1
|
Quévreux P, Haegeman B, Loreau M. Spatial heterogeneity of biomass turnover has contrasting effects on synchrony and stability in trophic metacommunities. Ecol Lett 2023; 26:1817-1828. [PMID: 37602911 DOI: 10.1111/ele.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Spatial heterogeneity is a fundamental feature of ecosystems, and ecologists have identified it as a factor promoting the stability of population dynamics. In particular, differences in interaction strengths and resource supply between patches generate an asymmetry of biomass turnover with a fast and a slow patch coupled by a mobile predator. Here, we demonstrate that asymmetry leads to opposite stability patterns in metacommunities receiving localized perturbations depending on the characteristics of the perturbed patch. Perturbing prey in the fast patch synchronizes the dynamics of prey biomass between the two patches and destabilizes predator dynamics by increasing the predator's temporal variability. Conversely, perturbing prey in the slow patch decreases the synchrony of the prey's dynamics and stabilizes predator dynamics. Our results have implications for conservation ecology and suggest reinforcing protection policies in fast patches to dampen the effects of perturbations and promote the stability of population dynamics at the regional scale.
Collapse
Affiliation(s)
- Pierre Quévreux
- Theoretical and Experimental Ecology Station, UAR 2029, CNRS, Moulis, France
| | - Bart Haegeman
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, France
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, UAR 2029, CNRS, Moulis, France
| |
Collapse
|
2
|
Jiao J, Riotte-Lambert L, Pilyugin SS, Gil MA, Osenberg CW. Mobility and its sensitivity to fitness differences determine consumer-resource distributions. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200247. [PMID: 32742692 PMCID: PMC7353973 DOI: 10.1098/rsos.200247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
An animal's movement rate (mobility) and its ability to perceive fitness gradients (fitness sensitivity) determine how well it can exploit resources. Previous models have examined mobility and fitness sensitivity separately and found that mobility, modelled as random movement, prevents animals from staying in high-quality patches, leading to a departure from an ideal free distribution (IFD). However, empirical work shows that animals with higher mobility can more effectively collect environmental information and better sense patch quality, especially when the environment is frequently changed by human activities. Here, we model, for the first time, this positive correlation between mobility and fitness sensitivity and measure its consequences for the populations of a consumer and its resource. In the absence of consumer demography, mobility alone had no effect on system equilibria, but a positive correlation between mobility and fitness sensitivity could produce an IFD. In the presence of consumer demography, lower levels of mobility prevented the system from approaching an IFD due to the mixing of consumers between patches. However, when positively correlated with fitness sensitivity, high mobility led to an IFD. Our study demonstrates that the expected covariation of animal movement attributes can drive broadly theorized consumer-resource patterns across space and time and could underlie the role of consumers in driving spatial heterogeneity in resource abundance.
Collapse
Affiliation(s)
- Jing Jiao
- NIMBioS, University of Tennessee, Knoxville, TN, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Louise Riotte-Lambert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Michael A. Gil
- Institute of Marine Sciences, University of California, NOAA Southwest Fisheries Science Center, Santa Cruz, CA, USA
| | | |
Collapse
|
3
|
Conserving large carnivores amidst human-wildlife conflict: The scope of ecological theory to guide conservation practice. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2018.e00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Fussell EF, Krause AL, Van Gorder RA. Hybrid approach to modeling spatial dynamics of systems with generalist predators. J Theor Biol 2019; 462:26-47. [PMID: 30385311 DOI: 10.1016/j.jtbi.2018.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
Abstract
We consider hybrid spatial modeling approaches for ecological systems with a generalist predator utilizing a prey and either a second prey or an allochthonous resource. While spatial dispersion of populations is often modeled via stepping-stone (discrete spatial patches) or continuum (one connected spatial domain) formulations, we shall be interested in hybrid approaches which we use to reduce the dimension of certain components of the spatial domain, obtaining either a continuum model of varying spatial dimensions, or a mixed stepping-stone-continuum model. This approach results in models consisting of partial differential equations for some of the species which are coupled via reactive boundary conditions to lower dimensional partial differential equations or ordinary differential equations for the other species. In order to demonstrate the use of this approach, we consider two case studies. In the first case study, we consider a one-predator two-prey interaction between beavers, wolves and white-tailed deer in Voyageurs National Park. In the second case study, we consider predator-prey-allochthonous resource interactions between bears, berries and salmon on Kodiak Island. For each case study, we compare the results from the hybrid modeling approach with corresponding stepping-stone and continuum model results, highlighting benefits and limitations of the method. In some cases, we find that the hybrid modeling approach allows for solutions which are easier to simulate (akin to stepping-stone models) while maintaining seemingly more realistic spatial dynamics (akin to full continuum models).
