1
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Kolokotroni E, Abler D, Ghosh A, Tzamali E, Grogan J, Georgiadi E, Büchler P, Radhakrishnan R, Byrne H, Sakkalis V, Nikiforaki K, Karatzanis I, McFarlane NJB, Kaba D, Dong F, Bohle RM, Meese E, Graf N, Stamatakos G. A Multidisciplinary Hyper-Modeling Scheme in Personalized In Silico Oncology: Coupling Cell Kinetics with Metabolism, Signaling Networks, and Biomechanics as Plug-In Component Models of a Cancer Digital Twin. J Pers Med 2024; 14:475. [PMID: 38793058 PMCID: PMC11122096 DOI: 10.3390/jpm14050475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary.
Collapse
Affiliation(s)
- Eleni Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
| | - Daniel Abler
- Department of Oncology, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Alokendra Ghosh
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.); (R.R.)
| | - Eleftheria Tzamali
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - James Grogan
- Irish Centre for High End Computing, University of Galway, H91 TK33 Galway, Ireland;
| | - Eleni Georgiadi
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
- Biomedical Engineering Department, University of West Attica, 12243 Egaleo, Greece
| | | | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.); (R.R.)
| | - Helen Byrne
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK;
| | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - Katerina Nikiforaki
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - Ioannis Karatzanis
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | | | - Djibril Kaba
- Department of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;
| | - Feng Dong
- Department of Computer & Information Sciences, University of Strathclyde, Glasgow G1 1XH, UK;
| | - Rainer M. Bohle
- Department of Pathology, Saarland University, 66421 Homburg, Germany;
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany;
| | - Norbert Graf
- Department of Paediatric Oncology and Haematology, Saarland University, 66421 Homburg, Germany;
| | - Georgios Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
| |
Collapse
|
3
|
Parajdi LG, Precup R, Şerban MA, Haplea IŞ. Analysis of the effectiveness of the treatment of solid tumors in two cases of drug administration. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1845-1863. [PMID: 33757214 DOI: 10.3934/mbe.2021096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A complete stability analysis of the equilibrium solutions of a system modeling tumor chemotherapy is performed in two cases of administration of the treatment, by continuous infusion and by periodic infusion. Several numerical simulations illustrate and complement the theory.
Collapse
Affiliation(s)
| | - Radu Precup
- Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca 400084, Romania
| | | | - Ioan Ştefan Haplea
- Department of Internal Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|
4
|
From tumour perfusion to drug delivery and clinical translation of in silico cancer models. Methods 2020; 185:82-93. [PMID: 32147442 DOI: 10.1016/j.ymeth.2020.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
In silico cancer models have demonstrated great potential as a tool to improve drug design, optimise the delivery of drugs to target sites in the host tissue and, hence, improve therapeutic efficacy and patient outcome. However, there are significant barriers to the successful translation of in silico technology from bench to bedside. More precisely, the specification of unknown model parameters, the necessity for models to adequately reflect in vivo conditions, and the limited amount of pertinent validation data to evaluate models' accuracy and assess their reliability, pose major obstacles in the path towards their clinical translation. This review aims to capture the state-of-the-art in in silico cancer modelling of vascularised solid tumour growth, and identify the important advances and barriers to success of these models in clinical oncology. Particular emphasis has been put on continuum-based models of cancer since they - amongst the class of mechanistic spatio-temporal modelling approaches - are well-established in simulating transport phenomena and the biomechanics of tissues, and have demonstrated potential for clinical translation. Three important avenues in in silico modelling are considered in this contribution: first, since systemic therapy is a major cancer treatment approach, we start with an overview of the tumour perfusion and angiogenesis in silico models. Next, we present the state-of-the-art in silico work encompassing the delivery of chemotherapeutic agents to cancer nanomedicines through the bloodstream, and then review continuum-based modelling approaches that demonstrate great promise for successful clinical translation. We conclude with a discussion of what we view to be the key challenges and opportunities for in silico modelling in personalised and precision medicine.
Collapse
|
5
|
Forster JC, Marcu LG, Bezak E. Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys Med 2019; 64:145-156. [PMID: 31515013 DOI: 10.1016/j.ejmp.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
AIM The negative impact of tumour hypoxia on cancer treatment outcome has been long-known, yet there has been little success combating it. This paper investigates the potential role of in silico modelling to help test emerging hypoxia-targeting treatments in cancer therapy. METHODS A Medline search was undertaken on the current landscape of in silico models that simulate cancer therapy and evaluate their ability to test hypoxia-targeting treatments. Techniques and treatments to combat tumour hypoxia and their current challenges are also presented. RESULTS Hypoxia-targeting treatments include tumour reoxygenation, hypoxic cell radiosensitization with nitroimidazoles, hypoxia-activated prodrugs and molecular targeting. Their main challenges are toxicity and not achieving adequate delivery to hypoxic regions of the tumour. There is promising research toward combining two or more of these techniques. Different types of in silico therapy models have been developed ranging from temporal to spatial and from stochastic to deterministic models. Numerous models have compared the effectiveness of different radiotherapy fractionation schedules for controlling hypoxic tumours. Similarly, models could help identify and optimize new treatments for overcoming hypoxia that utilize novel hypoxia-targeting technology. CONCLUSION Current therapy models should attempt to incorporate more sophisticated modelling of tumour angiogenesis/vasculature and vessel perfusion in order to become more useful for testing hypoxia-targeting treatments, which typically rely upon the tumour vasculature for delivery of additional oxygen, (pro)drugs and nanoparticles.
