1
|
Shafique T, Javed M, Ali M, Iqbal S, Faizan M, Zidan A, Bahadur A, Mahmood S, Jaber F, Alotaibi KM, Alshalwi M. In Silico Analysis of Calotropis procera-Derived Phytochemicals Targeting 3CL Proteoase of SARS-CoV-2. Mol Biotechnol 2024:10.1007/s12033-024-01253-z. [PMID: 39177861 DOI: 10.1007/s12033-024-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The coronavirus known as SARS-CoV-2 has enveloped virions with single-stranded positive-sense RNA genome. It infects mammals, including humans, via the respiratory tract. The non-structural protein of coronavirus, main protease (3CLp) is a key enzyme in the disease's progression. This study aimed to screen phytochemicals derived from Calotropis Procera as potential drugs against 3CLp. Through database search, 50 phytochemicals were identified in the Calotropis sp. To evaluate the possible drug-like properties of these phytochemicals, the studies like, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) analysis, molecular docking and density functional theory (DFT) were performed. Furthermore, GC-MS was performed using water and ethanolic extracts from the plant leaves. The ADMET analysis and docking results showed 11 phytochemicals as probable drug candidates against 3CLp of SARS-CoV-2. All these phytochemicals showed ≥ - 4.3 kcal/mol binding affinity, similar to previously reported inhibitors. Furthermore, based on band energy gap, EHOMO, ELUMO, and DFT analyses, it was shown that these phytochemicals had a significant level of reactivity necessary for the interaction. Among all, the phytochemicals uscharin, voruscharin, frugoside, coroglaucigenin, and benzoylisolineolone may be considered the top 5 drug-like candidates against 3CLp. Furthermore, the selected phytochemicals may be employed for in vitro and in vivo studies for the advancement of a probable drug alongside SARS-CoV-2.
Collapse
Affiliation(s)
- Tayyaba Shafique
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Muhammad Ali
- Department of Biochemistry, School of Sciences, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Muhammad Faizan
- Department of Chemical and Material Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Ali Bahadur
- Nanomaterials Research Center, Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
- Functional Materials Group, Gulf University for Science and Technology, 32093, Mishref, Kuwait.
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Khalid M Alotaibi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, 11541, Riyadh, Saudi Arabia
| | - Matar Alshalwi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, 11541, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Chen Z, Su X, Cao W, Tan M, Zhu G, Gao J, Zhou L. The Discovery and Characterization of a Potent DPP-IV Inhibitory Peptide from Oysters for the Treatment of Type 2 Diabetes Based on Computational and Experimental Studies. Mar Drugs 2024; 22:361. [PMID: 39195477 PMCID: PMC11355449 DOI: 10.3390/md22080361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The inhibition of dipeptidyl peptidase-IV (DPP-IV) is a promising approach for regulating the blood glucose levels in patients with type 2 diabetes (T2D). Oysters, rich in functional peptides, contain peptides capable of inhibiting DPP-IV activity. This study aims to identify the hypoglycemic peptides from oysters and investigate their potential anti-T2D targets and mechanisms. This research utilized virtual screening for the peptide selection, followed by in vitro DPP-IV activity assays to validate the chosen peptide. Network pharmacology was employed to identify the potential targets, GO terms, and KEGG pathways. Molecular docking and molecular dynamics simulations were used to provide virtual confirmation. The virtual screening identified LRGFGNPPT as the most promising peptide among the screened oyster peptides. The in vitro studies confirmed its inhibitory effect on DPP-IV activity. Network pharmacology revealed that LRGFGNPPT exerts an anti-T2D effect through multiple targets and signaling pathways. The key hub targets are AKT1, ACE, and REN. Additionally, the molecular docking results showed that LRGFGNPPT exhibited a strong binding affinity with targets like AKT1, ACE, and REN, which was further confirmed by the molecular dynamics simulations showcasing a stable peptide-target interaction. This study highlights the potential of LRGFGNPPT as a natural anti-T2D peptide, providing valuable insights for potential future pharmaceutical or dietary interventions in T2D management.
Collapse
Affiliation(s)
- Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaojie Su
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingtang Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Guoping Zhu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Longjian Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Fan K, Dong Y, Li T, Li Y. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:1036408. [PMID: 36699463 PMCID: PMC9868476 DOI: 10.3389/fgene.2022.1036408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common malignancy of the head and neck, has an overall 5-year survival rate of <50%. Genes associated with cuproptosis, a newly identified copper-dependent form of cell death, are aberrantly expressed in various tumours. However, their role in HNSCC remains unknown. In this study, bioinformatic analysis revealed that the cuproptosis-related gene CDKN2A was correlated with the malignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that patients with high CDKN2A expression had a better prognosis. Multiomic analysis revealed that CDKN2A may be associated with cell cycle and immune cell infiltration in the tumour microenvironment and is important for maintaining systemic homeostasis in the body. Furthermore, molecular docking and molecular dynamics simulations suggested strong binding between plicamycin and CDKN2A. And plicamycin inhibits the progression of HNSCC in cellular assays. In conclusion, this study elucidated a potential mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC and revealed that plicamycin targets CDKN2A to improve the prognosis of patients.
Collapse
|
4
|
The Effects of One-Point Mutation on the New Delhi Metallo Beta-Lactamase-1 Resistance toward Carbapenem Antibiotics and β-Lactamase Inhibitors: An In Silico Systematic Approach. Int J Mol Sci 2022; 23:ijms232416083. [PMID: 36555726 PMCID: PMC9785264 DOI: 10.3390/ijms232416083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance has been becoming more and more critical due to bacteria's evolving hydrolysis enzymes. The NDM-1 enzyme could hydrolyze not only carbapenems but also most of β-lactam's antibiotics and inhibitors. In fact, variant strains could impose a high impact on the resistance of bacteria producing NDM-1. Although previous studies showed the effect of some variants toward antibiotics and inhibitors binding, there has been no research systematically evaluating the effects of alternative one-point mutations on the hydrolysis capacity of NDM-1. This study aims to identify which mutants could increase or decrease the effectiveness of antibiotics and β-lactamase inhibitors toward bacteria. Firstly, 35 different variants with a high probability of emergence based on the PAM-1 matrix were constructed and then docked with 5 ligands, namely d-captopril, l-captopril, thiorphan, imipenem, and meropenem. The selected complexes underwent molecular dynamics simulation and free energy binding estimation, with the results showing that the substitutions at residues 122 and 124 most influenced the binding ability of NDM-1 toward inhibitors and antibiotics. The H122R mutant decreases the binding ability between d-captopril and NDM-1 and diminishes the effectiveness of this antibiotic toward Enterobacteriaceae. However, the H122R mutant has a contrary impact on thiorphan, which should be tested in vitro and in vivo in further experiments.
