1
|
Zhou Y, Liu K, Zhang H. Biomimetic Mineralization: From Microscopic to Macroscopic Materials and Their Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:3516-3531. [PMID: 36944024 DOI: 10.1021/acsabm.3c00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Biomineralization is an attractive pathway to produce mineral-based biomaterials with high performance and hierarchical structures. To date, the biomineralization process and mechanism have been extensively studied, especially for the formation of bone, teeth, and nacre. Inspired by those, abundant biomimetic mineralized materials have been fabricated for biomedical applications. Those bioinspired materials generally exhibit great mechanical properties and biological functions. Nevertheless, substantial gaps remain between biomimetic materials and natural materials, particularly with respect to mechanical properties and mutiscale structures. This Review summarizes the recent progress of micro- and macroscopic biomimetic mineralization from the perspective of materials synthesis and biomedical applications. To begin with, we discuss the progress of biomimetic mineralization at the microscopic level. The mechanical strength, stability, and functionality of the nano- and micromaterials are significantly improved by introducing biominerals, such as DNA nanostructures, nanovaccines, and living cells. Next, numerous biomimetic strategies based on biomineralization at the macroscopic scale are highlighted, including in situ mineralization and bottom-up assembly of mineralized building blocks. Finally, challenges and future perspectives regarding the development of biomimetic mineralization are also presented with the aim of offering insights for the rational design and fabrication of next-generation biomimetic mineralized materials.
Collapse
Affiliation(s)
- Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
2
|
Zelaya-Lainez L, Kariem H, Nischkauer W, Limbeck A, Hellmich C. "Variances" and "in-variances" in hierarchical porosity and composition, across femoral tissues from cow, horse, ostrich, emu, pig, rabbit, and frog. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111234. [PMID: 32919621 DOI: 10.1016/j.msec.2020.111234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
Abstract
It is very well known that bone is a hierarchically organized material produced by bone cells residing in the fluid environments filling (larger) vascular pores and (smaller) lacunar pores. The extracellular space consists of hydroxyapatite crystals, collagen type I molecules, and water with non-collageneous organics. It is less known to which extent the associated quantities (mineral, organic, and water concentrations; vascular, lacunar, and extracellular porosities) vary across species, organs, and ages. We here investigate the aforementioned quantities across femoral shaft tissues from cow, horse, emu, frog, ostrich, pig, and rabbit; by means of light microscopy and dehydration-demineralization tests; thereby revealing interesting invariances: The extracellular volume fractions of organic matter turn out to be similar across all tested non-amphibian tissues; as do the extracellular volume fractions of hydroxyapatite across all tested mammals. Hence, the chemical composition of the femoral extracellular bone matrix is remarkably "invariant" across differently aged mammals; while the water content shows significant variations, as does the partitions of water between the different pore spaces. The latter exhibit strikingly varying morphologies as well. This finding adds to the ample "universal patterns" in the sense of evolutionary developmental biology; and it provides interesting design requirements for the development of novel biomimetic tissue engineering solutions.
Collapse
Affiliation(s)
- Luis Zelaya-Lainez
- Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Karlsplatz 13/E202, 1040 Vienna, Austria
| | - Hawraa Kariem
- Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Karlsplatz 13/E202, 1040 Vienna, Austria
| | - Winfried Nischkauer
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, TU Wien - Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, TU Wien - Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Karlsplatz 13/E202, 1040 Vienna, Austria.