Collapse
Affiliation(s)
- Jake C Forster
- SA Medical Imaging, Department of Nuclear Medicine, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Loredana G Marcu
- Faculty of Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia
| |
Collapse
|
6
|
Kyroudis CA, Dionysiou DD, Kolokotroni EA, Stamatakos GS. Studying the regression profiles of cervical tumours during radiotherapy treatment using a patient-specific multiscale model. Sci Rep 2019; 9:1081. [PMID: 30705291 PMCID: PMC6355788 DOI: 10.1038/s41598-018-37155-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022] Open
Abstract
Apart from offering insight into the biomechanisms involved in cancer, many recent mathematical modeling efforts aspire to the ultimate goal of clinical translation, wherein models are designed to be used in the future as clinical decision support systems in the patient-individualized context. Most significant challenges are the integration of multiscale biodata and the patient-specific model parameterization. A central aim of this study was the design of a clinically-relevant parameterization methodology for a patient-specific computational model of cervical cancer response to radiotherapy treatment with concomitant cisplatin, built around a tumour features-based search of the parameter space. Additionally, a methodological framework for the predictive use of the model was designed, including a scoring method to quantitatively reflect the similarity and bilateral predictive ability of any two tumours in terms of their regression profile. The methodology was applied to the datasets of eight patients. Tumour scenarios in accordance with the available longitudinal data have been determined. Predictive investigations identified three patient cases, anyone of which can be used to predict the volumetric evolution throughout therapy of the tumours of the other two with very good results. Our observations show that the presented approach is promising in quantifiably differentiating tumours with distinct regression profiles.
Collapse
Affiliation(s)
- Christos A Kyroudis
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Dimitra D Dionysiou
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
| | - Eleni A Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Georgios S Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
7
|
Ouzounoglou E, Kolokotroni E, Stanulla M, Stamatakos GS. A study on the predictability of acute lymphoblastic leukaemia response to treatment using a hybrid oncosimulator. Interface Focus 2018; 8:20160163. [PMID: 29285342 PMCID: PMC5740218 DOI: 10.1098/rsfs.2016.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Efficient use of Virtual Physiological Human (VPH)-type models for personalized treatment response prediction purposes requires a precise model parameterization. In the case where the available personalized data are not sufficient to fully determine the parameter values, an appropriate prediction task may be followed. This study, a hybrid combination of computational optimization and machine learning methods with an already developed mechanistic model called the acute lymphoblastic leukaemia (ALL) Oncosimulator which simulates ALL progression and treatment response is presented. These methods are used in order for the parameters of the model to be estimated for retrospective cases and to be predicted for prospective ones. The parameter value prediction is based on a regression model trained on retrospective cases. The proposed Hybrid ALL Oncosimulator system has been evaluated when predicting the pre-phase treatment outcome in ALL. This has been correctly achieved for a significant percentage of patient cases tested (approx. 70% of patients). Moreover, the system is capable of denying the classification of cases for which the results are not trustworthy enough. In that case, potentially misleading predictions for a number of patients are avoided, while the classification accuracy for the remaining patient cases further increases. The results obtained are particularly encouraging regarding the soundness of the proposed methodologies and their relevance to the process of achieving clinical applicability of the proposed Hybrid ALL Oncosimulator system and VPH models in general.
Collapse
Affiliation(s)
- Eleftherios Ouzounoglou
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Eleni Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Georgios S Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| |
Collapse
|
8
|
Stamatakos GS, Giatili SG. A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects. Cancer Inform 2017; 16:1176935116684824. [PMID: 28469383 PMCID: PMC5392020 DOI: 10.1177/1176935116684824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
A novel explicit triscale reaction-diffusion numerical model of glioblastoma multiforme tumor growth is presented. The model incorporates the handling of Neumann boundary conditions imposed by the cranium and takes into account both the inhomogeneous nature of human brain and the complexity of the skull geometry. The finite-difference time-domain method is adopted. To demonstrate the workflow of a possible clinical validation procedure, a clinical case/scenario is addressed. A good agreement of the in silico calculated value of the doubling time (ie, the time for tumor volume to double) with the value of the same quantity based on tomographic imaging data has been observed. A theoretical exploration suggests that a rough but still quite informative value of the doubling time may be calculated based on a homogeneous brain model. The model could serve as the main component of a continuous mathematics-based glioblastoma oncosimulator aiming at supporting the clinician in the optimal patient-individualized design of treatment using the patient's multiscale data and experimenting in silico (ie, on the computer).