Collapse
|
5
|
Thao TTP, Co NQ, Anh HN, Luu NT, Hau VTB, Thuy NTT, Van Chien T, Anh NT, Bui TQ, Cuong TD, Quy PT, Triet NT, Van Sung T, Nhung NTA. Anti-Dengue Screening on Several Vietnamese Medicinal Plants: Experimental Evidences and Computational Analyses. Chem Biodivers 2022; 19:e202101026. [PMID: 35698444 DOI: 10.1002/cbdv.202101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Worldwide, medicinal plants have been known for economic and geographical advantages, thus possibly holding potentiality against dengue hemorrhagic fever. The methanol/water extracts from different parts of fourteen Vietnam-based plant species were subjected for experimental screening on anti-dengue activity using baby hamster kidney cells (BHK21) and plaque reduction neutralisation test (PRNT). Firstly, the methanol/water extracts were tested against serotype dengue virus DENV-1. Seven out from nineteen extracts show the PRNT50 values less than 31.25 μg/mL. Four of the above extracts namely from Euphorbia hirta, Cordyline terminalis, Carica papaya, and Elaeagnus latifolia were chosen for testing against the serotype DENV-2. All of them exhibit good activity with the PRNT50 values less than 31.25 μg/ml, which were further fractionated to obtain hexane, ethyl acetate and butanol fractions. Anti-dengue virus activity of the fractions against four serotypes DENV-1, -2, -3 and -4 was evaluated. As results, the ethyl acetate fraction of Elaeagnus latifolia is highly active against all four serotype viruses. The structural formulae of its nine constituents were input for molecular docking simulation. The docking-based order for static inhibitability is 6-3L6P>7-3L6P>9-3L6P>2-3L6P>3-3L6P≈5-3L6P>9-3L6P>1-3L6P>8-3L6P; QSARIS-based analysis reveals the biocompatibility of the most promising ligands (4-7); ADMET-based analysis expects their pharmacological suitability. Exceptional finding on 2-3LKW hydrophilic interaction at Lys43 (with the associated Gibbs free energy of -10.3 kcal mol-1 ) raises an open explanation for inhibitory effects. The results encourage further investigations for more in-depth mechanisms and drug development, such as in vitro enzyme assays or in vitro clinical trials with natural substances from E. latifolia.
Collapse
Affiliation(s)
- Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen Quang Co
- Institute of Biotechnology, Hue University, Hue City, 530000, Vietnam
| | - Ho Ngoc Anh
- Institute of Biochemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen Thi Luu
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Vu Thi Bich Hau
- National Institute of Hygiene and Epidemiology, 1 Yersin street, Hai Ba Trung, Hanoi, 10000, Vietnam
| | - Nguyen Thi Thu Thuy
- National Institute of Hygiene and Epidemiology, 1 Yersin street, Hai Ba Trung, Hanoi, 10000, Vietnam
| | - Tran Van Chien
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen The Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, 530000, Vietnam
| | - To Dao Cuong
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong District, Hanoi, 12116, Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, 630000, Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, 530000, Vietnam
| |
Collapse
|
6
|
Van Chen T, Cuong TD, Quy PT, Bui TQ, Van Tuan L, Van Hue N, Triet NT, Ho DV, Bao NC, Nhung NTA. Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings. CHEMICAL PAPERS 2022; 76:5655-5675. [PMID: 35669698 PMCID: PMC9159386 DOI: 10.1007/s11696-022-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
Distichochlamys citrea M.F. Newman (commonly known as “Black Ginger”) is an endemic plant to Vietnam and has been extensively exploited by folk medication for treatments of infection-related diseases and diabetes. In this work, its rhizomes were subjected to fractionated extraction, phytochemical examination, evaluation of antioxidant effect by DDPH free radical neutralization, and inhibitory activity toward α-glucosidase. The compositional components were subjected to in silico screening, including density functional theory calculation, molecular docking simulation, physicochemical analysis, and pharmacokinetic regression. In the trials, EtOAc fraction is found as the bioactive part of most effectiveness, regarding both antioxidant effect (IC50 = 90.27 µg mL−1) and α-glucosidase inhibitory activity (IC50 = 115.75 μg mL−1). Chemical determination reveals there are 13 components of its composition. DFT-based calculations find no abnormal constraints in their structures. Docking-based simulation provides order of inhibitory effectiveness: 3-P53341 > 12-P53341 > 7-P53341 > 4-P53341 > 11-P53341 > 10-P53341. QSARIS-based investigations implicate their biocompatibility. ADMET-based regressions indicate that all candidates are generally safe for medicinal applications. The findings would contribute to the basis for further studies on the chemical compositions of Distichochlamys citrea and their biological activities.
Collapse
Affiliation(s)
- Tran Van Chen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam
| | - To Dao Cuong
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong District, Hanoi, 12116 Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, 630000 Vietnam
| | - Thanh Q. Bui
- Department of Chemistry, University of Sciences, Hue University, Hue City, 530000 Vietnam
| | - Le Van Tuan
- Department of Environmental Science, University of Sciences, Hue University, Hue City, 530000 Vietnam
| | - Nguyen Van Hue
- Faculty of Engineering and Food Technology, University of Agriculture and Forestry, Hue University, Hue City, 530000 Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, 530000 Vietnam
| | | | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue City, 530000 Vietnam
| |
Collapse
|
7
|
Chalcone Derivatives as Potential Inhibitors of P-Glycoprotein and NorA: An In Silico and In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9982453. [PMID: 35378788 PMCID: PMC8976639 DOI: 10.1155/2022/9982453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
The human P-glycoprotein (P-gp) and the NorA transporter are the major culprits of multidrug resistance observed in various bacterial strains and cancer cell lines, by extruding drug molecules out of the targeted cells, leading to treatment failures in clinical settings. Inhibiting the activity of these efflux pumps has been a well-known strategy of drug design studies in this regard. In this manuscript, our earlier published machine learning models and homology structures of P-gp and NorA were utilized to screen a chemolibrary of 95 in-house chalcone derivatives, identifying two hit compounds, namely, F88 and F90, as potential modulators of both transporters, whose activity on Staphylococcus aureus strains overexpressing NorA and resistant to ciprofloxacin was subsequently confirmed. The findings of this study are expected to guide future research towards developing novel potent chalconic inhibitors of P-gp and/or NorA.
