1
|
Amirmostofian M, Akbari F, Hashemzaei M, Safaeinejad F, Tabrizian K, Arbab H, Rezaee R, Hemat Jouy S, Ghorani V, Shahraki J. Hormetic effects of curcumin on oxidative stress injury induced by trivalent arsenic in isolated rat hepatocytes. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:641-650. [PMID: 38106636 PMCID: PMC10719721 DOI: 10.22038/ajp.2023.22634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 12/19/2023]
Abstract
Objective Arsenic (As) poisoning is a worldwide public health problem. Arsenic can cause cancer, diabetes, hepatic problems, etc. Hence, we investigated possible hepatoprotective properties of curcumin against As3+-induced liver damages in freshly isolated rat hepatocytes. Materials and Methods Isolation of hepatocytes was done by the two-step liver perfusion method using collagenase. The EC50 concentration of As3+ was used in toxicity assessments and curcumin (2, 5, and 10 µM) was added 15 min before As3+ addition to isolated hepatocytes. Curcumin impact was assessed in terms of cytotoxicity, lipid peroxidation induction, reactive oxygen species (ROS) levels, and mitochondrial membrane potential. Results As3+ significantly increased cytotoxicity, malondialdehyde and ROS levels and induced mitochondrial membrane damage and hepatocyte membrane lysis after 3 hr incubation. Curcumin 2 µM significantly prevented lipid peroxidation induction, ROS formation, and mitochondrial membrane damage; while curcumin 5 µM had no apparent effect on these parameters, curcumin 10 µM potentiated them. Conclusion Curcumin only at low doses could ameliorate oxidative stress injury induced by As3+ in isolated rat hepatocytes.
Collapse
Affiliation(s)
- Marzieh Amirmostofian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- UniSA Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Fahimeh Akbari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Fahimeh Safaeinejad
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Halimeh Arbab
- Department of English Language, Faculty of Humanities, University of Zabol, Sistan and Balouchestan, Zabol, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Shahraki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
2
|
Kenyon EM. Arsenic toxicokinetic modeling and risk analysis: Progress, needs and applications. Toxicology 2021; 457:152809. [PMID: 33965444 DOI: 10.1016/j.tox.2021.152809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Arsenic (As) poses unique challenges in PBTK model development and risk analysis applications. Arsenic metabolism is complex, adequate information to attribute specific metabolites to particular adverse effects in humans is sparse, and measurement of relevant metabolites in biological media can be difficult. Multiple As PBTK models have been published and used or adapted for use in various exposure and risk analysis applications. These applications illustrate the broad utility of PBTK models for exposure and dose-response analysis, particularly for arsenic where multi-pathway, multi-route exposures and multiple toxic effects are of concern. Arsenic PBTK models have been used together with exposure reconstruction and dose-response functions to estimate risk of specific adverse health effects due to drinking water exposure and consumption of specific foodstuffs (e.g. rice, seafood), as well as to derive safe exposure levels and develop consumption advisories. Future refinements to arsenic PBTK models can enhance the confidence in such analyses. Improved estimates for methylation biotransformation parameters based on in vitro to in vivo extrapolation (IVIVE) methods and estimation of interindividual variability in key model parameters for specific toxicologically relevant metabolites are two important areas for consideration.
Collapse
Affiliation(s)
- Elaina M Kenyon
- Center for Computational Toxicology and Exposure, U.S. EPA, Office of Research and Development, Research Triangle Park, NC, United States.