Collapse
Affiliation(s)
- Elizabeth F Fussell
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Andrew L Krause
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Robert A Van Gorder
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
| |
Collapse
|
5
|
Noonburg EG, Byers JE. Bad neighbors: how spatially disjunct habitat degradation can cause system-wide population collapse. Ecology 2016; 97:2858-2866. [PMID: 27859113 DOI: 10.1002/ecy.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 11/06/2022]
Abstract
Movement of individuals links the effects of local variation in habitat quality with growth and persistence of populations at the landscape scale. When the populations themselves are linked by interspecific interactions, such as predation, differential movement between habitats may lead to counterintuitive system-wide dynamics. Understanding the interaction between local drivers and dynamics of widely dispersed species is necessary to predict the impacts of habitat fragmentation and degradation, which may be transmitted across habitat boundaries by species' movements. Here we model predator-prey interactions across unaltered and degraded habitat areas, and we explore the additional effects of adaptive habitat choice by predators on the resilience of prey populations. We show how movement between habitats can produce the "bad neighbor effect," in which predators' response to localized habitat degradation causes system-wide loss of prey populations. This effect arises because adaptive foraging results in the concentration of predators in the more productive unaltered habitat, even when this habitat can not support the increased prey mortality. The mechanisms underlying this effect are especially sensitive to prey dispersal rate and adaptive predator behavior.
Collapse
Affiliation(s)
- Erik G Noonburg
- Department of Biological Sciences, Florida Atlantic University, 3200 College Avenue, Davie, Florida, 33314, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
6
|
Abiotic and biotic interactions determine whether increased colonization is beneficial or detrimental to metapopulation management. Theor Popul Biol 2016; 109:44-53. [DOI: 10.1016/j.tpb.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/15/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022]
|
7
|
Wang S, Haegeman B, Loreau M. Dispersal and metapopulation stability. PeerJ 2015; 3:e1295. [PMID: 26557427 PMCID: PMC4636407 DOI: 10.7717/peerj.1295] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.
Collapse
Affiliation(s)
- Shaopeng Wang
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du CNRS , Moulis , France
| | - Bart Haegeman
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du CNRS , Moulis , France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du CNRS , Moulis , France
| |
Collapse
|
8
|
Zhang Y, Lutscher F, Guichard F. The effect of predator avoidance and travel time delay on the stability of predator-prey metacommunities. THEOR ECOL-NETH 2015. [DOI: 10.1007/s12080-015-0269-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Gounand I, Mouquet N, Canard E, Guichard F, Hauzy C, Gravel D. The Paradox of Enrichment in Metaecosystems. Am Nat 2014; 184:752-63. [DOI: 10.1086/678406] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Hauzy C, Nadin G, Canard E, Gounand I, Mouquet N, Ebenman B. Confronting the paradox of enrichment to the metacommunity perspective. PLoS One 2013; 8:e82969. [PMID: 24358242 PMCID: PMC3865114 DOI: 10.1371/journal.pone.0082969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/05/2013] [Indexed: 12/04/2022] Open
Abstract
Resource enrichment can potentially destabilize predator-prey dynamics. This phenomenon historically referred as the "paradox of enrichment" has mostly been explored in spatially homogenous environments. However, many predator-prey communities exchange organisms within spatially heterogeneous networks called metacommunities. This heterogeneity can result from uneven distribution of resources among communities and thus can lead to the spreading of local enrichment within metacommunities. Here, we adapted the original Rosenzweig-MacArthur predator-prey model, built to study the paradox of enrichment, to investigate the effect of regional enrichment and of its spatial distribution on predator-prey dynamics in metacommunities. We found that the potential for destabilization was depending on the connectivity among communities and the spatial distribution of enrichment. In one hand, we found that at low dispersal regional enrichment led to the destabilization of predator-prey dynamics. This destabilizing effect was more pronounced when the enrichment was uneven among communities. In the other hand, we found that high dispersal could stabilize the predator-prey dynamics when the enrichment was spatially heterogeneous. Our results illustrate that the destabilizing effect of enrichment can be dampened when the spatial scale of resource enrichment is lower than that of organismss movements (heterogeneous enrichment). From a conservation perspective, our results illustrate that spatial heterogeneity could decrease the regional extinction risk of species involved in specialized trophic interactions. From the perspective of biological control, our results show that the heterogeneous distribution of pest resource could favor or dampen outbreaks of pests and of their natural enemies, depending on the spatial scale of heterogeneity.