Collapse
Affiliation(s)
- Georgios S Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Zografou, Greece
| | - Stavroula G Giatili
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Zografou, Greece
| |
Collapse
|
9
|
Grassberger C, Paganetti H. Methodologies in the modeling of combined chemo-radiation treatments. Phys Med Biol 2016; 61:R344-R367. [DOI: 10.1088/0031-9155/61/21/r344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Kolokotroni E, Dionysiou D, Veith C, Kim YJ, Sabczynski J, Franz A, Grgic A, Palm J, Bohle RM, Stamatakos G. In Silico Oncology: Quantification of the In Vivo Antitumor Efficacy of Cisplatin-Based Doublet Therapy in Non-Small Cell Lung Cancer (NSCLC) through a Multiscale Mechanistic Model. PLoS Comput Biol 2016; 12:e1005093. [PMID: 27657742 PMCID: PMC5033576 DOI: 10.1371/journal.pcbi.1005093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022] Open
Abstract
The 5-year survival of non-small cell lung cancer patients can be as low as 1% in advanced stages. For patients with resectable disease, the successful choice of preoperative chemotherapy is critical to eliminate micrometastasis and improve operability. In silico experimentations can suggest the optimal treatment protocol for each patient based on their own multiscale data. A determinant for reliable predictions is the a priori estimation of the drugs’ cytotoxic efficacy on cancer cells for a given treatment. In the present work a mechanistic model of cancer response to treatment is applied for the estimation of a plausible value range of the cell killing efficacy of various cisplatin-based doublet regimens. Among others, the model incorporates the cancer related mechanism of uncontrolled proliferation, population heterogeneity, hypoxia and treatment resistance. The methodology is based on the provision of tumor volumetric data at two time points, before and after or during treatment. It takes into account the effect of tumor microenvironment and cell repopulation on treatment outcome. A thorough sensitivity analysis based on one-factor-at-a-time and latin hypercube sampling/partial rank correlation coefficient approaches has established the volume growth rate and the growth fraction at diagnosis as key features for more accurate estimates. The methodology is applied on the retrospective data of thirteen patients with non-small cell lung cancer who received cisplatin in combination with gemcitabine, vinorelbine or docetaxel in the neoadjuvant context. The selection of model input values has been guided by a comprehensive literature survey on cancer-specific proliferation kinetics. The latin hypercube sampling has been recruited to compensate for patient-specific uncertainties. Concluding, the present work provides a quantitative framework for the estimation of the in-vivo cell-killing ability of various chemotherapies. Correlation studies of such estimates with the molecular profile of patients could serve as a basis for reliable personalized predictions. Less than 14% of medically treated patients with locally advanced and metastatic non-small cell lung cancer are expected to be alive 5 years after diagnosis. Standard therapeutic strategies include the administration of two drugs in combination, aiming at shrinking the tumor before surgery and improving overall survival. Knowing the sensitivity profile of each patient to different treatment strategies at diagnosis may help choose the most appropriate ones. We develop a methodology for the quantitative estimation of the cytotoxic efficacy of cisplatin-based doublets on cancer cells by applying a simulation model of cancer progression and response. The model incorporates the proliferation cycle, quiescence, differentiation and loss of tumor cells. We evaluate the effect of in vivo microenvironment of real tumors, as expressed by measurable tumor proliferation kinetics, such as how fast the tumor grows, the percentage of cells that are actively dividing, the resistance of stem cells, etc. on treatment outcome so as to derive more accurate estimates. A literature survey guides the selection of values. The methodology is applied to a real clinical dataset of patients. Correlation studies between the derived cytotoxicities and the patients’ molecular profile could lead to predictions of treatment response at the time of diagnosis.
Collapse
Affiliation(s)
- Eleni Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Dimitra Dionysiou
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Christian Veith
- Institute of Pathology, University of Saarland, Homburg (Saar), Germany
| | - Yoo-Jin Kim
- Institute of Pathology, University of Saarland, Homburg (Saar), Germany
| | | | | | - Aleksandar Grgic
- Department of Nuclear Medicine, University of Saarland, Homburg (Saar), Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, University of Saarland, Homburg (Saar), Germany
| | - Rainer M. Bohle
- Institute of Pathology, University of Saarland, Homburg (Saar), Germany
| | - Georgios Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
11
|
Clancy CE, An G, Cannon WR, Liu Y, May EE, Ortoleva P, Popel AS, Sluka JP, Su J, Vicini P, Zhou X, Eckmann DM. Multiscale Modeling in the Clinic: Drug Design and Development. Ann Biomed Eng 2016; 44:2591-610. [PMID: 26885640 PMCID: PMC4983472 DOI: 10.1007/s10439-016-1563-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/02/2016] [Indexed: 01/30/2023]
Abstract
A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multiscale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multiscale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multiscale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical and computational techniques employed for multiscale modeling approaches used in pharmacometric and systems pharmacology models in drug development and present several examples illustrating the current state-of-the-art models for (1) excitable systems and applications in cardiac disease; (2) stem cell driven complex biosystems; (3) nanoparticle delivery, with applications to angiogenesis and cancer therapy; (4) host-pathogen interactions and their use in metabolic disorders, inflammation and sepsis; and (5) computer-aided design of nanomedical systems. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multiscale models.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Gary An
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - William R Cannon