| |
Collapse
|
3
|
Arsenic Methyltransferase and Methylation of Inorganic Arsenic. Biomolecules 2020; 10:biom10091351. [PMID: 32971865 PMCID: PMC7563989 DOI: 10.3390/biom10091351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Arsenic occurs naturally in the environment, and exists predominantly as inorganic arsenite (As (III) and arsenate As (V)). Arsenic contamination of drinking water has long been recognized as a major global health concern. Arsenic exposure causes changes in skin color and lesions, and more severe health conditions such as black foot disease as well as various cancers originating in the lungs, skin, and bladder. In order to efficiently metabolize and excrete arsenic, it is methylated to monomethylarsonic and dimethylarsinic acid. One single enzyme, arsenic methyltransferase (AS3MT) is responsible for generating both metabolites. AS3MT has been purified from several mammalian and nonmammalian species, and its mRNA sequences were determined from amino acid sequences. With the advent of genome technology, mRNA sequences of AS3MT have been predicted from many species throughout the animal kingdom. Horizontal gene transfer had been postulated for this gene through phylogenetic studies, which suggests the importance of this gene in appropriately handling arsenic exposures in various organisms. An altered ability to methylate arsenic is dependent on specific single nucleotide polymorphisms (SNPs) in AS3MT. Reduced AS3MT activity resulting in poor metabolism of iAs has been shown to reduce expression of the tumor suppressor gene, p16, which is a potential pathway in arsenic carcinogenesis. Arsenic is also known to induce oxidative stress in cells. However, the presence of antioxidant response elements (AREs) in the promoter sequences of AS3MT in several species does not correlate with the ability to methylate arsenic. ARE elements are known to bind NRF2 and induce antioxidant enzymes to combat oxidative stress. NRF2 may be partly responsible for the biotransformation of iAs and the generation of methylated arsenic species via AS3MT. In this article, arsenic metabolism, excretion, and toxicity, a discussion of the AS3MT gene and its evolutionary history, and DNA methylation resulting from arsenic exposure have been reviewed.
Collapse
|
4
|
d'Esposito A, Sweeney PW, Ali M, Saleh M, Ramasawmy R, Roberts TA, Agliardi G, Desjardins A, Lythgoe MF, Pedley RB, Shipley R, Walker-Samuel S. Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nat Biomed Eng 2018; 2:773-787. [PMID: 31015649 DOI: 10.1038/s41551-018-0306-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 09/06/2018] [Indexed: 01/02/2023]
Abstract
Understanding the uptake of a drug by diseased tissue, and the drug's subsequent spatiotemporal distribution, are central factors in the development of effective targeted therapies. However, the interaction between the pathophysiology of diseased tissue and individual therapeutic agents can be complex, and can vary across tissue types and across subjects. Here, we show that the combination of mathematical modelling, high-resolution optical imaging of intact and optically cleared tumour tissue from animal models, and in vivo imaging of vascular perfusion predicts the heterogeneous uptake, by large tissue samples, of specific therapeutic agents, as well as their spatiotemporal distribution. In particular, by using murine models of colorectal cancer and glioma, we report and validate predictions of steady-state blood flow and intravascular and interstitial fluid pressure in tumours, of the spatially heterogeneous uptake of chelated gadolinium by tumours, and of the effect of a vascular disrupting agent on tumour vasculature.
Collapse
Affiliation(s)
- Angela d'Esposito
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Paul W Sweeney
- Department of Mechanical Engineering, University College London, London, UK
| | - Morium Ali
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Magdy Saleh
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Rajiv Ramasawmy
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Thomas A Roberts
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Giulia Agliardi
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adrien Desjardins
- Department of Medical Physics, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | | | - Rebecca Shipley
- Department of Mechanical Engineering, University College London, London, UK.
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|
5
|
Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, Nguyen TT, Jusko WJ, Androulakis IP. Understanding Physiology in the Continuum: Integration of Information from Multiple - Omics Levels. Front Pharmacol 2017; 8:91. [PMID: 28289389 PMCID: PMC5327699 DOI: 10.3389/fphar.2017.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023] Open
Abstract
In this paper, we discuss approaches for integrating biological information reflecting diverse physiologic levels. In particular, we explore statistical and model-based methods for integrating transcriptomic, proteomic and metabolomics data. Our case studies reflect responses to a systemic inflammatory stimulus and in response to an anti-inflammatory treatment. Our paper serves partly as a review of existing methods and partly as a means to demonstrate, using case studies related to human endotoxemia and response to methylprednisolone (MPL) treatment, how specific questions may require specific methods, thus emphasizing the non-uniqueness of the approaches. Finally, we explore novel ways for integrating -omics information with PKPD models, toward the development of more integrated pharmacology models.