Collapse
Affiliation(s)
- Céline Hauzy
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- Université Pierre et Marie Curie, UMR7625 - Ecologie et Evolution, Paris, France
- Institut National de la Recherche Agronomique, USC2031 - Ecologie des Populations et Communautés, Paris, France
- * E-mail:
| | - Grégoire Nadin
- CNRS, UMR7598 - Laboratoire Jacques-Louis Lions, Paris, France
| | - Elsa Canard
- Institut des Sciences de l′Evolution, Université de Montpellier II, Montpellier, France
| | - Isabelle Gounand
- Institut des Sciences de l′Evolution, Université de Montpellier II, Montpellier, France
| | - Nicolas Mouquet
- Institut des Sciences de l′Evolution, Université de Montpellier II, Montpellier, France
| | - Bo Ebenman
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Ruokolainen L, McCann K. Environmental weakening of trophic interactions drives stability in stochastic food webs. J Theor Biol 2013; 339:36-46. [DOI: 10.1016/j.jtbi.2013.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 07/05/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
12
|
Ruokolainen L. Spatio-temporal environmental correlation and population variability in simple metacommunities. PLoS One 2013; 8:e72325. [PMID: 24023615 PMCID: PMC3758301 DOI: 10.1371/journal.pone.0072325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022] Open
Abstract
Natural populations experience environmental conditions that vary across space and over time. This variation is often correlated between localities depending on the geographical separation between them, and different species can respond to local environmental fluctuations similarly or differently, depending on their adaptation. How this emerging structure in environmental correlation (between-patches and between-species) affects spatial community dynamics is an open question. This paper aims at a general understanding of the interactions between the environmental correlation structure and population dynamics in spatial networks of local communities (metacommunities), by studying simple two-patch, two-species systems. Three different pairs of interspecific interactions are considered: competition, consumer-resource interaction, and host-parasitoid interaction. While the results paint a relatively complex picture of the effect of environmental correlation, the interaction between environmental forcing, dispersal, and local interactions can be understood via two mechanisms. While increasing between-patch environmental correlation couples immigration and local densities (destabilising effect), the coupling between local populations under increased between-species environmental correlation can either amplify or dampen population fluctuations, depending on the patterns in density dependence. This work provides a unifying framework for modelling stochastic metacommunities, and forms a foundation for a better understanding of population responses to environmental fluctuations in natural systems.
Collapse
|
13
|
Lin WT, Hsieh CH, Miki T. Difference in [corrected] adaptive dispersal ability can promote species coexistence in fluctuating environments. PLoS One 2013; 8:e55218. [PMID: 23383314 PMCID: PMC3562337 DOI: 10.1371/journal.pone.0055218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022] Open
Abstract
Theories and empirical evidence suggest that random dispersal of organisms promotes species coexistence in spatially structured environments. However, directed dispersal, where movement is adjusted with fitness-related cues, is less explored in studies of dispersal-mediated coexistence. Here, we present a metacommunity model of two consumers exhibiting directed dispersal and competing for a single resource. Our results indicated that directed dispersal promotes coexistence through two distinct mechanisms, depending on the adaptiveness of dispersal. Maladaptive directed dispersal may promote coexistence similar to random dispersal. More importantly, directed dispersal is adaptive when dispersers track patches of increased resources in fluctuating environments. Coexistence is promoted under increased adaptive dispersal ability of the inferior competitor relative to the superior competitor. This newly described dispersal-mediated coexistence mechanism is likely favored by natural selection under the trade-off between competitive and adaptive dispersal abilities.
Collapse
Affiliation(s)
- Wei-Ting Lin
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chih-hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Takeshi Miki
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Abrams PA, Ruokolainen L, Shuter BJ, McCann KS. Harvesting creates ecological traps: consequences of invisible mortality risks in predator-prey metacommunities. Ecology 2012; 93:281-93. [PMID: 22624310 DOI: 10.1890/11-0011.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Models of two-patch predator-prey metacommunities are used to explore how the global predator population changes in response to additional mortality in one of the patches. This could describe the dynamics of a predator in an environment that includes a refuge area where that predator is protected and a spatially distinct ("risky") area where it is harvested. The predator's movement is based on its perceived fitness in the two patches, but the risk from the additional mortality is potentially undetectable; this often occurs when the mortality is from human harvesting or from a novel type of top predator. Increases in undetected mortality in the risky area can produce an abrupt collapse of either the refuge population or of the entire predator population when the mortality rate exceeds a threshold level. This is due to the attraction of the risky patch, which has abundant prey due to its high predator mortality. Extinction of the refuge predator population does not occur when the refuge patch has a higher maximum per capita predator growth rate than the exploited patch because the refuge is then more attractive when the predator is rare. The possibility of abrupt extinction of one or both patches from high densities in response to a small increase in harvest is often associated with alternative states. In such cases, large reductions in mortality may be needed to avoid extinction in a collapsing predator population, or to reestablish an extinct population. Our analysis provides a potential explanation for sudden collapses of harvested populations, and it argues for more consideration of adaptive movement in designing protected areas.
Collapse
Affiliation(s)
- Peter A Abrams
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord St.. Toronto, Ontario M5S 3G5 Canada.
| | | | | | | |
Collapse
|