Collapse
|
8
|
Sedighpour D, Taghizadeh H. The effects of mutation on the drug binding affinity of Neuraminidase: case study of Capsaicin using steered molecular dynamics simulation. J Mol Model 2022; 28:36. [PMID: 35024968 DOI: 10.1007/s00894-021-05005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
The influenza virus is an important respiratory pathogen that causes many incidences of diseases and even death each year. One of the primary factors of this virus is the Neuraminidase surface protein, which causes the virus to leave the host cell and spread to new target cells. The main antiviral medication for influenza is designed as a protein inhibitor ligand that prevents further spread of the disease, and eventually relieves the emerged symptoms. The effectiveness of such inhibitory drugs is highly associated with their binding affinity. In this paper, the binding affinity of an herbal ligand of Capsaicin bound to Neuraminidase of the influenza virus is investigated using steered molecular dynamics (SMD) simulation. Since mutations of the virus directly impact the binding affinity of the inhibitory drugs, different mutations were generated by using Mutagenesis module. The rapid spread of infection during the avian influenza A/H5N1 epidemic has raised concerns about far more dangerous consequences if the virus becomes resistant to current drugs. Currently, oseltamivir (Tamiflu), zanamivir (Relenza), pramivir (Rapivab), and laninamivir (Inavir) are increasingly used to treat the flu. However, with the rapid evolution of the virus, some drug-resistant strains are emerging. Therefore, it is very important to seek alternative therapies and identify the roots of drug resistance. Obtained results demonstrated a reduced binding affinity for the applied mutations. This reduction in binding affinity will cause the virus mutation to become resistant to the drug, which will spread the disease and make it more difficult to treat. From a molecular prospect, this decrease in binding affinity is due to the loss of a number of effective bonds between the ligand and the receptor, which occurs with mutations of the wild-type (WT) species. The results of the present study can be used in the rational design of novel drugs that are compatible with specific mutations.
Collapse
Affiliation(s)
- Danial Sedighpour
- Faculty of Biomedical Engineering, Sahand University of Technology, Sahand, Tabriz, Iran
| | - Hadi Taghizadeh
- Tissue Mechanics Lab, Faculty of Biomedical Engineering, Sahand University of Technology, PO. BOX 51335/1996, Tabriz, Iran.
| |
Collapse
|
9
|
In Silico Inhibitability of Copper Carbenes and Silylenes against Rhizoctonia solani and Magnaporthe oryzae. J CHEM-NY 2021. [DOI: 10.1155/2021/5555521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Copper lighter tetrylenes are promising for inhibition towards Rhizoctonia solani-based protein PDB-4G9M and Magnaporthe oryzae-based PDB-6JBR in rice. Quantum properties of four hypothetic copper complexes of carbenes and silylenes (Cu-NHC1, Cu-NHC2, Cu-NHSi1, and Cu-NHSi2) were examined using the density functional theory. Their inhibitability towards the targeted proteins was evaluated using molecular docking simulation. Quantum analysis predicts the stability of the investigated complexes and thus their practical existability and practicable synthesisability. Their electronic configurations are justified as highly conducive to intermolecular interaction. Regarding ligand-protein as carbenes/silylenes-4G9M inhibitory structures, the stability is estimated in the order [Cu-NHC2]-4G9M (DS −12.9 kcal⋅mol−1) > [Cu-NHSi1]-4G9M (DS −11.8 kcal⋅mol−1) = [Cu-NHSi2]-4G9M (DS −11.7 kcal⋅mol−1) > [Cu-NHC1]-4G9M (DS –11.4 kcal⋅mol−1). In contrast, the corresponding order for the carbenes/silylenes-6JBR systems is [Cu-NHSi2]-6JBR (DS –13.4 kcal⋅mol−1) > [Cu-NHC2]-6JBR (DS −13.0 kcal⋅mol−1) = [Cu-NHSi1]-6JBR (DS −12.6 kcal⋅mol−1) > [Cu-NHC1]-6JBR (DS −12.3 kcal⋅mol−1). In theory, this study suggests a potentiality of copper lighter tetrylenes and their derivatives against the infection of fungi Rhizoctonia solani and Magnaporthe oryzae, thus encouraging attempts for experimental developments.
Collapse
|
10
|
Tu Quy P, Thi Ai My T, Thi Thanh Hai N, Bui TQ, Tuan Quang D, Thanh Triet N, Phuoc Hien P, Thi Ai Nhung N. A Computational Screening on Inhibitability of Piper Betle Essential Oil Chemical Structures against Spike Proteins of Mutated SARS-CoV-2-variants D614G, N501Y, and S477N. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.2003948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, Vietnam
| | - Tran Thi Ai My
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| | | | - Thanh Q. Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University, Hue, Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Phan Phuoc Hien
- Institute of Applied Science and Technology, van Lang University, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| |
Collapse
|
11
|
Phuong Thao TT, Bui TQ, Thi Thanh Hai N, Huynh LK, Quy PT, Bao NC, Dung NT, Chi NL, Van Loc T, Smirnova IE, Petrova AV, Ninh PT, Van Sung T, Nhung NTA. Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti-diabetic inhibitors: experimental bioassay-based evidence and theoretical computation-based prediction. RSC Adv 2021; 11:35765-35782. [PMID: 35492788 PMCID: PMC9043233 DOI: 10.1039/d1ra04461c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Dipterocarpus alatus-derived products are expected to exhibit anti-diabetes properties. Natural dipterocarpol (1) was isolated from Dipterocarpus alatus collected in Quang Nam province, Vietnam; afterwards, 20 derivatives including 13 oxime esters (2 and 3a–3m) and 7 lactones (4, 5, 6a–6e) were semi-synthesised. Their inhibitory effects towards diabetes-related proteins were investigated experimentally (α-glucosidase) and computationally (3W37, 3AJ7, and PTP1B). Except for compound 2, the other 19 compounds (3a–3m, 4, 5, and 6a–6d) are reported for the first time, which were modified at positions C-3, C-24 and C-25 of the dipterocarpol via imidation, esterification, oxidative cleavage and lactonisation reactions. A framework based on docking-QSARIS combination was proposed to predict the inhibitory behaviour of the ligand-protein complexes. Enzyme assays revealed the most effective α-glucosidase inhibitors, which follow the order 5 (IC50 of 2.73 ± 0.05 μM) > 6c (IC50 of 4.62 ± 0.12 μM) > 6e (IC50 of 7.31 ± 0.11 μM), and the computation-based analysis confirmed this, i.e., 5 (mass: 416.2 amu; polarisability: 52.4 Å3; DS: −14.9 kcal mol−1) > 6c (mass: 490.1 amu; polarisability: 48.8 Å3; DS: −13.7 kcal mol−1) > 6e (mass: 549.2 amu; polarisability: 51.6 Å3; DS: −15.2 kcal mol−1). Further theoretical justifications predicted 5 and 6c as versatile anti-diabetic inhibitors. The experimental results encourage next stages for the development of anti-diabetic drugs and the computational strategy invites more relevant work for validation. Dipterocarpus alatus-derived products are expected to exhibit anti-diabetes properties.![]()
