1
|
Dupin I, Eyraud E, Maurat É, Sac-Épée JM, Vallois P. Probabilistic cellular automata modelling of intercellular interactions in airways: complex pattern formation in patients with chronic obstructive pulmonary disease. J Theor Biol 2023; 564:111448. [PMID: 36878400 DOI: 10.1016/j.jtbi.2023.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent lung disease characterized by chronic inflammation and tissue remodeling possibly induced by unusual interactions between fibrocytes and CD8+ T lymphocytes in the peribronchial area. To investigate this phenomenon, we developed a probabilistic cellular automata type model where the two types of cells follow simple local interaction rules taking into account cell death, proliferation, migration and infiltration. We conducted a rigorous mathematical analysis using multiscale experimental data obtained in control and disease conditions to estimate the model's parameters accurately. The simulation of the model is straightforward to implement, and two distinct patterns emerged that we can analyse quantitatively. In particular, we show that the change in fibrocyte density in the COPD condition is mainly the consequence of their infiltration into the lung during exacerbations, suggesting possible explanations for experimental observations in normal and COPD tissue. Our integrated approach that combines a probabilistic cellular automata model and experimental findings will provide further insights into COPD in future studies.
Collapse
Affiliation(s)
- Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France.
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | - Élise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | | | - Pierre Vallois
- Université de Lorraine, CNRS, Inria, IECL., F-54000 Nancy, France
| |
Collapse
|
2
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Bencomo-Loeppky S, García-Rizk JA, Cervantes-Flores HA, Levario-Carrillo M, Fierro Murga R, Reza-López SA, Loya-Loya M, Chávez-Corral DV. Neural crest derivatives and neuroendocrine cells in the gut of anencephalic and fetuses without congenital defects. Birth Defects Res 2020; 112:1720-1732. [PMID: 32914571 DOI: 10.1002/bdr2.1797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The enteric nervous system (ENS), a component of the peripheral nervous system in the intestinal walls, regulates motility, secretion, absorption, and blood flow. Neural crest (NC) migration, fundamental for ENS development, may be altered by central nervous system development alterations, such as neural tube defects (NTD). Intestinal innervation anomalies have been correlated to NTD. We aim to describe the ENS on a fetus with NTD and fetuses without congenital defects (FWCD). CASES Two male and four female FWCD, 18-20 weeks-gestation (WG), and a 25 WG female anencephalic fetus. Samples from the pancreatoduodenal groove, jejunum, cecum, rectum, and appendix were analyzed by immunohistochemistry. Nervous plexuses were marked with Neuron-specific enolase and S-100; enteric glial cells with CD56; neuroendocrine cells with chromogranin and synaptophysin, and interstitial cells of Cajal (ICC) with CD117. RESULTS AND CONCLUSION The anencephalic fetus presented a rudimentary brainstem with a cerebellum. Partial frontal, temporal, and occipital bones were found. A large atrial septal defect, an enlarged kidney with a duplex collecting system and a single adrenal gland were found. NSE, S100, and CD56, showed the presence of the myenteric and submucous plexuses of the ENS; scarce interplexus reactivity may indicate inadequate development. Pancreatic and gut neuroendocrine cells, identified with chromogranin and CD56, showed that the enteroendocrine system is present. Findings on FWCD using these markers are consistent with literature descriptions. Vagal NC migration appears to be unaffected despite the presence of anencephaly, although maturation of the ENS may be altered.
Collapse
Affiliation(s)
- Samuel Bencomo-Loeppky
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Jorge Arturo García-Rizk
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
| | | | - Margarita Levario-Carrillo
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Ricardo Fierro Murga
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Sandra Alicia Reza-López
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Martha Loya-Loya
- Facultad de Odontología, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
| | | |
Collapse
|
4
|
Addressing Interdisciplinary Difficulties in Developmental Biology/Mathematical Collaborations: A Neural Crest Example. Methods Mol Biol 2019. [PMID: 30977062 DOI: 10.1007/978-1-4939-9412-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mathematical modeling can allow insight into the biological processes that can be difficult to access by conventional biological means alone. Such projects are becoming increasingly attractive with the appearance of faster and more powerful quantitative techniques in both biological data acquisition and data storage, manipulation, and presentation. However, as is frequent in interdisciplinary research, the main hurdles are not within the mindset and techniques of each discipline but are usually encountered in attempting to meld the different disciplines together. Based upon our experience in applying mathematical methods to investigate how neural crest cells interact to form the enteric nervous system, we present our views on how to pursue biomathematical modeling projects, what difficulties to expect, and how to overcome, or at least survive, these hurdles. The main advice being: persevere.