Collapse
Affiliation(s)
- Kubra Kamisoglu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Alison Acevedo
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ, USA
| | - Richard R Almon
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Susette Coyle
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Siobhan Corbett
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Debra C Dubois
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Tung T Nguyen
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway NJ, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, PiscatawayNJ, USA; Department of Chemical Engineering, Rutgers University, PiscatawayNJ, USA
| |
Collapse
|
6
|
Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:443-455. [PMID: 28229170 DOI: 10.1007/s00210-017-1351-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
Abstract
Population of India and Bangladesh and many other parts of the world are badly exposed to arsenic through drinking water. Due to non-availability of safe drinking water, they are dependent on arsenic-contaminated water. Generally, poverty level is high in those areas with lack of proper nutrition. Arsenic is considered to be an environmental contaminant and widely distributed in the environment due to its natural existence and anthropogenic applications. Contamination of arsenic in both human and animal could occur through air, soil, and other sources. Arsenic exposure mainly occurs in food materials through drinking water with high levels of arsenic in it. High levels of arsenic in groundwater have been found to be associated with various health-related problems including arsenicosis, skin lesions, cardiovascular diseases, reproductive problems, psychological, neurological, immunotoxic, and carcinogenesis. The mechanism of arsenic toxicity consists in its transformation in metaarsenite, which acylates protein sulfhydryl groups, affect on mitochondria by inhibiting succinic dehydrogenase activity and can uncouple oxidative phosphorylation with production of active oxygen species by tissues. A variety of dietary antioxidant supplements are useful to protect the carcinogenetic effects of arsenic. They play crucial role for counteracting oxidative damage and protect carcinogenesis by chelating with heavy metal moiety. Phytochemicals and chelating agents will be beneficial for combating heavy metal-induced carcinogenesis through its biopharmaceutical properties.
Collapse
|
7
|
Li W, Guo Y, Zhang C, Wu R, Yang AY, Gaspar J, Kong ANT. Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chem Res Toxicol 2016; 29:2071-2095. [PMID: 27989132 DOI: 10.1021/acs.chemrestox.6b00413] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress occurs when cellular reactive oxygen species levels exceed the self-antioxidant capacity of the body. Oxidative stress induces many pathological changes, including inflammation and cancer. Chronic inflammation is believed to be strongly associated with the major stages of carcinogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a crucial role in regulating oxidative stress and inflammation by manipulating key antioxidant and detoxification enzyme genes via the antioxidant response element. Many dietary phytochemicals with cancer chemopreventive properties, such as polyphenols, isothiocyanates, and triterpenoids, exert antioxidant and anti-inflammatory functions by activating the Nrf2 pathway. Furthermore, epigenetic changes, including DNA methylation, histone post-translational modifications, and miRNA-mediated post-transcriptional alterations, also lead to various carcinogenesis processes by suppressing cancer repressor gene transcription. Using epigenetic research tools, including next-generation sequencing technologies, many dietary phytochemicals are shown to modify and reverse aberrant epigenetic/epigenome changes, potentially leading to cancer prevention/treatment. Thus, the beneficial effects of dietary phytochemicals on cancer development warrant further investigation to provide additional impetus for clinical translational studies.