- Computational Biology Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Bioengineering Program, Lehigh University, Bethlehem, PA, USA
| | - Elebeoba E May
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Peter Ortoleva
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - James P Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - Jing Su
- Department of Radiology, Wake Forest University, Winston-Salem, NC, USA
| | - Paolo Vicini
- Clinical Pharmacology and DMPK, MedImmune, Cambridge, UK
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest University, Winston-Salem, NC, USA
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Argyri KD, Dionysiou DD, Misichroni FD, Stamatakos GS. Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data. Biol Direct 2016; 11:12. [PMID: 27005569 PMCID: PMC4804544 DOI: 10.1186/s13062-016-0114-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/14/2016] [Indexed: 11/30/2022] Open
Abstract
Background Antiangiogenic agents have been recently added to the oncological armamentarium with bevacizumab probably being the most popular representative in current clinical practice. The elucidation of the mode of action of these agents is a prerequisite for personalized prediction of antiangiogenic treatment response and selection of patients who may benefit from this kind of therapy. To this end, having used as a basis a preexisting continuous vascular tumour growth model which addresses the targeted nature of antiangiogenic treatment, we present a paper characterized by the following three features. First, the integration of a two-compartmental bevacizumab specific pharmacokinetic module into the core of the aforementioned preexisting model. Second, its mathematical modification in order to reproduce the asymptotic behaviour of tumour volume in the theoretical case of a total destruction of tumour neovasculature. Third, the exploitation of a range of published animal datasets pertaining to antitumour efficacy of bevacizumab on various tumour types (breast, lung, head and neck, colon). Results Results for both the unperturbed growth and the treatment module reveal qualitative similarities with experimental observations establishing the biologically acceptable behaviour of the model. The dynamics of the untreated tumour has been studied via a parameter analysis, revealing the role of each relevant input parameter to tumour evolution. The combined effect of endogenous proangiogenic and antiangiogenic factors on the angiogenic potential of a tumour is also studied, in order to capture the dynamics of molecular competition between the two key-players of tumoural angiogenesis. The adopted methodology also allows accounting for the newly recognized direct antitumour effect of the specific agent. Conclusions Interesting observations have been made, suggesting a potential size-dependent tumour response to different treatment modalities and determining the relative timing of cytotoxic versus antiangiogenic agents administration. Insight into the comparative effectiveness of different antiangiogenic treatment strategies is revealed. The results of a series of in vivo experiments in mice bearing diverse types of tumours (breast, lung, head and neck, colon) and treated with bevacizumab are successfully reproduced, supporting thus the validity of the underlying model. Reviewers This article was reviewed by L. Hanin, T. Radivoyevitch and L. Edler.
Collapse
Affiliation(s)
- Katerina D Argyri
- In Silico Oncology and In Silico Medicine Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografos, GR 157 80, Athens, Greece
| | - Dimitra D Dionysiou
- In Silico Oncology and In Silico Medicine Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografos, GR 157 80, Athens, Greece
| | - Fay D Misichroni
- In Silico Oncology and In Silico Medicine Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografos, GR 157 80, Athens, Greece
| | - Georgios S Stamatakos
- In Silico Oncology and In Silico Medicine Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografos, GR 157 80, Athens, Greece.
| |
Collapse
|
13
|
Li XL, Oduola WO, Qian L, Dougherty ER. Integrating Multiscale Modeling with Drug Effects for Cancer Treatment. Cancer Inform 2016; 14:21-31. [PMID: 26792977 PMCID: PMC4712979 DOI: 10.4137/cin.s30797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/08/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.
Collapse
Affiliation(s)
- Xiangfang L. Li
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA
| | - Wasiu O. Oduola
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA
| | - Lijun Qian
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA
| | - Edward R. Dougherty
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Stamatakos GS, Kolokotroni E, Dionysiou D, Veith C, Kim YJ, Franz A, Marias K, Sabczynski J, Bohle R, Graf N. In silico oncology: exploiting clinical studies to clinically adapt and validate multiscale oncosimulators. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:5545-9. [PMID: 24110993 DOI: 10.1109/embc.2013.6610806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents a brief outline of the notion and the system of oncosimulator in conjunction with a high level description of the basics of its core multiscale model simulating clinical tumor response to treatment. The exemplary case of lung cancer preoperatively treated with a combination of chemotherapeutic agents is considered. The core oncosimulator model is based on a primarily top-down, discrete entity - discrete event multiscale simulation approach. The critical process of clinical adaptation of the model by exploiting sets of multiscale data originating from clinical studies/trials is also outlined. Concrete clinical adaptation results are presented. The adaptation process also conveys important aspects of the planned clinical validation procedure since the same type of multiscale data - although not the same data itself- is to be used for clinical validation. By having exploited actual clinical data in conjunction with plausible literature-based values of certain model parameters, a realistic tumor dynamics behavior has been demonstrated. The latter supports the potential of the specific oncosimulator to serve as a personalized treatment optimizer following an eventually successful completion of the clinical adaptation and validation process.