Collapse
|
5
|
Simkin JE, Zhang D, Stamp LA, Newgreen DF. Fine scale differences within the vagal neural crest for enteric nervous system formation. Dev Biol 2019; 446:22-33. [DOI: 10.1016/j.ydbio.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
|
6
|
Zhang D, Osborne JM, Abu-Bonsrah KD, Cheeseman BL, Landman KA, Jurkowicz B, Newgreen DF. Stochastic clonal expansion of “superstars” enhances the reserve capacity of enteric nervous system precursor cells. Dev Biol 2018; 444 Suppl 1:S287-S296. [DOI: 10.1016/j.ydbio.2018.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
|
7
|
Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol 2017; 428:74-87. [PMID: 28528728 DOI: 10.1016/j.ydbio.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Caroline S Hirst
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | | | - Werend Boesmans
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium
| | | | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| |
Collapse
|
8
|
Nagy N, Goldstein AM. Enteric nervous system development: A crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017; 66:94-106. [PMID: 28087321 DOI: 10.1016/j.semcdb.2017.01.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
9
|
Endothelin-3 stimulates cell adhesion and cooperates with β1-integrins during enteric nervous system ontogenesis. Sci Rep 2016; 6:37877. [PMID: 27905407 PMCID: PMC5131347 DOI: 10.1038/srep37877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-3 (EDN3) and β1-integrins are required for the colonization of the embryonic gut by enteric neural crest cells (ENCCs) to form the enteric nervous system (ENS). β1-integrin-null ENCCs exhibit migratory defects in a region of the gut enriched in EDN3 and in specific extracellular matrix (ECM) proteins. We investigated the putative role of EDN3 on ENCC adhesion properties and its functional interaction with β1-integrins during ENS development. We show that EDN3 stimulates ENCC adhesion to various ECM components in vitro. It induces rapid changes in ENCC shape and protrusion dynamics favouring sustained growth and stabilization of lamellipodia, a process coincident with the increase in the number of focal adhesions and activated β1-integrins. In vivo studies and ex-vivo live imaging revealed that double mutants for Itgb1 and Edn3 displayed a more severe enteric phenotype than either of the single mutants demonstrated by alteration of the ENS network due to severe migratory defects of mutant ENCCs taking place early during the ENS development. Altogether, our results highlight the interplay between the EDN3 and β1-integrin signalling pathways during ENS ontogenesis and the role of EDN3 in ENCC adhesion.
Collapse
|
10
|
Walsh DM, Röth PT, Holmes WR, Landman KA, Merson TD, Hughes BD. Is cell migration or proliferation dominant in the formation of linear arrays of oligodendrocytes? J Theor Biol 2016; 406:17-30. [DOI: 10.1016/j.jtbi.2016.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/05/2016] [Accepted: 06/20/2016] [Indexed: 01/22/2023]
|
11
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
12
|
Rollo BN, Zhang D, Simkin JE, Menheniott TR, Newgreen DF. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells. F1000Res 2015; 4:113. [PMID: 26064478 PMCID: PMC4448751 DOI: 10.12688/f1000research.6370.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 12/28/2022] Open
Abstract
The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca
2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates. This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface.
Collapse
Affiliation(s)
- Benjamin N Rollo
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Dongcheng Zhang
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Johanna E Simkin
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Trevelyan R Menheniott
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| |
Collapse
|
13
|
Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A. A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations. Bull Math Biol 2015; 77:1132-65. [DOI: 10.1007/s11538-015-0080-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/01/2015] [Indexed: 01/31/2023]
|
14
|
Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest 2015; 125:899-907. [PMID: 25664848 DOI: 10.1172/jci76307] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric nervous system (ENS) is sometimes called the "second brain" because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.