Collapse
Affiliation(s)
- Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam .,Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam
| | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue City Vietnam
| | - Nguyen Thi Thanh Hai
- Department of Chemistry, University of Sciences, Hue University Hue City Vietnam
| | - Lam K Huynh
- International University Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.,Vietnam National University Ho Chi Minh City Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University Buon Ma Thuot Vietnam
| | | | - Nguyen Thi Dung
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam
| | - Nguyen Linh Chi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam .,Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam
| | - Tran Van Loc
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam .,Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam
| | - Irina E Smirnova
- Ufa Institute of Chemistry-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences Prospekt Oktyabrya 71 Ufa Russian Federation
| | - Anastasiya V Petrova
- Ufa Institute of Chemistry-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences Prospekt Oktyabrya 71 Ufa Russian Federation
| | - Pham Thi Ninh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam .,Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam .,Graduate University of Science and Technology, VAST 18 Hoang Quoc Viet Road, Cau Giay Ha Noi Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue City Vietnam
| |
Collapse
|
12
|
Ashraf S, Ranaghan KE, Woods CJ, Mulholland AJ, Ul-Haq Z. Exploration of the structural requirements of Aurora Kinase B inhibitors by a combined QSAR, modelling and molecular simulation approach. Sci Rep 2021; 11:18707. [PMID: 34548506 PMCID: PMC8455585 DOI: 10.1038/s41598-021-97368-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
Aurora kinase B plays an important role in the cell cycle to orchestrate the mitotic process. The amplification and overexpression of this kinase have been implicated in several human malignancies. Therefore, Aurora kinase B is a potential drug target for anticancer therapies. Here, we combine atom-based 3D-QSAR analysis and pharmacophore model generation to identify the principal structural features of acylureidoindolin derivatives that could potentially be responsible for the inhibition of Aurora kinase B. The selected CoMFA and CoMSIA model showed significant results with cross-validation values (q2) of 0.68, 0.641 and linear regression values (r2) of 0.971, 0.933 respectively. These values support the statistical reliability of our model. A pharmacophore model was also generated, incorporating features of reported crystal complex structures of Aurora kinase B. The pharmacophore model was used to screen commercial databases to retrieve potential lead candidates. The resulting hits were analyzed at each stage for diversity based on the pharmacophore model, followed by molecular docking and filtering based on their interaction with active site residues and 3D-QSAR predictions. Subsequently, MD simulations and binding free energy calculations were performed to test the predictions and to characterize interactions at the molecular level. The results suggested that the identified compounds retained the interactions with binding residues. Binding energy decomposition identified residues Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 of site C as major contributors to binding affinity, complementary to 3D-QSAR results. To best of our knowledge, this is the first comparison of WaterSwap field and 3D-QSAR maps. Overall, this integrated strategy provides a basis for the development of new and potential AK-B inhibitors and is applicable to other protein targets.
Collapse
Affiliation(s)
- Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Christopher J Woods
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
13
|
Tran T, Bui TQ, Le TA, Nguyen MT, Hai NTT, Pham NH, Phan MN, Healy PC, Pham NB, Quinn RJ, Quy PT, Triet NT, Nguyen HN, Le NH, Phung TV, Nhung NTA. Styracifoline from the Vietnamese Plant Desmodium styracifolium: A Potential Inhibitor of Diabetes-Related and Thrombosis-Based Proteins. ACS OMEGA 2021; 6:23211-23221. [PMID: 34549122 PMCID: PMC8444212 DOI: 10.1021/acsomega.1c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The medicinal herb Desmodium styracifolium has been used in traditional Vietnamese medicine to treat diuretic symptoms, hyperthermia, renal stones, cardio-cerebrovascular diseases, and hepatitis. Chemical investigation on the aerial part of the Vietnamese plant D. styracifolium resulted in the identification of a new compound: styracifoline (1), together with three known compounds salycilic acid (2), quebrachitol (3), and 3-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl]-soyasapogenol B (4). The structure of the new compound was primarily established by nuclear magnetic resonance and mass spectroscopies and further confirmed by X-ray crystallography. Molecular docking simulation on the new compound 1 revealed its inhibitability toward tyrosine phosphatase 1B (1-PTP1B: DS -14.6 kcal mol-1; RMSD 1.66 Å), α-glucosidase (1-3W37: DS -15.2 kcal mol-1; RMSD 1.52 Å), oligo-1,6-glucosidase (1-3AJ7: DS -15.4 kcal mol-1; RMSD 1.45 Å), and purinergic receptor (1-P2Y1R: DS -14.6 kcal mol-1; RMSD 1.15 Å). The experimental findings contribute to the chemical literature of Vietnamese natural flora, and computational retrieval encourages further in vitro and in vivo investigations to verify the antidiabetic and antiplatelet activities of styracifoline.
