accretion histories. Sci Rep 2020; 10:7693. [PMID: 32376895 PMCID: PMC7203183 DOI: 10.1038/s41598-020-64627-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs are complex structures that presumably evolved by tRNA accretions. Statistical properties of tRNA secondary structures correlate with genetic code integration orders of their cognate amino acids. Ribosomal RNA secondary structures resemble those of tRNAs with recent cognates. Hence, rRNAs presumably evolved from ancestral tRNAs. Here, analyses compare secondary structure subcomponents of small ribosomal RNA subunits with secondary structures of theoretical minimal RNA rings, presumed proto-tRNAs. Two independent methods determined different accretion orders of rRNA structural subelements: (a) classical comparative homology and phylogenetic reconstruction, and (b) a structural hypothesis assuming an inverted onion ring growth where the three-dimensional ribosome's core is most ancient and peripheral elements most recent. Comparisons between (a) and (b) accretions orders with RNA ring secondary structure scales show that recent rRNA subelements are: 1. more like RNA rings with recent cognates, indicating ongoing coevolution between tRNA and rRNA secondary structures; 2. less similar to theoretical minimal RNA rings with ancient cognates. Our method fits (a) and (b) in all examined organisms, more with (a) than (b). Results stress the need to integrate independent methods. Theoretical minimal RNA rings are potential evolutionary references for any sequence-based evolutionary analyses, independent of the focal data from that study.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel
| |
Collapse
|
7
|
Demongeot J, Seligmann H. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods. Gene 2020; 738:144436. [PMID: 32027954 DOI: 10.1016/j.gene.2020.144436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Accretions of tRNAs presumably formed the large complex ribosomal RNA structures. Similarities of tRNA secondary structures with rRNA secondary structures increase with the integration order of their cognate amino acid in the genetic code, indicating tRNA evolution towards rRNA-like structures. Here analyses rank secondary structure subelements of three large ribosomal RNAs (Prokaryota: Archaea: Thermus thermophilus; Bacteria: Escherichia coli; Eukaryota: Saccharomyces cerevisiae) in relation to their similarities with secondary structures formed by presumed proto-tRNAs, represented by 25 theoretical minimal RNA rings. These ranks are compared to those derived from two independent methods (ranks provide a relative evolutionary age to the rRNA substructure), (a) cladistic phylogenetic analyses and (b) 3D-crystallography where core subelements are presumed ancient and peripheral ones recent. Comparisons of rRNA secondary structure subelements with RNA ring secondary structures show congruence between ranks deduced by this method and both (a) and (b) (more with (a) than (b)), especially for RNA rings with predicted ancient cognate amino acid. Reconstruction of accretion histories of large rRNAs will gain from adequately integrating information from independent methods. Theoretical minimal RNA rings, sequences deterministically designed in silico according to specific coding constraints, might produce adequate scales for prebiotic and early life molecular evolution.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
8
|
Seligmann H. Giant viruses: spore‐like missing links betweenRickettsiaand mitochondria? Ann N Y Acad Sci 2019; 1447:69-79. [DOI: 10.1111/nyas.14022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collectionsthe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
9
|
Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes. Biosystems 2018; 167:33-46. [DOI: 10.1016/j.biosystems.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
10
|
Bijective codon transformations show genetic code symmetries centered on cytosine's coding properties. Theory Biosci 2017; 137:17-31. [PMID: 29147851 DOI: 10.1007/s12064-017-0258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce 'swinger' RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C's central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.
Collapse
|
11
|
Seligmann H, Warthi G. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes. Comput Struct Biotechnol J 2017; 15:412-424. [PMID: 28924459 PMCID: PMC5591391 DOI: 10.1016/j.csbj.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022] Open
Abstract
A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').
Collapse
Affiliation(s)
- Hervé Seligmann
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
- Dept. Ecol Evol Behav, Alexander Silberman Inst Life Sci, The Hebrew University of Jerusalem, IL-91904 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
| |
Collapse
|
12
|
O'Reilly JE, Dos Reis M, Donoghue PCJ. Dating Tips for Divergence-Time Estimation. Trends Genet 2015; 31:637-650. [PMID: 26439502 DOI: 10.1016/j.tig.2015.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
The molecular clock is the only viable means of establishing an accurate timescale for Life on Earth, but it remains reliant on a capricious fossil record for calibration. 'Tip-dating' promises a conceptual advance, integrating fossil species among their living relatives using molecular/morphological datasets and evolutionary models. Fossil species of known age establish calibration directly, and their phylogenetic uncertainty is accommodated through the co-estimation of time and topology. However, challenges remain, including a dearth of effective models of morphological evolution, rate correlation, the non-random nature of missing characters in fossil data, and, most importantly, accommodating uncertainty in fossil age. We show uncertainty in fossil-dating propagates to divergence-time estimates, yielding estimates that are older and less precise than those based on traditional node calibration. Ultimately, node and tip calibrations are not mutually incompatible and may be integrated to achieve more accurate and precise evolutionary timescales.