Collapse
|
15
|
Abstract
Intercellular adhesion plays a vital role in many biological processes including embryonic development, malignant invasion, and wound healing, and can be manipulated to generate complex structures in tissue engineering applications. Accurate measurement of the strength of intercellular adhesion is not trivial and requires methods rooted in sound physical principles. Tissue surface tensiometry (TST) rigorously quantifies intercellular cohesive energy of 3D tissue-like aggregates under physiological conditions. TST utilizes a custom-built tensiometer to compress 3D spheroids between parallel plates. The resistance to the applied force and changes in aggregate geometry are applied to the Young-Laplace equation, generating a measurement of apparent surface tension. We describe all components comprising the tensiometer and provide step by step instructions of all the key steps involved in generating spherical aggregates. We explain how tissue surface tension is calculated and provide a statistical analysis of a sample data set from 12 aggregates.
Collapse
|
16
|
Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D. The neural crest: a versatile organ system. ACTA ACUST UNITED AC 2014; 102:275-98. [PMID: 25227568 DOI: 10.1002/bdrc.21081] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy.
Collapse
|
17
|
Erickson CS, Lee SJ, Barlow-Anacker AJ, Druckenbrod NR, Epstein ML, Gosain A. Appearance of cholinergic myenteric neurons during enteric nervous system development: comparison of different ChAT fluorescent mouse reporter lines. Neurogastroenterol Motil 2014; 26:874-84. [PMID: 24712519 PMCID: PMC4037379 DOI: 10.1111/nmo.12343] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cholinergic neurons have been identified with the acetylcholine synthetic enzyme choline acetyltransferase (ChAT). However, ChAT is difficult to localize in newly differentiated peripheral neurons making the study of cholinergic neuronal development problematic. Consequently, researchers have used mouse reporter lines to indicate the presence of ChAT. METHODS Our objective was to determine which ChAT reporter line was the most sensitive indicator of ChAT expression. We utilized two different fluorescent ChAT reporter lines (ChAT-GFP and ChAT-Cre;R26R:floxSTOP:tdTomato) together with immunolocalization of ChAT protein (ChAT-IR) to characterize the spatial and temporal expression of ChAT in myenteric neurons throughout enteric nervous system (ENS) development. KEY RESULTS ChAT-IR cells were first seen in the intestine at E10.5, even within the migration wavefront of neural precursors. Myenteric neurons within the distal small intestine (dSI) and proximal colon were first labeled by ChAT-IR, then ChAT-GFP, and finally ChAT-Cre tdTomato. The percentage of ChAT-IR neurons is equivalent to adult levels in the dSI by E13.5 and proximal colon by P0. After these stages, the percentages remained relatively constant throughout development despite dramatic changes in neuronal density. CONCLUSIONS & INFERENCES These observations indicate that neurotransmitter expression occurs early and there is only a brief gap between neurogenesis and neurotransmitter expression. Our finding that the proportion of ChAT myenteric neurons reached adult levels during embryonic development suggests that the fate of cholinergic neurons is tightly regulated and that their differentiation might influence further neuronal development. ChAT-GFP is a more accurate indicator of early ENS cholinergic neuronal differentiation than the ChAT-Cre;R26R:floxSTOP:tdTomato reporter mouse.
Collapse
Affiliation(s)
- Christopher S. Erickson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Scott J. Lee
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Noah R. Druckenbrod
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miles L. Epstein
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America,Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Cheeseman BL, Zhang D, Binder BJ, Newgreen DF, Landman KA. Cell lineage tracing in the developing enteric nervous system: superstars revealed by experiment and simulation. J R Soc Interface 2014; 11:20130815. [PMID: 24501272 PMCID: PMC3928926 DOI: 10.1098/rsif.2013.0815] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level. We use an agent-based model to simulate ENC colonization and obtain agent lineage tracing data, which we analyse using econometric data analysis tools. In all realizations, a small proportion of identical initial agents accounts for a substantial proportion of the total final agent population. We term these individuals superstars. Their existence is consistent across individual realizations and is robust to changes in model parameters. This inequality of outcome is amplified at elevated proliferation rate. The experiments and model suggest that stochastic competition for resources is an important concept when understanding biological processes which feature high levels of cell proliferation. The results have implications for cell-fate processes in the ENS.