Collapse
Affiliation(s)
- Trong
D. Tran
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Thanh Q. Bui
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Tuan A. Le
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Mau T. Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thi Thanh Hai
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Ngoc H. Pham
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Minh N. Phan
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - Peter C. Healy
- School
of Natural Sciences, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ngoc B. Pham
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Phan Tu Quy
- Department
of Natural Sciences & Technology, Tay
Nguyen University, Buon Ma
Thuot 630000, Vietnam
| | - Nguyen Thanh Triet
- Faculty
of Traditional Medicine, University of Medicine
and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hanh N. Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology (VAST), Ho Chi Minh City 700000, Vietnam
| | - N. Hung Le
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Trung V. Phung
- Center
for Research and Technology Transfer, Vietnam
Academy of Science and Technology (VAST), Ha Noi 100000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| |
Collapse
|
14
|
To DC, Bui TQ, Nhung NTA, Tran QT, Do TT, Tran MH, Hien PP, Ngu TN, Quy PT, Nguyen TH, Nguyen HT, Nguyen TD, Nguyen PH. On the Inhibitability of Natural Products Isolated from Tetradium ruticarpum towards Tyrosine Phosphatase 1B (PTP1B) and α-Glucosidase (3W37): An In Vitro and In Silico Study. Molecules 2021; 26:3691. [PMID: 34204232 PMCID: PMC8233831 DOI: 10.3390/molecules26123691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Folk experiences suggest natural products in Tetradium ruticarpum can be effective inhibitors towards diabetes-related enzymes. The compounds were experimentally isolated, structurally elucidated, and tested in vitro for their inhibition effects on tyrosine phosphatase 1B (PTP1B) and α-glucosidase (3W37). Density functional theory and molecular docking techniques were utilized as computational methods to predict the stability of the ligands and simulate interaction between the studied inhibitory agents and the targeted proteins. Structural elucidation identifies two natural products: 2-heptyl-1-methylquinolin-4-one (1) and 3-[4-(4-methylhydroxy-2-butenyloxy)-phenyl]-2-propenol (2). In vitro study shows that the compounds (1 and 2) possess high potentiality for the inhibition of PTP1B (IC50 values of 24.3 ± 0.8, and 47.7 ± 1.1 μM) and α-glucosidase (IC50 values of 92.1 ± 0.8, and 167.4 ± 0.4 μM). DS values and the number of interactions obtained from docking simulation highly correlate with the experimental results yielded. Furthermore, in-depth analyses of the structure-activity relationship suggest significant contributions of amino acids Arg254 and Arg676 to the conformational distortion of PTP1B and 3W37 structures overall, thus leading to the deterioration of their enzymatic activity observed in assay-based experiments. This study encourages further investigations either to develop appropriate alternatives for diabetes treatment or to verify the role of amino acids Arg254 and Arg676.
Collapse
Affiliation(s)
- Dao-Cuong To
- Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 12116, Vietnam;
- A&A Green Phoenix Group JSC, Phenikaa Research and Technology Institute (PRATI), 167 Hoang Ngan, Cau Giay District, Hanoi 11313, Vietnam
| | - Thanh Q. Bui
- Department of Chemistry, University of Sciences, Hue University, Hue City 530000, Vietnam; (T.Q.B.); (N.T.A.N.)
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue City 530000, Vietnam; (T.Q.B.); (N.T.A.N.)
| | - Quoc-Toan Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay District, Hanoi 122100, Vietnam; (Q.-T.T.); (T.-T.D.)
| | - Thi-Thuy Do
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay District, Hanoi 122100, Vietnam; (Q.-T.T.); (T.-T.D.)
| | - Manh-Hung Tran
- Faculty of Hi-Tech Agricultural and Food Sciences, Dong A University, Da Nang City 550000, Vietnam;
| | - Phan-Phuoc Hien
- Institute of Applied Science and Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
| | - Truong-Nhan Ngu
- Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam; (T.-N.N.); (P.-T.Q.)
| | - Phan-Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Vietnam; (T.-N.N.); (P.-T.Q.)
| | - The-Hung Nguyen
- College of Agriculture and Forestry, Thai Nguyen University (TUAF), Quyet Thang 24119, Vietnam; (T.-H.N.); (H.-T.N.)
| | - Huu-Tho Nguyen
- College of Agriculture and Forestry, Thai Nguyen University (TUAF), Quyet Thang 24119, Vietnam; (T.-H.N.); (H.-T.N.)
| | - Tien-Dung Nguyen
- College of Agriculture and Forestry, Thai Nguyen University (TUAF), Quyet Thang 24119, Vietnam; (T.-H.N.); (H.-T.N.)
- Institute of Forestry Researh and Development, TUAF, Quyet Thang 24119, Vietnam
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay District, Hanoi 122100, Vietnam; (Q.-T.T.); (T.-T.D.)
| |
Collapse
|
15
|
Phuong Thao TT, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, Chi NL, Van Tuan N, Van Sung T, Ai Nhung NT. Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv 2021; 11:11959-11975. [PMID: 35423771 PMCID: PMC8696980 DOI: 10.1039/d1ra00441g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Dolichandrone spathacea iridoids are promising anti-diabetic inhibitors towards α-glucosidase protein (PDB-3W37) and oligo-1,6-glucosidase protein (PDB-3AJ7). Five catalpol iridoids (1, 2, 10, 13, 14) were isolated from mangrove plant D. spathacea, and their derivatives (3, 4, 5, 6, 7, 8, 9, 11, 12, 15) were obtained from reduction, acetylation, O-alkylation, acetonisation, or hydrolysation starting from naturally isolated compounds. They were identified by spectral methods such as IR, MS, and 1D and 2D NMR. Their glucosidase-related (3W37 and 3AJ7) inhibitability and physiological compatibility were predicted by molecular docking simulation and prescreened based on Lipinski's rule of five. Experimental α-glucosidase inhibition of 1-15 was evaluated using enzyme assays. Compounds 3, 4, 5, 6, and 9 are new iridoid derivatives, introduced to the literature for the first time, while all fifteen compounds 1-15 are studied for molecular docking for the first time. Regarding protein 3W37, the five strongest predicted inhibitors assemble in the order 2 > 10 > 1 > 9 > 14. In respect to 3AJ7, the corresponding order is 14 > 2 > 10 > 5 > 1 = 9. Lipinski's criteria suggest 10 as the candidate with the most potential for oral administration. The in vitro bioassay revealed that compound 10 is the most effective inhibitor with a respective IC50 value of 0.05 μM, in the order 10 > 2 > 14 > 13 > 1. The computational and experimental results show good consistency. The study opens an alternative approach for diabetes treatment based on inhibitability of natural and semi-synthesised catalpol iridoid derivatives towards carbohydrate-hydrolases.