Collapse
Affiliation(s)
- Joseph E O'Reilly
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mario Dos Reis
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK; Present address: School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
13
|
Abstract
A new study quantifies rates of morphological and molecular evolution for arthropods during the critical Cambrian explosion. Both morphological and molecular evolution are accelerated--but not so much to break any speed limits.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden SE 75236.
| |
Collapse
|
14
|
Mamos T, Wattier R, Majda A, Sket B, Grabowski M. Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarus balcanicus
Schäferna, (Crustacea: Amphipoda). J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12062] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology; University of Lodz; Lodz Poland
| | - Remi Wattier
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - Aneta Majda
- Insitute of Paleobiology; Polish Academy of Sciences; Warsaw Poland
| | - Boris Sket
- Oddelek za biologijo; Biotehniška fakulteta; Univerza v Ljubljani; Ljubljana Slovenia
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology; University of Lodz; Lodz Poland
| |
Collapse
|
15
|
Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution. J Biosci 2013; 37:897-909. [PMID: 23107925 DOI: 10.1007/s12038-012-9254-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sequence evolution behaves in a relatively consistent manner, leading to one of the fundamental paradigms in biology, the existence of a 'molecular clock'. The molecular clock can be distilled to the concept of accumulation of substitutions, through time yielding a stable rate from which we can estimate lineage divergence. Over the last 50 years, evolutionary biologists have obtained an in-depth understanding of this clock's nuances. It has been fine-tuned by taking into account the vast heterogeneity in rates across lineages and genes, leading to 'relaxed' molecular clock methods for timetree reconstruction. Sequence rate varies with life history traits including body size, generation time and metabolic rate, and we review recent studies on this topic. However, few studies have explicitly examined correlates between molecular evolution and morphological evolution. The patterns observed across diverse lineages suggest that rates of molecular and morphological evolution are largely decoupled. We discuss how identifying the molecular mechanisms behind rapid functional radiations are central to understanding evolution. The vast functional divergence within mammalian lineages that have relatively 'slow' sequence evolution refutes the hypotheses that pulses in diversification yielding major phenotypic change are the result of steady accumulation of substitutions. Patterns rather suggest phenotypic divergence is likely caused by regulatory alterations mediated through mechanisms such as insertions/deletions in functional regions. These can rapidly arise and sweep to fixation faster than predicted from a lineage's sequence neutral substitution rate, enabling species to leapfrog between phenotypic 'islands'. We suggest research directions that could illuminate mechanisms behind the functional diversity we see today.
Collapse
|
16
|
Seligmann H. Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case. Comput Biol Chem 2012; 41:18-34. [DOI: 10.1016/j.compbiolchem.2012.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 03/14/2012] [Accepted: 08/05/2012] [Indexed: 11/29/2022]
|
17
|
Seligmann H. Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes. Curr Genomics 2012; 13:37-54. [PMID: 22942674 PMCID: PMC3269015 DOI: 10.2174/138920212799034802] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/07/2011] [Accepted: 09/20/2011] [Indexed: 11/30/2022] Open
Abstract
Distances from heavy and light strand replication origins determine duration mitochondrial DNA remains singlestranded during replication. Hydrolytic deaminations from A->G and C->T occur more on single- than doublestranded DNA. Corresponding replicational nucleotide gradients exist across mitochondrial genomes, most at 3rd, least 2nd codon positions. DNA singlestrandedness during RNA transcription causes gradients mainly in long-lived species with relatively slow metabolism (high transcription/replication ratios). Third codon nucleotide contents, evolutionary results of mutation cumulation, follow replicational, not transcriptional gradients in Homo; observed human mutations follow transcriptional gradients. Synonymous third codon position transitions potentially alter adaptive off frame information. No mutational gradients occur at synonymous positions forming off frame stops (these adaptively stop early accidental frameshifted protein synthesis), nor in regions coding for putative overlapping genes according to an overlapping genetic code reassigning stop codons to amino acids. Deviation of 3rd codon nucleotide contents from deamination gradients increases with coding importance of main frame 3rd codon positions in overlapping genes (greatest if these are 2nd position in overlapping genes). Third codon position deamination gradients calculated separately for each codon family are strongest where synonymous transitions are rarely pathogenic; weakest where transitions are frequently pathogenic. Synonymous mutations affect translational accuracy, such as error compensation of misloaded tRNAs by codon-anticodon mismatches (prevents amino acid misinsertion despite tRNA misacylation), a potential cause of pathogenic mutations at synonymous codon positions. Indeed, codon-family-specific gradients are inversely proportional to error compensation associated with gradient-promoted transitions. Deamination gradients reflect spontaneous chemical reactions in singlestranded DNA, but functional coding constraints modulate gradients.