| |
Collapse
|
3
|
Thrivikraman G, Athirasala A, Gordon R, Zhang L, Bergan R, Keene DR, Jones JM, Xie H, Chen Z, Tao J, Wingender B, Gower L, Ferracane JL, Bertassoni LE. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat Commun 2019; 10:3520. [PMID: 31388010 PMCID: PMC6684598 DOI: 10.1038/s41467-019-11455-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/16/2019] [Indexed: 11/12/2022] Open
Abstract
Bone tissue, by definition, is an organic–inorganic nanocomposite, where metabolically active cells are embedded within a matrix that is heavily calcified on the nanoscale. Currently, there are no strategies that replicate these definitive characteristics of bone tissue. Here we describe a biomimetic approach where a supersaturated calcium and phosphate medium is used in combination with a non-collagenous protein analog to direct the deposition of nanoscale apatite, both in the intra- and extrafibrillar spaces of collagen embedded with osteoprogenitor, vascular, and neural cells. This process enables engineering of bone models replicating the key hallmarks of the bone cellular and extracellular microenvironment, including its protein-guided biomineralization, nanostructure, vasculature, innervation, inherent osteoinductive properties (without exogenous supplements), and cell-homing effects on bone-targeting diseases, such as prostate cancer. Ultimately, this approach enables fabrication of bone-like tissue models with high levels of biomimicry that may have broad implications for disease modeling, drug discovery, and regenerative engineering. Bone tissue is a complex organic-inorganic nanocomposite and strategies that replicate the characteristics of bone tissue are scarce. Here the authors demonstrate the deposition of nanoscale apatite in collagen embedded with mesenchymal, vascular and nerve cells, using a protein-guided biomineralization approach.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Avathamsa Athirasala
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Limin Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | | | - James M Jones
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hua Xie
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Zhiqiang Chen
- Center for Electron Microscopy and Nanofabrication, Portland State University, Portland, OR, 97201, USA
| | - Jinhui Tao
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Brian Wingender
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32603, USA
| | - Laurie Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32603, USA
| | - Jack L Ferracane
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA. .,Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA. .,Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA. .,Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Berli M, Borau C, Decco O, Adams G, Cook RB, García Aznar JM, Zioupos P. Localized tissue mineralization regulated by bone remodelling: A computational approach. PLoS One 2017; 12:e0173228. [PMID: 28306746 PMCID: PMC5357005 DOI: 10.1371/journal.pone.0173228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/18/2017] [Indexed: 11/18/2022] Open
Abstract
Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent-material density curve. Numerical results are discussed pointing to potential clinical applications.
Collapse
Affiliation(s)
- Marcelo Berli
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta 11, Oro Verde, Entre Ríos, República Argentina
| | - Carlos Borau
- Departamento de Ingeniería Mecánica, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, España
| | - Oscar Decco
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta 11, Oro Verde, Entre Ríos, República Argentina
| | - George Adams
- Musculoskeletal & Medicolegal Research Group, Cranfield Forensic Institute, DA of the UK, Shrivenham, United Kingdom
| | - Richard B. Cook
- nCATS, University of Southampton, Highfield, Southampton, United Kingdom
| | - José Manuel García Aznar
- Departamento de Ingeniería Mecánica, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, España
| | - Peter Zioupos
- Musculoskeletal & Medicolegal Research Group, Cranfield Forensic Institute, DA of the UK, Shrivenham, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Dejaco A, Komlev VS, Jaroszewicz J, Swieszkowski W, Hellmich C, Mozafari M. Discussion: Fracture safety of double-porous hydroxyapatite biomaterials. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2016. [DOI: 10.1680/jbibn.16.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Alexander Dejaco
- Institute for Mechanics of Materials and Structures, TU Wien – Vienna University of Technology, Vienna, Austria
| | - Vladimir S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - Jakub Jaroszewicz
- Department of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Department of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, TU Wien – Vienna University of Technology, Vienna, Austria
| | - Masoud Mozafari
- Head of Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| |
Collapse
|
6
|