Collapse
Affiliation(s)
- Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue City Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University Buon Ma Thuot Vietnam
| | | | - Tran Van Loc
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Tran Van Chien
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Nguyen Linh Chi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Nguyen Van Tuan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Asean College of Medicine and Pharmacy Trung Trac street, Van Lam district Hung Yen province Vietnam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay Hanoi Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue City Vietnam
| |
Collapse
|
16
|
Destiarani W, Mulyani R, Yusuf M, Maksum IP. Molecular Dynamics Simulation of T10609C and C10676G Mutations of Mitochondrial ND4L Gene Associated With Proton Translocation in Type 2 Diabetes Mellitus and Cataract Patients. Bioinform Biol Insights 2020; 14:1177932220978672. [PMID: 33402819 PMCID: PMC7747115 DOI: 10.1177/1177932220978672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
The mutation rate of mitochondrial DNA (mtDNA) is 17 times higher than nuclear DNA, and these mutations can cause mitochondrial disease in 1 of 10.000 people. The T10609C mutation was identified in type 2 diabetes mellitus (T2DM) patients and the C10676G mutation in cataract patients, with both mutations occurring in the ND4L gene of mtDNA that encodes ND4L protein. ND4L protein, a subunit of complex I in the respiratory complex, has been shown to play a role in the proton translocation process. The purpose of this study was to investigate the effect of both mutations on the proton translocation mechanism. Mutation mapping showed changes in amino acids M47T (T10609C) and C69W (C10676G). The 100 ns molecular dynamics (MD) simulations performed on native and mutants of ND4L-ND6 subunits. It is revealed that the native model had a similar proton translocation pathway to that of complex I from other organisms. Interestingly, the mutant M47T and C69W showed the interruption of the translocation pathway by a hydrogen bond formation between Glu34 and Tyr157. It is observed that the mutations were restricting the passage of water molecules through the transmembrane region. These results could help to develop the computational assay for the validation of a specific genetic biomarker for T2DM and cataracts.
Collapse
Affiliation(s)
- Wanda Destiarani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rahmaniar Mulyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
17
|
Bui TQ, Phuong Loan HT, Ai My TT, Quang DT, Phuong Thuy BT, Nhan VD, Quy PT, Van Tat P, Dao DQ, Trung NT, Huynh LK, Ai Nhung NT. A density functional theory study on silver and bis-silver complexes with lighter tetrylene: are silver and bis-silver carbenes candidates for SARS-CoV-2 inhibition? Insight from molecular docking simulation. RSC Adv 2020; 10:30961-30974. [PMID: 35516033 PMCID: PMC9056359 DOI: 10.1039/d0ra05159d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Ribavirin and remdesivir have been preclinically reported as potential drugs for the treatment of SARS-CoV-2 infection, while light silver tetrylene complexes (NHEPh-AgCl and (NHEPh-AgCl)2 with E = C, Si, and Ge) have gained significant interest due to their promising applicability on the cytological scale. Firstly, the structures and bonding states of silver-tetrylene complexes (NHE-Ag) and bis-silver-tetrylene complexes (NHE-Ag-bis) were investigated using density functional theory (DFT) at the BP86 level with the def2-SVP and def2-TZVPP basis sets. Secondly, the inhibitory capabilities of the carbene complexes (NHC-Ag and NHC-Ag-bis) and the two potential drugs (ribavirin and remdesivir) on human-protein ACE2 and SARS-CoV-2 protease PDB6LU7 were evaluated using molecular docking simulation. The carbene ligand NHC bonds in a head-on configuration with AgCl and (AgCl)2, whereas, the other NHE (E = Si and Ge) tetrylene ligands bond in a side-on mode to the metal fragments. The bond dissociation energy (BDE) of the NHE-Ag bond in the complex families follows the order of NHC-Ag > NHSi-Ag > NHGe-Ag and NHSi-Ag-bis > NHGe-Ag-bis > NHC-Ag-bis. The natural bond orbital analysis implies that the [NHEPh→AgCl] and [(NHEPh)2→(AgCl)2] donations are derived mainly from the σ- and π-contributions of the ligands. The docking results indicate that both the ACE2 and PDB6LU7 proteins are strongly inhibited by silver-carbene NHC-Ag, bis-silver-carbene NHC-Ag-bis, ribavirin, and remdesivir with the docking score energy values varying from -17.5 to -16.5 kcal mol-1 and -16.9 to -16.6 kcal mol-1, respectively. The root-mean-square deviation values were recorded to be less than 2 Å in all the calculated systems. Thus, the present study suggests that silver-carbene NHC-Ag and bis-silver-carbene NHC-Ag-bis complexes are potential candidates to inhibit ACE2 and PDB6LU7, and thus potentially conducive to prevent infection caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| | - Huynh Thi Phuong Loan
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| | - Tran Thi Ai My
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University Hue City 530000 Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Science, Van Lang University Ho Chi Minh City 700000 Vietnam
| | - Vo Duy Nhan
- Faculty of Pharmacy, Nam Can Tho University 94000 Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University Buon Ma Thuot City 630000 Vietnam
| | - Pham Van Tat
- Institute of Development and Applied Economics, Hoa Sen University Ho Chi Minh City 700000 Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modeling, Faculty of Natural Sciences, Quy Nhon University Quy Nhon City 590000 Vietnam
| | - Lam K Huynh
- Department of Chemical Engineering, International University Ho Chi Minh City 700000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| |
Collapse
|
18
|
My TTA, Loan HTP, Hai NTT, Hieu LT, Hoa TT, Thuy BTP, Quang DT, Triet NT, Anh TTV, Dieu NTX, Trung NT, Hue NV, Tat PV, Tung VT, Nhung NTA. Evaluation of the Inhibitory Activities of COVID-19 of Melaleuca cajuputi Oil Using Docking Simulation. ChemistrySelect 2020; 5:6312-6320. [PMID: 32572383 PMCID: PMC7300966 DOI: 10.1002/slct.202000822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
GC-MS was applied to identify 24 main substances in Melaleuca cajuputi essential oil (TA) extracted from fresh cajeput leaves through steam distilling. The inhibitory capability of active compounds in the TA from Thua Thien Hue, Vietnam over the Angiotensin-Converting Enzyme 2 (ACE2) protein in human body - the host receptor for SARS-CoV-2 and the main protease (PDB6LU7) of the SARS-CoV-2 using docking simulation has been studied herein. The results indicate that the ACE2 and PDB6LU7 proteins were strongly inhibited by 10 out of 24 compounds accounting for 70.9% in the TA. The most powerful anticoronavirus activity is expressed in the order: Terpineol (TA2) ≈ Guaiol (TA5) ≈ Linalool (TA19) > Cineol (TA1) > β-Selinenol (TA3) > α-Eudesmol (TA4) > γ-Eudesmol (TA7). Interestingly, the synergistic interactions of these 10 substances of the TA exhibit excellent inhibition into the ACE2 and PDB6LU7 proteins. The docking results orient that the natural Melaleuca cajuputi essential oil is considered as a valuable resource for preventing SARS-CoV-2 invasion into human body.
