1
|
Barba-Franco JJ, Gallegos A, Jaimes-Reátegui R, Muñoz-Maciel J, Pisarchik AN. Dynamics of coexisting rotating waves in unidirectional rings of bistable Duffing oscillators. CHAOS (WOODBURY, N.Y.) 2023; 33:073126. [PMID: 37433655 DOI: 10.1063/5.0141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
We study the dynamics of multistable coexisting rotating waves that propagate along a unidirectional ring consisting of coupled double-well Duffing oscillators with different numbers of oscillators. By employing time series analysis, phase portraits, bifurcation diagrams, and basins of attraction, we provide evidence of multistability on the route from coexisting stable equilibria to hyperchaos via a sequence of bifurcations, including the Hopf bifurcation, torus bifurcations, and crisis bifurcations, as the coupling strength is increased. The specific bifurcation route depends on whether the ring comprises an even or odd number of oscillators. In the case of an even number of oscillators, we observe the existence of up to 32 coexisting stable fixed points at relatively weak coupling strengths, while a ring with an odd number of oscillators exhibits 20 coexisting stable equilibria. As the coupling strength increases, a hidden amplitude death attractor is born in an inverse supercritical pitchfork bifurcation in the ring with an even number of oscillators, coexisting with various homoclinic and heteroclinic orbits. Additionally, for stronger coupling, amplitude death coexists with chaos. Notably, the rotating wave speed of all coexisting limit cycles remains approximately constant and undergoes an exponential decrease as the coupling strength is increased. At the same time, the wave frequency varies among different coexisting orbits, exhibiting an almost linear growth with the coupling strength. It is worth mentioning that orbits originating from stronger coupling strengths possess higher frequencies.
Collapse
Affiliation(s)
- J J Barba-Franco
- Departamento de Ciencias Exactas y Tecnología, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Monta na, 47460 Lagos de Moreno, Jalisco, Mexico
| | - A Gallegos
- Departamento de Ciencias Exactas y Tecnología, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Monta na, 47460 Lagos de Moreno, Jalisco, Mexico
| | - R Jaimes-Reátegui
- Departamento de Ciencias Exactas y Tecnología, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Monta na, 47460 Lagos de Moreno, Jalisco, Mexico
| | - J Muñoz-Maciel
- Departamento de Ciencias Exactas y Tecnología, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Monta na, 47460 Lagos de Moreno, Jalisco, Mexico
| | - A N Pisarchik
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
2
|
Osorno T, Rudolph S, Nguyen T, Kozareva V, Nadaf NM, Norton A, Macosko EZ, Lee WCA, Regehr WG. Candelabrum cells are ubiquitous cerebellar cortex interneurons with specialized circuit properties. Nat Neurosci 2022; 25:702-713. [PMID: 35578131 PMCID: PMC9548381 DOI: 10.1038/s41593-022-01057-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/21/2022] [Indexed: 01/22/2023]
Abstract
To understand how the cerebellar cortex transforms mossy fiber (MF) inputs into Purkinje cell (PC) outputs, it is vital to delineate the elements of this circuit. Candelabrum cells (CCs) are enigmatic interneurons of the cerebellar cortex that have been identified based on their morphology, but their electrophysiological properties, synaptic connections and function remain unknown. Here, we clarify these properties using electrophysiology, single-nucleus RNA sequencing, in situ hybridization and serial electron microscopy in mice. We find that CCs are the most abundant PC layer interneuron. They are GABAergic, molecularly distinct and present in all cerebellar lobules. Their high resistance renders CC firing highly sensitive to synaptic inputs. CCs are excited by MFs and granule cells and are strongly inhibited by PCs. CCs in turn primarily inhibit molecular layer interneurons, which leads to PC disinhibition. Thus, inputs, outputs and local signals converge onto CCs to allow them to assume a unique role in controlling cerebellar output.
Collapse
Affiliation(s)
- Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Tri Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Velina Kozareva
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Naeem M Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aliya Norton
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lag synchronization of coupled time-delayed FitzHugh-Nagumo neural networks via feedback control. Sci Rep 2021; 11:3884. [PMID: 33594138 PMCID: PMC7887243 DOI: 10.1038/s41598-021-82886-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Synchronization plays a significant role in information transfer and decision-making by neurons and brain neural networks. The development of control strategies for synchronizing a network of chaotic neurons with time delays, different direction-dependent coupling (unidirectional and bidirectional), and noise, particularly under external disturbances, is an essential and very challenging task. Researchers have extensively studied the synchronization mechanism of two coupled time-delayed neurons with bidirectional coupling and without incorporating the effect of noise, but not for time-delayed neural networks. To overcome these limitations, this study investigates the synchronization problem in a network of coupled FitzHugh-Nagumo (FHN) neurons by incorporating time delays, different direction-dependent coupling (unidirectional and bidirectional), noise, and ionic and external disturbances in the mathematical models. More specifically, this study investigates the synchronization of time-delayed unidirectional and bidirectional ring-structured FHN neuronal systems with and without external noise. Different gap junctions and delay parameters are used to incorporate time-delay dynamics in both neuronal networks. We also investigate the influence of the time delays between connected neurons on synchronization conditions. Further, to ensure the synchronization of the time-delayed FHN neuronal networks, different adaptive control laws are proposed for both unidirectional and bidirectional neuronal networks. In addition, necessary and sufficient conditions to achieve synchronization are provided by employing the Lyapunov stability theory. The results of numerical simulations conducted for different-sized multiple networks of time-delayed FHN neurons verify the effectiveness of the proposed adaptive control schemes.
