1
|
Zhang Y, Jiang N, Qi W, Li T, Zhang Y, Wu J, Zhang H, Zhou M, Cui P, Yu T, Fu Z, Zhou Y, Lin K, Wang H, Wei T, Zhu Z, Ai J, Qiu C, Zhang W. SARS-CoV-2 intra-host single-nucleotide variants associated with disease severity. Virus Evol 2022; 8:veac106. [PMID: 36505092 PMCID: PMC9728387 DOI: 10.1093/ve/veac106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 frequently arise within infected individuals. Here, we explored the level and pattern of intra-host viral diversity in association with disease severity. Then, we analyzed information underlying these nucleotide changes to infer the impetus including mutational signatures and immune selection from neutralizing antibody or T-cell recognition. From 23 January to 31 March 2020, a set of cross-sectional samples were collected from individuals with homogeneous founder virus regardless of disease severity. Intra-host single-nucleotide variants (iSNVs) were enumerated using deep sequencing. Human leukocyte antigen (HLA) alleles were genotyped by Sanger sequencing. Medical records were collected and reviewed by attending physicians. A total of 836 iSNVs (3-106 per sample) were identified and distributed in a highly individualized pattern. The number of iSNVs paced with infection duration peaked within days and declined thereafter. These iSNVs did not stochastically arise due to a strong bias toward C > U/G > A and U > C/A > G substitutions in reciprocal proportion with escalating disease severity. Eight nonsynonymous iSNVs in the receptor-binding domain could escape from neutralization, and eighteen iSNVs were significantly associated with specific HLA alleles. The level and pattern of iSNVs reflect the in vivo viral-host interaction and the disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Yumeng Zhang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingzhe Zhou
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Peng Cui
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tong Yu
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhangfan Fu
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Zhou
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ke Lin
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongyu Wang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tongqing Wei
- State Key Laboratory of Genetic Engineering and Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | - Chao Qiu
- *Corresponding authors: E-mail: ; ; ;
| | | |
Collapse
|
3
|
Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. J Virol 2021; 95:JVI.01369-20. [PMID: 33148792 DOI: 10.1128/jvi.01369-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is transported through the secretory pathway to the infected cell surface and onto virion particles. In the Golgi, the gp160 Env precursor is modified by complex sugars and proteolytically cleaved to produce the mature functional Env trimer, which resists antibody neutralization. We observed mostly uncleaved gp160 and smaller amounts of cleaved gp120 and gp41 Envs on the surface of HIV-1-infected or Env-expressing cells; however, cleaved Envs were relatively enriched in virions and virus-like particles (VLPs). This relative enrichment of cleaved Env in VLPs was observed for wild-type Envs, for Envs lacking the cytoplasmic tail, and for CD4-independent, conformationally flexible Envs. On the cell surface, we identified three distinct populations of Envs: (i) the cleaved Env was transported through the Golgi, was modified by complex glycans, formed trimers that cross-linked efficiently, and was recognized by broadly neutralizing antibodies; (ii) a small fraction of Env modified by complex carbohydrates escaped cleavage in the Golgi; and (iii) the larger population of uncleaved Env lacked complex carbohydrates, cross-linked into diverse oligomeric forms, and was recognized by poorly neutralizing antibodies. This last group of more "open" Env oligomers reached the cell surface in the presence of brefeldin A, apparently bypassing the Golgi apparatus. Relative to Envs transported through the Golgi, these uncleaved Envs were counterselected for virion incorporation. By employing two pathways for Env transport to the surface of infected cells, HIV-1 can misdirect host antibody responses toward conformationally flexible, uncleaved Env without compromising virus infectivity.IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus type 1 (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The cleaved, functional Env is incorporated into virus particles from the surface of the infected cell. We found that an uncleaved form of Env is transported to the cell surface by an unconventional route, but this nonfunctional Env is mostly excluded from the virus. Thus, only one of the pathways by which Env is transported to the surface of infected cells results in efficient incorporation into virus particles, potentially allowing the uncleaved Env to act as a decoy to the host immune system without compromising virus infectivity.