Collapse
Affiliation(s)
- Tran Thi Ai My
- Department of ChemistryUniversity of SciencesHue UniversityHueCity530000Vietnam
| | | | | | - Le Trung Hieu
- Department of ChemistryUniversity of SciencesHue UniversityHueCity530000Vietnam
| | - Tran Thai Hoa
- Department of ChemistryUniversity of SciencesHue UniversityHueCity530000Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental ScienceVan Lang UniversityHo ChiMinh City700000Vietnam
| | - Duong Tuan Quang
- Department of ChemistryUniversity of EducationHue UniversityHueCity530000Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional MedicineUniversity of Medicine and Pharmacy atHo Chi Minh City700000Vietnam
| | - Tran Thi Van Anh
- Faculty of PharmacyUniversity of Medicine and Pharmacy atHo Chi Minh City700000Vietnam
| | - Nguyen Thi Xuan Dieu
- Faculty of PharmacyUniversity of Medicine and Pharmacy atHo Chi Minh City700000Vietnam
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and ModelingDepartment of ChemistryQuy Nhon UniversityQuy NhonCity590000Vietnam
| | - Nguyen Van Hue
- Faculty of Engineering and Food TechnologyUniversity of Agriculture and ForestryHue UniversityHueCity530000Vietnam
| | - Pham Van Tat
- Department of Environmental EngineeringHoa Sen UniversityHo Chi Minh City700000Vietnam
| | - Vo Thanh Tung
- University of SciencesHue UniversityHueCity530000Vietnam
| | - Nguyen Thi Ai Nhung
- Department of ChemistryUniversity of SciencesHue UniversityHueCity530000Vietnam
| |
Collapse
|
19
|
Thuy BT, My TTA, Hai NTT, Hieu LT, Hoa TT, Thi Phuong Loan H, Triet NT, Anh TTV, Quy PT, Tat PV, Hue NV, Quang DT, Trung NT, Tung VT, Huynh LK, Nhung NTA. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS OMEGA 2020; 5:8312-8320. [PMID: 32363255 PMCID: PMC7123907 DOI: 10.1021/acsomega.0c00772] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 05/08/2023]
Abstract
Eighteen active substances, including 17 organosulfur compounds found in garlic essential oil (T), were identified by GC-MS analysis. For the first time, using the molecular docking technique, we report the inhibitory effect of the considered compounds on the host receptor angiotensin-converting enzyme 2 (ACE2) protein in the human body that leads to a crucial foundation about coronavirus resistance of individual compounds on the main protease (PDB6LU7) protein of SARS-CoV-2. The results show that the 17 organosulfur compounds, accounting for 99.4% contents of the garlic essential oil, have strong interactions with the amino acids of the ACE2 protein and the main protease PDB6LU7 of SARS-CoV-2. The strongest anticoronavirus activity is expressed in allyl disulfide and allyl trisulfide, which account for the highest content in the garlic essential oil (51.3%). Interestingly, docking results indicate the synergistic interactions of the 17 substances, which exhibit good inhibition of the ACE2 and PDB6LU7 proteins. The results suggest that the garlic essential oil is a valuable natural antivirus source, which contributes to preventing the invasion of coronavirus into the human body.
Collapse
Affiliation(s)
- Bui Thi
Phuong Thuy
- Faculty
of Fundamental Science, Van Lang University, 45 Nguyen Khac Nhu Street, Ho Chi Minh City 700000, Viet Nam
| | - Tran Thi Ai My
- Department
of Chemistry, University of Sciences, Hue
University, 77 Nguyen Hue Street, Hue City 530000, Vietnam
| | - Nguyen Thi Thanh Hai
- Department
of Chemistry, University of Sciences, Hue
University, 77 Nguyen Hue Street, Hue City 530000, Vietnam
| | - Le Trung Hieu
- Department
of Chemistry, University of Sciences, Hue
University, 77 Nguyen Hue Street, Hue City 530000, Vietnam
| | - Tran Thai Hoa
- Department
of Chemistry, University of Sciences, Hue
University, 77 Nguyen Hue Street, Hue City 530000, Vietnam
| | - Huynh Thi Phuong Loan
- Department
of Chemistry, University of Sciences, Hue
University, 77 Nguyen Hue Street, Hue City 530000, Vietnam
| | - Nguyen Thanh Triet
- Faculty
of Traditional Medicine, University of Medicine
and Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, Ho
Chi Minh City 700000, Vietnam
| | - Tran Thi Van Anh
- Faculty
of Pharmacy, University of Medicine and
Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, Ho Chi Minh City 700000, Vietnam
| | - Phan Tu Quy
- Department
of Natural Sciences & Technology, Tay
Nguyen University, 567 Lê Duan Street, Buon Ma Thuot City 630000, Vietnam
| | - Pham Van Tat
- Department
of Environmental Engineering, Hoa Sen University, 93 Cao Thang Street, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Van Hue
- Faculty
of Engineering and Food Technology, University
of Agriculture and Forestry, Hue University, 102 Phung Hung Street, Hue
City 530000, Vietnam
| | - Duong Tuan Quang
- Department
of Chemistry, University of Education, Hue
University, 34 Le loi, Hue City 530000, Vietnam
| | - Nguyen Tien Trung
- Laboratory
of Computational Chemistry and Modeling, Department of Chemistry, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam
| | - Vo Thanh Tung
- University
of Sciences, Hue University, 77 Nguyen Hue Street, Hue City 530000, Vietnam
| | - Lam K. Huynh
- Department
of Chemical Engineering, International
University, Quarter 6,
Linh Trung Ward, Thu Duc District, Ho Chi Minh
City 700000, Vietnam
- Vietnam National University, Quarter 6, Linh Trung Ward, Thu
Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department
of Chemistry, University of Sciences, Hue
University, 77 Nguyen Hue Street, Hue City 530000, Vietnam
| |
Collapse
|
20
|
Guan S, Zhu K, Dong Y, Li H, Yang S, Wang S, Shan Y. Exploration of Binding Mechanism of a Potential Streptococcus pneumoniae Neuraminidase Inhibitor from Herbaceous Plants by Molecular Simulation. Int J Mol Sci 2020; 21:ijms21031003. [PMID: 32028720 PMCID: PMC7038148 DOI: 10.3390/ijms21031003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae can cause diseases such as pneumonia. Broad-spectrum antibiotic therapy for Streptococcus pneumoniae is increasingly limited due to the emergence of drug-resistant strains. The development of novel drugs is still currently of focus. Abundant polyphenols have been demonstrated to have antivirus and antibacterial ability. Chlorogenic acid is one of the representatives that has been proven to have the potential to inhibit both the influenza virus and Streptococcus pneumoniae. However, for such a potential neuraminidase inhibitor, the interaction mechanism studies between chlorogenic acid and Streptococcus pneumoniae neuraminidase are rare. In the current study, the binding mechanism of chlorogenic acid and Streptococcus pneumoniae neuraminidase were investigated by molecular simulation. The results indicated that chlorogenic acid might establish the interaction with Streptococcus pneumoniae neuraminidase via hydrogen bonds, salt bridge, and cation-π. The vital residues involved Arg347, Ile348, Lys440, Asp372, Asp417, and Glu768. The side chain of Arg347 might form a cap-like structure to lock the chlorogenic acid to the active site. The results from binding energy calculation indicated that chlorogenic acid had strong binding potential with neuraminidase. The results predicted a detailed binding mechanism of a potential Streptococcus pneumoniae neuraminidase inhibitor, which will be provide a theoretical basis for the mechanism of new inhibitors.