Collapse
Affiliation(s)
- Bevan L Cheeseman
- Department of Mathematics and Statistics, University of Melbourne, , Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
19
|
Treloar KK, Simpson MJ, Haridas P, Manton KJ, Leavesley DI, McElwain DLS, Baker RE. Multiple types of data are required to identify the mechanisms influencing the spatial expansion of melanoma cell colonies. BMC SYSTEMS BIOLOGY 2013; 7:137. [PMID: 24330479 PMCID: PMC3878834 DOI: 10.1186/1752-0509-7-137] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. RESULTS We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, λ, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and λ. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D=161-243μm2 hour-1, q=0.3-0.5 (low to moderate strength) and λ=0.0305-0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. CONCLUSIONS Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.
Collapse
Affiliation(s)
- Katrina K Treloar
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Matthew J Simpson
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Parvathi Haridas
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Kerry J Manton
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - David I Leavesley
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - DL Sean McElwain
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ruth E Baker
- Centre for Mathematical Biology, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
20
|
Taneyhill LA, Schiffmacher AT. Cadherin dynamics during neural crest cell ontogeny. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:291-315. [PMID: 23481200 DOI: 10.1016/b978-0-12-394311-8.00013-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cell membrane-associated junctional complexes mediate cell-cell adhesion, intercellular interactions, and other fundamental processes required for proper embryo morphogenesis. Cadherins are calcium-dependent transmembrane proteins at the core of adherens junctions and are expressed in distinct spatiotemporal patterns throughout the development of an important vertebrate cell type, the neural crest. Multipotent neural crest cells arise from the ectoderm as epithelial cells under the influence of inductive cues, undergo an epithelial-to-mesenchymal transition, migrate throughout the embryonic body, and then differentiate into multiple derivatives at predetermined destinations. Neural crest cells change their expressed cadherin repertoires as they undergo each new morphogenetic transition, providing insight into distinct functions of expressed cadherins that are essential for proper completion of each specific stage. Cadherins modulate neural crest cell morphology, segregation, migration, and tissue formation. This chapter reviews the knowledge base of cadherin regulation, expression, and function during the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, 1405 Animal Sciences Center, College Park, Maryland, USA
| | | |
Collapse
|
21
|
Newgreen DF, Dufour S, Howard MJ, Landman KA. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev Biol 2013; 382:305-19. [PMID: 23838398 PMCID: PMC4694584 DOI: 10.1016/j.ydbio.2013.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins.
Collapse
Affiliation(s)
- Donald F Newgreen
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.
| | | | | | | |
Collapse
|
22
|
Gisser JM, Cohen AR, Yin H, Gariepy CE. A novel bidirectional interaction between endothelin-3 and retinoic acid in rat enteric nervous system precursors. PLoS One 2013; 8:e74311. [PMID: 24040226 PMCID: PMC3767828 DOI: 10.1371/journal.pone.0074311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/02/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung's aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. METHODS Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. RESULTS Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. CONCLUSIONS A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations.
Collapse
Affiliation(s)
- Jonathan M. Gisser
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| | - Ariella R. Cohen
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Han Yin
- The Biostatistics Shared Resources, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cheryl E. Gariepy
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
23
|
Xu B, Rollo B, Stamp LA, Zhang D, Fang X, Newgreen DF, Chen Q. Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation. Biomaterials 2013; 34:6306-17. [PMID: 23747009 DOI: 10.1016/j.biomaterials.2013.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/06/2013] [Indexed: 01/12/2023]
Abstract
An efficient delivery system is critical for the success of cell therapy. To deliver cells to a dynamic organ, the biomaterial vehicle should mechanically match with the non-linearly elastic host tissue. In this study, non-linearly elastic biomaterials have been fabricated from a chemically crosslinked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(l-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials containing a PGS core and PLLA shell demonstrate J-shaped stress-strain curves, having ultimate tensile strength (UTS), rupture elongation and stiffness constants of 1 ± 0.2 MPa, 25 ± 3% and 12 ± 2, respectively, which are comparable to skin tissue properties reported previously. Our ex vivo and in vivo trials have shown that the elastomeric mesh supports and fosters the growth of enteric neural crest (ENC) progenitor cells, and that the cell-seeded elastomeric fibrous sheet physically remains in intimate contact with guts after grafting, providing the effective delivery of the progenitor cells to an embryonic and post-natal gut environment.