Blanchard R, Morin C, Malandrino A, Vella A, Sant Z, Hellmich C. Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02760. [PMID: 26666734 DOI: 10.1002/cnm.2760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
While in clinical settings, bone mineral density measured by computed tomography (CT) remains the key indicator for bone fracture risk, there is an ongoing quest for more engineering mechanics-based approaches for safety analyses of the skeleton. This calls for determination of suitable material properties from respective CT data, where the traditional approach consists of regression analyses between attenuation-related grey values and mechanical properties. We here present a physics-oriented approach, considering that elasticity and strength of bone tissue originate from the material microstructure and the mechanical properties of its elementary components. Firstly, we reconstruct the linear relation between the clinically accessible grey values making up a CT, and the X-ray attenuation coefficients quantifying the intensity losses from which the image is actually reconstructed. Therefore, we combine X-ray attenuation averaging at different length scales and over different tissues, with recently identified 'universal' composition characteristics of the latter. This gives access to both the normally non-disclosed X-ray energy employed in the CT-device and to in vivo patient-specific and location-specific bone composition variables, such as voxel-specific mass density, as well as collagen and mineral contents. The latter feed an experimentally validated multiscale elastoplastic model based on the hierarchical organization of bone. Corresponding elasticity maps across the organ enter a finite element simulation of a typical load case, and the resulting stress states are increased in a proportional fashion, so as to check the safety against ultimate material failure. In the young patient investigated, even normal physiological loading is probable to already imply plastic events associated with the hydrated mineral crystals in the bone ultrastructure, while the safety factor against failure is still as high as five. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Romane Blanchard
- TU Wien-Vienna University of Technology, Institute for Mechanics of Materials and Structures, Karlsplatz 13/202, Vienna 1040, Austria
| | - Claire Morin
- CIS-EMSE, CNRS:UMR 5307, LGF, Ecole Nationale Supérieure des Mines, Saint-Etienne, F-42023, France
| | - Andrea Malandrino
- Institute for Bioengineering of Catalonia, C/Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Alain Vella
- Mechanical Engineering Department, University of Malta, Tal Qroqq, Msida MSD, 2080, Malta
| | - Zdenka Sant
- Mechanical Engineering Department, University of Malta, Tal Qroqq, Msida MSD, 2080, Malta
| | - Christian Hellmich
- TU Wien-Vienna University of Technology, Institute for Mechanics of Materials and Structures, Karlsplatz 13/202, Vienna 1040, Austria
| |
Collapse
|
7
|
Luczynski KW, Steiger-Thirsfeld A, Bernardi J, Eberhardsteiner J, Hellmich C. Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: Evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate. J Mech Behav Biomed Mater 2015; 52:51-62. [DOI: 10.1016/j.jmbbm.2015.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/13/2015] [Accepted: 03/01/2015] [Indexed: 11/17/2022]
|
8
|
Abstract
Mechanical loads which are macroscopically acting onto bony organs, are known to influence the activities of biological cells located in the pore spaces of bone, in particular so the signaling and production processes mediated by osteocytes. The exact mechanisms by which osteocytes are actually able to “feel” the mechanical loading and changes thereof, has been the subject of numerous studies, and, while several hypotheses have been brought forth over time, this topic has remained a matter of debate. Relaxation times reported in a recent experimental study of Gardinier et al. (Bone 46(4):1075–1081, 2010) strongly suggest that the lacunar pores are likely to experience, during typical physiological load cycles, not only fluid transport, but also undrained conditions. The latter entail the buildup of lacunar pore pressures, which we here quantify by means of a thorough multiscale modeling approach. In particular, the proposed model is based on classical poroelasticity theory, and able to account for multiple pore spaces. First, the model reveals distinct nonlinear dependencies of the resulting lacunar (and vascular) pore pressures on the underlying bone composition, highlighting the importance of a rigorous multiscale approach for appropriate computation of the aforementioned pore pressures. Then, the derived equations are evaluated for macroscopic (uniaxial as well as hydrostatic) mechanical loading of physiological magnitude. The resulting model-predicted pore pressures agree very well with the pressures that have been revealed, by means of in vitro studies, to be of adequate magnitude for modulating the responses of biological cells, including osteocytes. This underlines that osteocytes may respond to many types of loading stimuli at the same time, in particular so to fluid flow and hydrostatic pressure.