Collapse
|
15
|
Sakkalis V, Sfakianakis S, Tzamali E, Marias K, Stamatakos G, Misichroni F, Ouzounoglou E, Kolokotroni E, Dionysiou D, Johnson D, McKeever S, Graf N. Web-based workflow planning platform supporting the design and execution of complex multiscale cancer models. IEEE J Biomed Health Inform 2015; 18:824-31. [PMID: 24808225 DOI: 10.1109/jbhi.2013.2297167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Significant Virtual Physiological Human efforts and projects have been concerned with cancer modeling, especially in the European Commission Seventh Framework research program, with the ambitious goal to approach personalized cancer simulation based on patient-specific data and thereby optimize therapy decisions in the clinical setting. However, building realistic in silico predictive models targeting the clinical practice requires interactive, synergetic approaches to integrate the currently fragmented efforts emanating from the systems biology and computational oncology communities all around the globe. To further this goal, we propose an intelligent graphical workflow planning system that exploits the multiscale and modular nature of cancer and allows building complex cancer models by intuitively linking/interchanging highly specialized models. The system adopts and extends current standardization efforts, key tools, and infrastructure in view of building a pool of reliable and reproducible models capable of improving current therapies and demonstrating the potential for clinical translation of these technologies.
Collapse
|
16
|
Stamatakos G, Dionysiou D, Lunzer A, Belleman R, Kolokotroni E, Georgiadi E, Erdt M, Pukacki J, Rueping S, Giatili S, d'Onofrio A, Sfakianakis S, Marias K, Desmedt C, Tsiknakis M, Graf N. The Technologically Integrated Oncosimulator: Combining Multiscale Cancer Modeling With Information Technology in the In Silico Oncology Context. IEEE J Biomed Health Inform 2014; 18:840-54. [DOI: 10.1109/jbhi.2013.2284276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Georgios Stamatakos
- Institute of Communication and Computer Systems, National Technical University of Athens, In Silico Oncology Group, 9 Iroon Polytechniou, Zografos, Greece
| | - Dimitra Dionysiou
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | | | | | - Eleni Kolokotroni
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | - Eleni Georgiadi
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | | | - Juliusz Pukacki
- Poznan Supercomputing and Networking Center (PSNC), Poznan, Poland
| | - Stefan Rueping
- Fraunhofer IAIS, Schloss Birlinghoven, St. Augustin, Germany
| | - Stavroula Giatili
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | | | | | - Kostas Marias
- Foundation for Research and Technology Hellas, Heraklion, Greece
| | | | - Manolis Tsiknakis
- Department of Informatics Engineering, TEI Crete and the Computational Medicine Laboratory, Institute of Computer Science, FORTH , Heraklion, Greece
| | - Norbert Graf
- University Hospital of the Saarland, Pediatric Haematology and Oncology, Homburg, Germany
| |
Collapse
|
17
|
Antonovsky MY, Korzukhin MD. A dynamic model of the immune response to the onset of a tumor. DOKL BIOCHEM BIOPHYS 2013; 451:176-9. [PMID: 23975394 DOI: 10.1134/s1607672913040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Indexed: 11/23/2022]
Affiliation(s)
- M Ya Antonovsky
- Institute of Global Climate and Ecology, Federal Service of Russia on Hydrometeorology and Monitoring of the Environment, Russian Academy of Sciences, ul. Glebovskaya 20B, Moscow, 107258, Russia
| | | |
Collapse
|
18
|
Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 2013; 58:R97-129. [PMID: 23743802 DOI: 10.1088/0031-9155/58/13/r97] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.
Collapse
Affiliation(s)
- Stefan Bauer
- Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland.
| | | | | | | |
Collapse
|
19
|
Harriss-Phillips WM, Bezak E, Yeoh EK. Altered fractionation outcomes for hypoxic head and neck cancer using the HYP-RT Monte Carlo model. Br J Radiol 2013; 86:20120443. [PMID: 23392195 DOI: 10.1259/bjr.20120443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Altered fractionation radiotherapy is simulated on a set of virtual tumours to assess the total doses required for tumour control compared with clinical head and neck data and the doses required to control hypoxic vs well-oxygenated tumours with different radiobiological properties. METHODS The HYP-RT model is utilised to explore the impact of tumour oxygenation and the onset times of accelerated repopulation (AR) and reoxygenation (ROx) during radiotherapy. A biological effective dose analysis is used to rank the schedules based on their relative normal tissue toxicities. RESULTS Altering the onset times of AR and ROx has a large impact on the doses required to achieve tumour control. Immediate onset of ROx and 2-week onset time of AR produce results closely predicting average human outcomes in terms of the total prescription doses in clinical trials. Modifying oxygen enhancement ratio curves based on dose/fraction significantly reduces the dose (5-10 Gy) required for tumour control for hyperfractionated schedules. HYP-RT predicts 10×1.1 Gy per week to be most beneficial, whereas the conventional schedule is predicted as beneficial for early toxicity but has average-poor late toxicity. CONCLUSION HYP-RT predicts that altered radiotherapy schedules increase the therapeutic ratio and may be used to make predictions about the prescription doses required to achieve tumour control for tumours with different oxygenation levels and treatment responses. ADVANCES IN KNOWLEDGE Oxic and hypoxic tumours have large differences in total radiation dose requirements, affected by AR and ROx onset times by up to 15-25 Gy for the same fractionation schedule.
Collapse
Affiliation(s)
- W M Harriss-Phillips
- Department of Medical Physics, Royal Adelaide Hospital Cancer Centre, South Australia, Australia.
| | | | | |
Collapse
|
20
|
Loessner D, Little JP, Pettet GJ, Hutmacher DW. A multiscale road map of cancer spheroids – incorporating experimental and mathematical modelling to understand cancer progression. J Cell Sci 2013; 126:2761-71. [DOI: 10.1242/jcs.123836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.