Collapse
|
4
|
Ito Y, Tauzin A, Remion A, Ejima K, Mammano F, Iwami S. Dynamics of HIV-1 coinfection in different susceptible target cell populations during cell-free infection. J Theor Biol 2018; 455:39-46. [PMID: 30018001 DOI: 10.1016/j.jtbi.2018.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
Abstract
HIV-1 mutations rapidly accumulate through genetic recombination events, which require the infection of a single cell by two virions (coinfection). Accumulation of mutations in the viral population may lead to immune escape and high-level drug resistance. The existence of cell subpopulations characterized by different susceptibility to HIV-1 infection has been proposed as an important parameter driving coinfection (Dang et al., 2004). While the mechanism and the quantification of HIV-1 coinfection have been recently investigated by mathematical models, the detailed dynamics of this process during cell-free infection remains elusive. In this study, we constructed ordinary differential equations considering the heterogeneity of target cell populations during cell-free infection in cell culture, and reproduced the cell culture experimental data. Our mathematical analyses showed that the presence of two differently susceptible target cell subpopulations could explain our experimental datasets, while increasing the number of subpopulations did not improve the fitting. In addition, we quantitatively demonstrated that cells infected by multiple viruses mainly accumulated from one cell subpopulation under cell-free infection conditions. In particular, the frequency of infection events in the more susceptible subpopulation was 6.11-higher than that from the other subpopulation, and 98.3% of coinfected cells emerged from the more susceptible subpopulation. Our mathematical-experimental approach is able to extract such a quantitative information, and can be easily applied to other virus infections.
Collapse
Affiliation(s)
- Yusuke Ito
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Alexandra Tauzin
- INSERM, U941, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, IUH, Paris 75010, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris 75010, France
| | - Azaria Remion
- INSERM, U941, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, IUH, Paris 75010, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris 75010, France
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, IN, USA; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Fabrizio Mammano
- INSERM, U941, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, IUH, Paris 75010, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris 75010, France.
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan; PRESTO, JST, Saitama 332-0012, Japan; CREST, JST, Saitama 332-0012, Japan.
| |
Collapse
|
5
|
Song H, Giorgi EE, Ganusov VV, Cai F, Athreya G, Yoon H, Carja O, Hora B, Hraber P, Romero-Severson E, Jiang C, Li X, Wang S, Li H, Salazar-Gonzalez JF, Salazar MG, Goonetilleke N, Keele BF, Montefiori DC, Cohen MS, Shaw GM, Hahn BH, McMichael AJ, Haynes BF, Korber B, Bhattacharya T, Gao F. Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nat Commun 2018; 9:1928. [PMID: 29765018 PMCID: PMC5954121 DOI: 10.1038/s41467-018-04217-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
Recombination in HIV-1 is well documented, but its importance in the low-diversity setting of within-host diversification is less understood. Here we develop a novel computational tool (RAPR (Recombination Analysis PRogram)) to enable a detailed view of in vivo viral recombination during early infection, and we apply it to near-full-length HIV-1 genome sequences from longitudinal samples. Recombinant genomes rapidly replace transmitted/founder (T/F) lineages, with a median half-time of 27 days, increasing the genetic complexity of the viral population. We identify recombination hot and cold spots that differ from those observed in inter-subtype recombinants. Furthermore, RAPR analysis of longitudinal samples from an individual with well-characterized neutralizing antibody responses shows that recombination helps carry forward resistance-conferring mutations in the diversifying quasispecies. These findings provide insight into molecular mechanisms by which viral recombination contributes to HIV-1 persistence and immunopathogenesis and have implications for studies of HIV transmission and evolution in vivo.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Elena E Giorgi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Fangping Cai
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gayathri Athreya
- Office for Research & Discovery, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyejin Yoon
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Oana Carja
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Peter Hraber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | | | - Chunlai Jiang
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaojun Li
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jesus F Salazar-Gonzalez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-57, Nakiwogo Road, Entebbe, Uganda
| | - Maria G Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nilu Goonetilleke
- Departments of Microbiology and Immunology & Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - David C Montefiori
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Myron S Cohen
- Departments of Microbiology and Immunology & Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Barton F Haynes
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bette Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Feng Gao
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
6
|
Paydary K, Khaghani P, Emamzadeh-Fard S, Alinaghi SAS, Baesi K. The emergence of drug resistant HIV variants and novel anti-retroviral therapy. Asian Pac J Trop Biomed 2013; 3:515-22. [PMID: 23835806 PMCID: PMC3695575 DOI: 10.1016/s2221-1691(13)60106-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/21/2013] [Indexed: 02/08/2023] Open
Abstract
After its identification in 1980s, HIV has infected more than 30 million people worldwide. In the era of highly active anti-retroviral therapy, anti-retroviral drug resistance results from insufficient anti-retroviral pressure, which may lead to treatment failure. Preliminary studies support the idea that anti-retroviral drug resistance has evolved largely as a result of low-adherence of patients to therapy and extensive use of anti-retroviral drugs in the developed world; however, a highly heterogeneous horde of viral quasi-species are currently circulating in developing nations. Thus, the prioritizing of strategies adopted in such two worlds should be quite different considering the varying anti-retroviral drug resistance prevalence. In this article, we explore differences in anti-retroviral drug resistance patterns between developed and developing countries, as they represent two distinct ecological niches of HIV from an evolutionary standpoint.
Collapse
Affiliation(s)
- Koosha Paydary
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Khaghani
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahra Emamzadeh-Fard
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kazem Baesi
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|