Collapse
|
9
|
Marino M. Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies. Biomech Model Mechanobiol 2015. [PMID: 26220454 DOI: 10.1007/s10237-015-0707-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Both atomistic and experimental studies reveal the dependence of collagen fibril mechanics on biochemical and biophysical features such as, for instance, cross-link density, water content and protein sequence. In order to move toward a multiscale structural description of biological tissues, a novel analytical model for collagen fibril mechanics is herein presented. The model is based on a multiscale approach that incorporates and couples: thermal fluctuations in collagen molecules; the uncoiling of collagen triple helix; the stretching of molecular backbone; the straightening of the telopeptide in which covalent cross-links form; slip-pulse mechanisms due to the rupture of intermolecular weak bonds; molecular interstrand delamination due to the rupture of intramolecular weak bonds; the rupture of covalent bonds within molecular strands. The effectiveness of the proposed approach is verified by comparison with available atomistic results and experimental data, highlighting the importance of cross-link density in tuning collagen fibril mechanics. The typical three-region shape and hysteresis behavior of fibril constitutive response, as well as the transition from a yielding-like to a brittle-like behavior, are recovered with a special insight on the underlying nanoscale mechanisms. The model is based on parameters with a clear biophysical and biochemical meaning, resulting in a promising tool for analyzing the effect of pathological or pharmacological-induced histochemical alterations on the functional mechanical response of collagenous tissues.
Collapse
Affiliation(s)
- Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30167, Hannover, Germany.
| |
Collapse
|
10
|
Morin C, Hellmich C. A multiscale poromicromechanical approach to wave propagation and attenuation in bone. ULTRASONICS 2014; 54:1251-1269. [PMID: 24457030 DOI: 10.1016/j.ultras.2013.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/23/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Ultrasonics is an important diagnostic tool for bone diseases, as it allows for non-invasive assessment of bone tissue quality through mass density-elasticity relationships. The latter are, however, quite complex for fluid-filled porous media, which motivates us to develop a rigorous multiscale poromicrodynamics approach valid across the great variety of different bone tissues. Multiscale momentum and mass balance, as well as kinematics of a hierarchical double porous medium, together with Darcy's law for fluid flow and micro-poro-elasticity for the solid phase of bone, give access to the so-called dispersion relation, linking the complex wave numbers to corresponding wave frequencies. Experimentally validated results show that 2.25 MHz acoustical signals transmit healthy cortical bone (exhibiting a low vascular porosity) only in the form of fast waves, agreeing very well with experimental data, while both fast and slow waves transmit highly osteoporotic as well as trabecular bone (exhibiting a large vascular porosity). While velocities and wavelengths of both fast and slow waves, as well as attenuation lengths of slow waves, are always monotonously increasing with the permeability of the bone sample, the attenuation length of fast waves shows a minimum when considered as function of the permeability.
Collapse
Affiliation(s)
- Claire Morin
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| |
Collapse
|
11
|
Li H, Zhang A, Bone L, Buyea C, Ramanathan M. A network modeling approach for the spatial distribution and structure of bone mineral content. AAPS JOURNAL 2014; 16:478-87. [PMID: 24671611 DOI: 10.1208/s12248-014-9585-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/28/2014] [Indexed: 01/23/2023]
Abstract
This study aims to develop a spatial model of bone for quantitative assessments of bone mineral density and microarchitecture. A spatially structured network model for bone microarchitecture was systematically investigated. Bone mineral-forming foci were distributed radially according to the cumulative normal distribution, and Voronoi tessellation was used to obtain edges representing bone mineral lattice. Methods to simulate X-ray images were developed. The network model recapitulated key features of real bone and contained spongy interior regions resembling trabecular bone that transitioned seamlessly to densely mineralized, compact cortical bone-like microarchitecture. Model-simulated imaging profiles were similar to patients' X-ray images. The morphometric metrics were concordant with microcomputed tomography results for real bone. Simulations comparing normal and diseased bone of 20-30 to 70-80 year-olds demonstrated the method's effectiveness for modeling osteoporosis. The novel spatial model may be useful for pharmacodynamic simulations of bone drugs and for modeling imaging data in clinical trials.
Collapse
Affiliation(s)
- Hui Li
- Department of Computer Science and Engineering, State University of New York, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|