Collapse
Affiliation(s)
- Bing Xu
- Department of Materials Engineering and Monash Centre of Electron Microscope, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Simkin JE, Zhang D, Rollo BN, Newgreen DF. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One 2013; 8:e64077. [PMID: 23717535 PMCID: PMC3661488 DOI: 10.1371/journal.pone.0064077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/11/2013] [Indexed: 11/23/2022] Open
Abstract
Vagal neural crest cells (VNCCs) arise in the hindbrain, and at (avian) embryonic day (E) 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1–2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC) which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs) in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.
Collapse
Affiliation(s)
- Johanna E. Simkin
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Dongcheng Zhang
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Benjamin N. Rollo
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Donald F. Newgreen
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
- * E-mail:
| |
Collapse
|
25
|
Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, Bondurand N. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 2013; 379:92-106. [PMID: 23608456 DOI: 10.1016/j.ydbio.2013.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/11/2023]
Abstract
SOX10 involvement in syndromic form of Hirschsprung disease (intestinal aganglionosis, HSCR) in humans as well as developmental defects in animal models highlight the importance of this transcription factor in control of the pool of enteric progenitors and their differentiation. Here, we characterized the role of SOX10 in cell migration and its interactions with β1-integrins. To this end, we crossed the Sox10(lacZ/+) mice with the conditional Ht-PA::Cre; beta1(neo/+) and beta1(fl/fl) mice and compared the phenotype of embryos of different genotypes during enteric nervous system (ENS) development. The Sox10(lacZ/+); Ht-PA::Cre; beta1(neo/fl) double mutant embryos presented with increased intestinal aganglionosis length and more severe neuronal network disorganization compared to single mutants. These defects, detected by E11.5, are not compensated after birth, showing that a coordinated and balanced interaction between these two genes is required for normal ENS development. Use of video-microscopy revealed that defects observed result from reduced migration speed and altered directionality of enteric neural crest cells. Expression of β1-integrins upon SOX10 overexpression or in Sox10(lacZ/+) mice was also analyzed. The modulation of SOX10 expression altered β1-integrins, suggesting that SOX10 levels are critical for proper expression and function of this adhesion molecule. Together with previous studies, our results strongly indicate that SOX10 mediates ENCC adhesion and migration, and contribute to the understanding of the molecular and cellular basis of ENS defects observed both in mutant mouse models and in patients carrying SOX10 mutations.
Collapse
Affiliation(s)
- Yuli Watanabe
- INSERM U955, Equipe 11, F-94000 Créteil, France; Université Paris-Est, UMR_S955, UPEC, F-94000 Créteil, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Experimental and Modelling Investigation of Monolayer Development with Clustering. Bull Math Biol 2013; 75:871-89. [DOI: 10.1007/s11538-013-9839-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/28/2013] [Indexed: 11/26/2022]
|
27
|
Foty RA, Steinberg MS. Differential adhesion in model systems. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:631-45. [DOI: 10.1002/wdev.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10:43-57. [PMID: 23229326 DOI: 10.1038/nrgastro.2012.234] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest-derived cells that migrate into and along the gut, leading to the formation of a complex network of neurons and glial cells that regulates motility, secretion and blood flow. This Review summarizes the progress made in the past 5 years in our understanding of ENS development, including the migratory pathways of neural crest-derived cells as they colonize the gut. The importance of interactions between neural crest-derived cells, between signalling pathways and between developmental processes (such as proliferation and migration) in ensuring the correct development of the ENS is also presented. The signalling pathways involved in ENS development that were determined using animal models are also described, as is the evidence for the involvement of the genes encoding these molecules in Hirschsprung disease-the best characterized paediatric enteric neuropathy. Finally, the aetiology and treatment of Hirschsprung disease in the clinic and the potential involvement of defects in ENS development in other paediatric motility disorders are outlined.