Collapse
|
21
|
Georgiadi EC, Dionysiou DD, Graf N, Stamatakos GS. Towards in silico oncology: adapting a four dimensional nephroblastoma treatment model to a clinical trial case based on multi-method sensitivity analysis. Comput Biol Med 2012; 42:1064-78. [PMID: 23063290 DOI: 10.1016/j.compbiomed.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/31/2012] [Accepted: 08/24/2012] [Indexed: 11/28/2022]
Abstract
In the past decades a great progress in cancer research has been made although medical treatment is still widely based on empirically established protocols which have many limitations. Computational models address such limitations by providing insight into the complex biological mechanisms of tumor progression. A set of clinically-oriented, multiscale models of solid tumor dynamics has been developed by the In Silico Oncology Group (ISOG), Institute of Communication and Computer Systems (ICCS)-National Technical University of Athens (NTUA) to study cancer growth and response to treatment. Within this context using certain representative parameter values, tumor growth and response have been modeled under a cancer preoperative chemotherapy protocol in the framework of the SIOP 2001/GPOH clinical trial. A thorough cross-method sensitivity analysis of the model has been performed. Based on the sensitivity analysis results, a reasonable adaptation of the values of the model parameters to a real clinical case of bilateral nephroblastomatosis has been achieved. The analysis presented supports the potential of the model for the study and eventually the future design of personalized treatment schemes and/or schedules using the data obtained from in vitro experiments and clinical studies.
Collapse
Affiliation(s)
- Eleni Ch Georgiadi
- In Silico Oncology Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Greece
| | | | | | | |
Collapse
|
22
|
Simulating radiotherapy effect in high-grade glioma by using diffusive modeling and brain atlases. J Biomed Biotechnol 2012; 2012:715812. [PMID: 23093856 PMCID: PMC3471023 DOI: 10.1155/2012/715812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 12/25/2022] Open
Abstract
Applying diffusive models for simulating the spatiotemporal change of concentration of tumour cells is a modern application of predictive oncology. Diffusive models are used for modelling glioblastoma, the most aggressive type of glioma. This paper presents the results of applying a linear quadratic model for simulating the effects of radiotherapy on an advanced diffusive glioma model. This diffusive model takes into consideration the heterogeneous velocity of glioma in gray and white matter and the anisotropic migration of tumor cells, which is facilitated along white fibers. This work uses normal brain atlases for extracting the proportions of white and gray matter and the diffusion tensors used for anisotropy. The paper also presents the results of applying this glioma model on real clinical datasets.
Collapse
|
23
|
A novel method for simulating the extracellular matrix in models of tumour growth. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:109019. [PMID: 22919426 PMCID: PMC3420324 DOI: 10.1155/2012/109019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
Abstract
A novel hybrid continuum-discrete model to simulate tumour growth on a cellular scale is proposed. The lattice-based spatiotemporal model consists of reaction-diffusion equations that describe interactions between cancer cells and their microenvironment. The fundamental ingredients that are typically considered are the nutrient concentration, the extracellular matrix (ECM), and matrix degrading enzymes (MDEs). The in vivo processes are very complex and occur on different levels. This in turn leads to huge computational costs. The main contribution of the present work is therefore to describe the processes on the basis of simplified mathematical approaches, which, at the same time, depict realistic results to understand the biological processes. In this work, we discuss if we have to simulate the MDE or if the degraded matrix can be estimated directly with respect to the cancer cell distribution. Additionally, we compare the results for modelling tumour growth using the common and our simplified approach, thereby demonstrating the advantages of the proposed method. Therefore, we introduce variations of the positioning of the nutrient delivering blood vessels and use different initializations of the ECM. We conclude that the novel method, which does not explicitly model the matrix degrading
enzymes, provides means for a straightforward and fast implementation for modelling tumour growth.
Collapse
|
24
|
In silico modelling of treatment-induced tumour cell kill: developments and advances. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:960256. [PMID: 22852024 PMCID: PMC3407630 DOI: 10.1155/2012/960256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 12/04/2022]
Abstract
Mathematical and stochastic computer (in silico) models of tumour growth and treatment response of the past and current eras are presented, outlining the aims of the models, model methodology, the key parameters used to describe the tumour system, and treatment modality applied, as well as reported outcomes from simulations. Fractionated radiotherapy, chemotherapy, and combined therapies are reviewed, providing a comprehensive overview of the modelling literature for current modellers and radiobiologists to ignite the interest of other computational scientists and health professionals of the ever evolving and clinically relevant field of tumour modelling.
Collapse
|
25
|
Andasari V, Roper RT, Swat MH, Chaplain MAJ. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion. PLoS One 2012; 7:e33726. [PMID: 22461894 PMCID: PMC3312894 DOI: 10.1371/journal.pone.0033726] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/16/2012] [Indexed: 01/01/2023] Open
Abstract
In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.
Collapse
Affiliation(s)
- Vivi Andasari
- Division of Mathematics, University of Dundee, Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Mathematical modeling of solid cancer growth with angiogenesis. Theor Biol Med Model 2012; 9:2. [PMID: 22300422 PMCID: PMC3344686 DOI: 10.1186/1742-4682-9-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022] Open
Abstract
Background Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems. Methods We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms. Results The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer. Conclusions Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism.