Collapse
|
4
|
Vanag VK, Yasuk VO. Dynamic modes in a network of five oscillators with inhibitory all-to-all pulse coupling. CHAOS (WOODBURY, N.Y.) 2018; 28:033105. [PMID: 29604639 DOI: 10.1063/1.5004015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The dynamic modes of five almost identical oscillators with pulsatile inhibitory coupling with time delay have been studied theoretically. The models of the Belousov-Zhabotinsky reaction and phase oscillators with all-to-all coupling have been considered. In the parametric plane Cinh-τ, where Cinh is the coupling strength and τ is the time delay between a spike in one oscillator and pulsed perturbations of all other oscillators, three main regimes have been found: regular modes, when each oscillator gives only one spike during the global period T, C (complex) modes, when the number of pulses of different oscillators is different, and OS (oscillations-suppression) modes, when at least one oscillator is suppressed. The regular modes consist of several cluster modes and are found at relatively small Cinh. The C and OS modes observed at larger Cinh intertwine in the Cinh-τ plane. In a relatively narrow range of Cinh, the dynamics of the C modes are very sensitive to small changes in Cinh and τ, as well as to the initial conditions, which are the characteristic features of the chaos. On the other hand, the dynamics of the C modes are periodic (but with different periods) and well reproducible. The number of different C modes is enormously large. At still larger Cinh, the C modes lose sensitivity to small changes in the parameters and finally vanish, while the OS modes survive.
Collapse
Affiliation(s)
- Vladimir K Vanag
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad 236041, Russia
| | - Vitaly O Yasuk
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad 236041, Russia
| |
Collapse
|
5
|
Horikawa Y. Stabilization of metastable dynamical rotating waves in a ring of unidirectionally coupled sigmoidal neurons due to shortcuts. Neural Netw 2017; 85:140-156. [DOI: 10.1016/j.neunet.2016.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/06/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
|
6
|
Horikawa Y. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling. Neural Netw 2016; 76:13-28. [PMID: 26829604 DOI: 10.1016/j.neunet.2015.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 12/16/2015] [Accepted: 12/25/2015] [Indexed: 10/22/2022]
Abstract
Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed.
Collapse
Affiliation(s)
- Yo Horikawa
- Faculty of Engineering, Kagawa University, Takamatsu, 761-0396, Japan.
| |
Collapse
|
7
|
Horikawa Y. Effects of asymmetry in an output function on the pinning of rotating waves in a ring neural oscillator with asymmetric bidirectional coupling and self-coupling. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with unknown parameters under communication-direction-dependent coupling. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:367173. [PMID: 25101140 PMCID: PMC4101220 DOI: 10.1155/2014/367173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/24/2014] [Accepted: 05/28/2014] [Indexed: 12/04/2022]
Abstract
This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.
Collapse
|
9
|
Horikawa Y. Effects of asymmetric coupling and self-coupling on metastable dynamical transient rotating waves in a ring of sigmoidal neurons. Neural Netw 2014; 53:26-39. [PMID: 24531038 DOI: 10.1016/j.neunet.2014.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 01/08/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
Abstract
Transient rotating waves in a ring of sigmoidal neurons with asymmetric bidirectional coupling and self-coupling were studied. When a pair of stable steady states and an unstable traveling wave coexisted, rotating waves propagating in a ring were generated in transients. The pinning (propagation failure) of the traveling wave occurred in the presence of asymmetric coupling and self-coupling, and its conditions were obtained. A kinematical equation for the propagation of wave fronts of the traveling and rotating waves was then derived for a large output gain of neurons. The kinematical equation showed that the duration of transient rotating waves increases exponentially with the number of neurons as that in a ring of unidirectionally coupled neurons (metastable dynamical transients). However, the exponential growth rate depended on the asymmetry of bidirectional coupling and the strength of self-coupling. The rate was equal to the propagation time of the traveling wave (a reciprocal of the propagation speed), and it increased near pinned regions. Then transient rotating waves could show metastable dynamics (extremely long duration) even in a ring of a small number of neurons.
Collapse
Affiliation(s)
- Yo Horikawa
- Faculty of Engineering, Kagawa University, Takamatsu, 761-0396, Japan.
| |
Collapse
|
10
|
Horikawa Y. Metastable dynamical patterns and their stabilization in arrays of bidirectionally coupled sigmoidal neurons. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062902. [PMID: 24483526 DOI: 10.1103/physreve.88.062902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 09/05/2013] [Indexed: 06/03/2023]
Abstract
Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.
Collapse
Affiliation(s)
- Yo Horikawa
- Faculty of Engineering, Kagawa University, Takamatsu, 761-0396, Japan
| |
Collapse
|