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Collections of Natural History at the Hebrew University of Jerusalem, Jerusalem 91404; Department of Life Sciences, Ben Gurion University, 84105 Beer Sheva, Israel
| |
Collapse
|
18
|
An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: Antisense antitermination tRNAs UAR insert serine. J Theor Biol 2012; 298:51-76. [DOI: 10.1016/j.jtbi.2011.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/27/2023]
|
19
|
Positive and Negative Cognate Amino Acid Bias Affects Compositions of Aminoacyl-tRNA Synthetases and Reflects Functional Constraints on Protein Structure. ACTA ACUST UNITED AC 2012. [DOI: 10.5618/bio.2012.v2.n1.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Litsios G, Salamin N. Effects of Phylogenetic Signal on Ancestral State Reconstruction. Syst Biol 2012; 61:533-8. [DOI: 10.1093/sysbio/syr124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Glenn Litsios
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Gaut B, Yang L, Takuno S, Eguiarte LE. The Patterns and Causes of Variation in Plant Nucleotide Substitution Rates. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2011. [DOI: 10.1146/annurev-ecolsys-102710-145119] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brandon Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Liang Yang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Shohei Takuno
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, CP 04510 Mexico City, Mexico;
| |
Collapse
|
22
|
Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM. Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 2011; 6:56. [PMID: 22024028 PMCID: PMC3214167 DOI: 10.1186/1745-6150-6-56] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria mediate most of the energy production that occurs in the majority of eukaryotic organisms. These subcellular organelles contain a genome that differs from the nuclear genome and is referred to as mitochondrial DNA (mtDNA). Despite a disparity in gene content, all mtDNAs encode at least two components of the mitochondrial electron transport chain, including cytochrome c oxidase I (Cox1). PRESENTATION OF THE HYPOTHESIS A positionally conserved ORF has been found on the complementary strand of the cox1 genes of both eukaryotic mitochondria (protist, plant, fungal and animal) and alpha-proteobacteria. This putative gene has been named gau for gene antisense ubiquitous in mtDNAs. The length of the deduced protein is approximately 100 amino acids. In vertebrates, several stop codons have been found in the mt gau region, and potentially functional gau regions have been found in nuclear genomes. However, a recent bioinformatics study showed that several hypothetical overlapping mt genes could be predicted, including gau; this involves the possible import of the cytosolic AGR tRNA into the mitochondria and/or the expression of mt antisense tRNAs with anticodons recognizing AGR codons according to an alternative genetic code that is induced by the presence of suppressor tRNAs. Despite an evolutionary distance of at least 1.5 to 2.0 billion years, the deduced Gau proteins share some conserved amino acid signatures and structure, which suggests a possible conserved function. Moreover, BLAST analysis identified rare, sense-oriented ESTs with poly(A) tails that include the entire gau region. Immunohistochemical analyses using an anti-Gau monoclonal antibody revealed strict co-localization of Gau proteins and a mitochondrial marker. TESTING THE HYPOTHESIS This hypothesis could be tested by purifying the gau gene product and determining its sequence. Cell biological experiments are needed to determine the physiological role of this protein. IMPLICATIONS OF THE HYPOTHESIS Studies of the gau ORF will shed light on the origin of novel genes and their functions in organelles and could also have medical implications for human diseases that are caused by mitochondrial dysfunction. Moreover, this strengthens evidence for mitochondrial genes coded according to an overlapping genetic code.
Collapse
Affiliation(s)
- Eric Faure
- Université de Provence, Marseille cedex 3, France.
| | | | | | | | | | | |
Collapse
|
23
|
Two genetic codes, one genome: Frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 2011; 105:271-85. [DOI: 10.1016/j.biosystems.2011.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/26/2011] [Indexed: 11/21/2022]
|