Collapse
|
27
|
Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines--lessons for design of combination targeted therapy. Cancer Lett 2012; 320:104-10. [PMID: 22306341 DOI: 10.1016/j.canlet.2012.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 11/21/2022]
Abstract
Molecularly targeted therapies have emerged as the leading theme in cancer therapeutics. Multi-cytotoxic drug regimens have been highly successful, yet many studies in targeted therapeutics have centered on a single agent. We investigated whether the Src/Abl kinase inhibitor dasatinib displays synergy with other agents in molecularly heterogeneous breast cancer cell lines. MCF-7, SKBR-3, and MDA-MB-231 display different signaling and gene signatures profiles due to expression of the estrogen receptor, ErbB2, or neither. Cell proliferation was measured following treatment with dasatinib±cytotoxic (paclitaxel, ixabepilone) or molecularly targeted agents (tamoxifen, rapamycin, sorafenib, pan PI3K inhibitor LY294002, and MEK/ERK inhibitor U0126). Dose-responses for single or combination drugs were calculated and analyzed by the Chou-Talalay method. The drugs with the greatest level of synergy with dasatinib were rapamycin, ixabepilone, and sorafenib, for the MDA-MB-231, MCF-7, and SK-BR-3 cell lines respectively. However, dasatinib synergized with both cytotoxic and molecularly targeted agents in all three molecularly heterogeneous breast cancer cell lines. These results suggest that effectiveness of rationally designed therapies may not entirely rest on precise identification of gene signatures or molecular profiling. Since a systems analysis that reveals emergent properties cannot be easily performed for each cancer case, multi-drug regimens in the near future will still involve empirical design.
Collapse
|
28
|
Bauer S, May C, Dionysiou D, Stamatakos G, Buchler P, Reyes M. Multiscale Modeling for Image Analysis of Brain Tumor Studies. IEEE Trans Biomed Eng 2012; 59:25-9. [DOI: 10.1109/tbme.2011.2163406] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Studying the growth kinetics of untreated clinical tumors by using an advanced discrete simulation model. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mcm.2011.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Roniotis A, Manikis GC, Sakkalis V, Zervakis ME, Karatzanis I, Marias K. High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases. ACTA ACUST UNITED AC 2011; 16:255-63. [PMID: 21990337 DOI: 10.1109/titb.2011.2171190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glioma, especially glioblastoma, is a leading cause of brain cancer fatality involving highly invasive and neoplastic growth. Diffusive models of glioma growth use variations of the diffusion-reaction equation in order to simulate the invasive patterns of glioma cells by approximating the spatiotemporal change of glioma cell concentration. The most advanced diffusive models take into consideration the heterogeneous velocity of glioma in gray and white matter, by using two different discrete diffusion coefficients in these areas. Moreover, by using diffusion tensor imaging (DTI), they simulate the anisotropic migration of glioma cells, which is facilitated along white fibers, assuming diffusion tensors with different diffusion coefficients along each candidate direction of growth. Our study extends this concept by fully exploiting the proportions of white and gray matter extracted by normal brain atlases, rather than discretizing diffusion coefficients. Moreover, the proportions of white and gray matter, as well as the diffusion tensors, are extracted by the respective atlases; thus, no DTI processing is needed. Finally, we applied this novel glioma growth model on real data and the results indicate that prognostication rates can be improved.
Collapse
Affiliation(s)
- Alexandros Roniotis
- Institute of Computer Science, Foundation for Research and Technology, GR-700 13 Heraklion, Greece.
| | | | | | | | | | | |
Collapse
|
31
|
Coupling biomechanics to a cellular level model: An approach to patient-specific image driven multi-scale and multi-physics tumor simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:193-9. [DOI: 10.1016/j.pbiomolbio.2011.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 01/06/2023]
|
32
|
Marias K, Dionysiou D, Sakkalis V, Graf N, Bohle RM, Coveney PV, Wan S, Folarin A, Büchler P, Reyes M, Clapworthy G, Liu E, Sabczynski J, Bily T, Roniotis A, Tsiknakis M, Kolokotroni E, Giatili S, Veith C, Messe E, Stenzhorn H, Kim YJ, Zasada S, Haidar AN, May C, Bauer S, Wang T, Zhao Y, Karasek M, Grewer R, Franz A, Stamatakos G. Clinically driven design of multi-scale cancer models: the ContraCancrum project paradigm. Interface Focus 2011; 1:450-61. [PMID: 22670213 PMCID: PMC3262443 DOI: 10.1098/rsfs.2010.0037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/07/2011] [Indexed: 12/13/2022] Open
Abstract
The challenge of modelling cancer presents a major opportunity to improve our ability to reduce mortality from malignant neoplasms, improve treatments and meet the demands associated with the individualization of care needs. This is the central motivation behind the ContraCancrum project. By developing integrated multi-scale cancer models, ContraCancrum is expected to contribute to the advancement of in silico oncology through the optimization of cancer treatment in the patient-individualized context by simulating the response to various therapeutic regimens. The aim of the present paper is to describe a novel paradigm for designing clinically driven multi-scale cancer modelling by bringing together basic science and information technology modules. In addition, the integration of the multi-scale tumour modelling components has led to novel concepts of personalized clinical decision support in the context of predictive oncology, as is also discussed in the paper. Since clinical adaptation is an inelastic prerequisite, a long-term clinical adaptation procedure of the models has been initiated for two tumour types, namely non-small cell lung cancer and glioblastoma multiforme; its current status is briefly summarized.