Collapse
Affiliation(s)
- Wenji Li
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Yue Guo
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Chengyue Zhang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Renyi Wu
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Anne Yuqing Yang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - John Gaspar
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Tóth A, Brózik A, Szakács G, Sarkadi B, Hegedüs T. A novel mathematical model describing adaptive cellular drug metabolism and toxicity in the chemoimmune system. PLoS One 2015; 10:e0115533. [PMID: 25699998 PMCID: PMC4338831 DOI: 10.1371/journal.pone.0115533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/25/2014] [Indexed: 02/01/2023] Open
Abstract
Cells cope with the threat of xenobiotic stress by activating a complex molecular network that recognizes and eliminates chemically diverse toxic compounds. This "chemoimmune system" consists of cellular Phase I and Phase II metabolic enzymes, Phase 0 and Phase III ATP Binding Cassette (ABC) membrane transporters, and nuclear receptors regulating these components. In order to provide a systems biology characterization of the chemoimmune network, we designed a reaction kinetic model based on differential equations describing Phase 0-III participants and regulatory elements, and characterized cellular fitness to evaluate toxicity. In spite of the simplifications, the model recapitulates changes associated with acquired drug resistance and allows toxicity predictions under variable protein expression and xenobiotic exposure conditions. Our simulations suggest that multidrug ABC transporters at Phase 0 significantly facilitate the defense function of successive network members by lowering intracellular drug concentrations. The model was extended with a novel toxicity framework which opened the possibility of performing in silico cytotoxicity assays. The alterations of the in silico cytotoxicity curves show good agreement with in vitro cell killing experiments. The behavior of the simplified kinetic model suggests that it can serve as a basis for more complex models to efficiently predict xenobiotic and drug metabolism for human medical applications.
Collapse
Affiliation(s)
- Attila Tóth
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, 1094, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Anna Brózik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Balázs Sarkadi
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, 1094, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Tamás Hegedüs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, 1094, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
- * E-mail:
| |
Collapse
|
9
|
Lawley SD, Yun J, Gamble MV, Hall MN, Reed MC, Nijhout HF. Mathematical modeling of the effects of glutathione on arsenic methylation. Theor Biol Med Model 2014; 11:20. [PMID: 24885596 PMCID: PMC4041632 DOI: 10.1186/1742-4682-11-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Arsenic is a major environmental toxin that is detoxified in the liver by biochemical mechanisms that are still under study. In the traditional metabolic pathway, arsenic undergoes two methylation reactions, each followed by a reduction, after which it is exported and released in the urine. Recent experiments show that glutathione plays an important role in arsenic detoxification and an alternative biochemical pathway has been proposed in which arsenic is first conjugated by glutathione after which the conjugates are methylated. In addition, in rats arsenic-glutathione conjugates can be exported into the plasma and removed by the liver in the bile. Methods We have developed a mathematical model for arsenic biochemistry that includes three mechanisms by which glutathione affects arsenic methylation: glutathione increases the speed of the reduction steps; glutathione affects the activity of arsenic methyltranferase; glutathione sequesters inorganic arsenic and its methylated downstream products. The model is based as much as possible on the known biochemistry of arsenic methylation derived from cellular and experimental studies. Results We show that the model predicts and helps explain recent experimental data on the effects of glutathione on arsenic methylation. We explain why the experimental data imply that monomethyl arsonic acid inhibits the second methylation step. The model predicts time course data from recent experimental studies. We explain why increasing glutathione when it is low increases arsenic methylation and that at very high concentrations increasing glutathione decreases methylation. We explain why the possible temporal variation of the glutathione concentration affects the interpretation of experimental studies that last hours. Conclusions The mathematical model aids in the interpretation of data from recent experimental studies and shows that the Challenger pathway of arsenic methylation, supplemented by the glutathione effects described above, is sufficient to understand and predict recent experimental data. More experimental studies are needed to explicate the detailed mechanisms of action of glutathione on arsenic methylation. Recent experimental work on the effects of glutathione on arsenic methylation and our modeling study suggest that supplements that increase hepatic glutathione production should be considered as strategies to reduce adverse health effects in affected populations.
Collapse
Affiliation(s)
| | | | | | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|