Collapse
Affiliation(s)
- Florian Obermayr
- Department of Pediatric Surgery, University Children's Hospital, University of Tübingen, Hoppe-Seyler Straße 3, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
29
|
McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2012; 373:244-57. [PMID: 23123967 DOI: 10.1016/j.ydbio.2012.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 01/13/2023]
Abstract
Neural crest cells are highly migratory cells that give rise to many derivatives including peripheral ganglia, craniofacial structures and melanocytes. Neural crest cells migrate along defined pathways to their target sites, interacting with each other and their environment as they migrate. Cell adhesion molecules are critical during this process. In this review we discuss the expression and function of cell adhesion molecules during the process of neural crest migration, in particular cadherins, integrins, members of the immunoglobulin superfamily of cell adhesion molecules, and the proteolytic enzymes that cleave these cell adhesion molecules. The expression and function of these cell adhesion molecules and proteases are compared across neural crest emigrating from different axial levels, and across different species of vertebrates.
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia.
| | | | | |
Collapse
|
30
|
Hackett-Jones EJ, Davies KJ, Binder BJ, Landman KA. Generalized index for spatial data sets as a measure of complete spatial randomness. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061908. [PMID: 23005128 DOI: 10.1103/physreve.85.061908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Indexed: 06/01/2023]
Abstract
Spatial data sets, generated from a wide range of physical systems can be analyzed by counting the number of objects in a set of bins. Previous work has been limited to equal-sized bins, which are inappropriate for some domains (e.g., circular). We consider a nonequal size bin configuration whereby overlapping or nonoverlapping bins cover the domain. A generalized index, defined in terms of a variance between bin counts, is developed to indicate whether or not a spatial data set, generated from exclusion or nonexclusion processes, is at the complete spatial randomness (CSR) state. Limiting values of the index are determined. Using examples, we investigate trends in the generalized index as a function of density and compare the results with those using equal size bins. The smallest bin size must be much larger than the mean size of the objects. We can determine whether a spatial data set is at the CSR state or not by comparing the values of a generalized index for different bin configurations-the values will be approximately the same if the data is at the CSR state, while the values will differ if the data set is not at the CSR state. In general, the generalized index is lower than the limiting value of the index, since objects do not have access to the entire region due to blocking by other objects. These methods are applied to two applications: (i) spatial data sets generated from a cellular automata model of cell aggregation in the enteric nervous system and (ii) a known plant data distribution.
Collapse
Affiliation(s)
- Emily J Hackett-Jones
- Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
31
|
Nagy N, Burns AJ, Goldstein AM. Immunophenotypic characterization of enteric neural crest cells in the developing avian colorectum. Dev Dyn 2012; 241:842-51. [PMID: 22411589 DOI: 10.1002/dvdy.23767] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The enteric nervous system (ENS) develops from neural crest-derived cells that migrate along the intestine to form two plexuses of neurons and glia. While the major features of ENS development are conserved across species, minor differences exist, especially in the colorectum. Given the embryologic and disease-related importance of the distal ENS, the aim of this study was to characterize the migration and differentiation of enteric neural crest-derived cells (ENCCs) in the colorectum of avian embryos. RESULTS Using normal chick embryos and vagal neural tube transplants from green fluorescent protein (GFP) -transgenic chick embryos, we find ENCCs entering the colon at embryonic day (E) 6.5, with colonization complete by E8. Undifferentiated ENCCs at the wavefront express HNK-1, N-cadherin, Sox10, p75, and L1CAM. By E7, differentiation begins in the proximal colon, with L1CAM and Sox10 becoming restricted to neuronal and glial lineages, respectively. By E8, multiple markers of differentiation are expressed along the entire colorectum. CONCLUSIONS Our results establish the pattern of ENCC migration and differentiation in the chick colorectum, demonstrate the conservation of marker expression across species, highlight a range of markers, including neuronal cell adhesion molecules, which label cells at the wavefront, and provide a framework for future studies in avian ENS development.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|