Collapse
Affiliation(s)
- K. Marias
- Institute of Computer Science at FORTH, Heraklion, Greece
| | - D. Dionysiou
- In Silico Oncology Group, Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece
| | - V. Sakkalis
- Institute of Computer Science at FORTH, Heraklion, Greece
| | - N. Graf
- Departments of Paediatric Oncology and Haematology, Pathology, Genetics, Universität des Saarlandes, Homburg, Germany
| | - R. M. Bohle
- Departments of Paediatric Oncology and Haematology, Pathology, Genetics, Universität des Saarlandes, Homburg, Germany
| | - P. V. Coveney
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - S. Wan
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - A. Folarin
- Cancer Research Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - P. Büchler
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - M. Reyes
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - G. Clapworthy
- Department of Computer Science & Technology, University of Bedfordshire, Luton, UK
| | - E. Liu
- Department of Computer Science & Technology, University of Bedfordshire, Luton, UK
| | - J. Sabczynski
- Philips Technologie GmbH, Innovative Technologies, Hamburg, Germany
| | - T. Bily
- Faculty of Mathematics and Physics, Department of Applied Mathematics, Charles University in Prague, Prague, Czech Republic
| | - A. Roniotis
- Institute of Computer Science at FORTH, Heraklion, Greece
| | - M. Tsiknakis
- Institute of Computer Science at FORTH, Heraklion, Greece
| | - E. Kolokotroni
- In Silico Oncology Group, Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece
| | - S. Giatili
- In Silico Oncology Group, Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece
| | - C. Veith
- Departments of Paediatric Oncology and Haematology, Pathology, Genetics, Universität des Saarlandes, Homburg, Germany
| | - E. Messe
- Departments of Paediatric Oncology and Haematology, Pathology, Genetics, Universität des Saarlandes, Homburg, Germany
| | - H. Stenzhorn
- Departments of Paediatric Oncology and Haematology, Pathology, Genetics, Universität des Saarlandes, Homburg, Germany
| | - Yoo-Jin Kim
- Departments of Paediatric Oncology and Haematology, Pathology, Genetics, Universität des Saarlandes, Homburg, Germany
| | - S. Zasada
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - A. N. Haidar
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - C. May
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - S. Bauer
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - T. Wang
- Department of Computer Science & Technology, University of Bedfordshire, Luton, UK
| | - Y. Zhao
- Department of Computer Science & Technology, University of Bedfordshire, Luton, UK
| | - M. Karasek
- Faculty of Mathematics and Physics, Department of Applied Mathematics, Charles University in Prague, Prague, Czech Republic
| | - R. Grewer
- Philips Technologie GmbH, Innovative Technologies, Hamburg, Germany
| | - A. Franz
- Philips Technologie GmbH, Innovative Technologies, Hamburg, Germany
| | - G. Stamatakos
- In Silico Oncology Group, Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece
| |
Collapse
|
33
|
Stamatakos GS, Georgiadi EC, Graf N, Kolokotroni EA, Dionysiou DD. Exploiting clinical trial data drastically narrows the window of possible solutions to the problem of clinical adaptation of a multiscale cancer model. PLoS One 2011; 6:e17594. [PMID: 21407827 PMCID: PMC3048172 DOI: 10.1371/journal.pone.0017594] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 11/30/2022] Open
Abstract
The development of computational models for simulating tumor growth and response to treatment has gained significant momentum during the last few decades. At the dawn of the era of personalized medicine, providing insight into complex mechanisms involved in cancer and contributing to patient-specific therapy optimization constitute particularly inspiring pursuits. The in silico oncology community is facing the great challenge of effectively translating simulation models into clinical practice, which presupposes a thorough sensitivity analysis, adaptation and validation process based on real clinical data. In this paper, the behavior of a clinically-oriented, multiscale model of solid tumor response to chemotherapy is investigated, using the paradigm of nephroblastoma response to preoperative chemotherapy in the context of the SIOP/GPOH clinical trial. A sorting of the model's parameters according to the magnitude of their effect on the output has unveiled the relative importance of the corresponding biological mechanisms; major impact on the result of therapy is credited to the oxygenation and nutrient availability status of the tumor and the balance between the symmetric and asymmetric modes of stem cell division. The effect of a number of parameter combinations on the extent of chemotherapy-induced tumor shrinkage and on the tumor's growth rate are discussed. A real clinical case of nephroblastoma has served as a proof of principle study case, demonstrating the basics of an ongoing clinical adaptation and validation process. By using clinical data in conjunction with plausible values of model parameters, an excellent fit of the model to the available medical data of the selected nephroblastoma case has been achieved, in terms of both volume reduction and histological constitution of the tumor. In this context, the exploitation of multiscale clinical data drastically narrows the window of possible solutions to the clinical adaptation problem.
Collapse
Affiliation(s)
- Georgios S Stamatakos
- In Silico Oncology Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|