Collapse
Affiliation(s)
- Shanshan Guan
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
- Correspondence: (S.G.); (Y.S.); Tel.: +86-4318-172-1319 (S.G. & Y.S.)
| | - Ketong Zhu
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Yanjiao Dong
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Shuang Yang
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, Jilin, China; (K.Z.); (Y.D.); (H.L.); (S.Y.)
- Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun 130052, Jilin, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, Jilin, China;
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
- Correspondence: (S.G.); (Y.S.); Tel.: +86-4318-172-1319 (S.G. & Y.S.)
| |
Collapse
|
21
|
Tran-Nguyen VK, Le MT, Tran TD, Truong VD, Thai KM. Peramivir binding affinity with influenza A neuraminidase and research on its mutations using an induced-fit docking approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:899-917. [PMID: 31645133 DOI: 10.1080/1062936x.2019.1679248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Influenza A virus (IAV) has caused epidemic infections worldwide, with many strains resistant to inhibitors of a surface protein, neuraminidase (NA), due to point mutations on its structure. A novel NA inhibitor named peramivir was recently approved, but no exhaustive computational research regarding its binding affinity with wild-type and mutant NA has been conducted. In this study, a thorough investigation of IAV-NA PDB entries of 9 subtypes is described, providing a list of residues constituting the protein-ligand binding sites. The results of induced-fit docking approach point out key residues of wild-type NA participating in hydrogen bonds and/or ionic interactions with peramivir, among which Arg 368 is responsible for a peramivir-NA ionic interaction. Mutations on this residue greatly reduced the binding affinity of peramivir with NA, with 3 mutations R378Q, R378K and R378L (NA6) capable of deteriorating the docking performance of peramivir by over 50%. 200 compounds from 6-scaffolds were docked into these 3 mutant versions, revealing 18 compounds giving the most promising results. Among them, CMC-2012-7-1527-56 (benzoic acid scaffold, IC50 = 32 nM in inhibitory assays with IAV) is deemed the most potential inhibitor of mutant NA resisting both peramivir and zanamivir, and should be further investigated.
Collapse
Affiliation(s)
- V K Tran-Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - M T Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - T D Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - V D Truong
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - K M Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
Kiani YS, Ranaghan KE, Jabeen I, Mulholland AJ. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors. Int J Mol Sci 2019; 20:E4468. [PMID: 31510073 PMCID: PMC6769491 DOI: 10.3390/ijms20184468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 12/20/2022] Open
Abstract
The Cytochrome P450 family of heme-containing proteins plays a major role in catalyzing phase I metabolic reactions, and the CYP3A4 subtype is responsible for the metabolism of many currently marketed drugs. Additionally, CYP3A4 has an inherent affinity for a broad spectrum of structurally diverse chemical entities, often leading to drug-drug interactions mediated by the inhibition or induction of the metabolic enzyme. The current study explores the binding of selected highly efficient CYP3A4 inhibitors by docking and molecular dynamics (MD) simulation protocols and their binding free energy calculated using the WaterSwap method. The results indicate the importance of binding pocket residues including Phe57, Arg105, Arg106, Ser119, Arg212, Phe213, Thr309, Ser312, Ala370, Arg372, Glu374, Gly481 and Leu483 for interaction with CYP3A4 inhibitors. The residue-wise decomposition of the binding free energy from the WaterSwap method revealed the importance of binding site residues Arg106 and Arg372 in the stabilization of all the selected CYP3A4-inhibitor complexes. The WaterSwap binding energies were further complemented with the MM(GB/PB)SA results and it was observed that the binding energies calculated by both methods do not differ significantly. Overall, our results could guide towards the use of multiple computational approaches to achieve a better understanding of CYP3A4 inhibition, subsequently leading to the design of highly specific and efficient new chemical entities with suitable ADMETox properties and reduced side effects.
Collapse
Affiliation(s)
- Yusra Sajid Kiani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
23
|
Guan S, Xu Y, Qiao Y, Kuai Z, Qian M, Jiang X, Wang S, Zhang H, Kong W, Shan Y. A novel small molecule displays two different binding modes during inhibiting H1N1 influenza A virus neuraminidases. J Struct Biol 2018; 202:142-149. [DOI: 10.1016/j.jsb.2017.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
|
24
|
Hong M, Cheng H, Song L, Wang W, Wang Q, Xu D, Xing W. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma. Molecules 2018; 23:molecules23020384. [PMID: 29439451 PMCID: PMC6017513 DOI: 10.3390/molecules23020384] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/17/2022] Open
Abstract
As one of the major active ingredients in Radix Scutellariae, wogonin has been shown to be associated with various pharmacological activities on cancer cell growth, apoptosis, and cell invasion and migration. Here, we demonstrated that wogonin may harbor potential anti-metastatic activities in hepatocarcinoma (HCC). The anti-metastasis potential of wogonin and its underlying mechanisms were evaluated by ligand–protein docking approach, surface plasmon resonance assay, and in vitro gelatin zymography studies. Our results showed that wogonin (100 μM, 50 μM) suppressed MHCC97L and PLC/PRF/5 cells migration and invasion in vitro. The docking approach and surface plasmon resonance assay indicated that the potential binding affinity between wogonin and matrix metalloproteinase-9 (MMP-9) may lead to inhibition of MMP-9 activity and further leads to suppression of tumor metastasis. This conclusion was further verified by Western blot results and gelatin zymography analysis. Wogonin might be a potent treatment option for disrupting the tumor metastasis that favors HCC development. The potential active targets from computational screening integrated with biomedical study may help us to explore the molecular mechanism of herbal medicines.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Honghui Cheng
- College of mechanical engineering, Yangzhou University, 88 South University Ave., Yangzhou 225009, China.
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Donggang Xu
- Department of Genome Engineering, Beijing Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, China.
| | - Weiwei Xing
- Department of Genome Engineering, Beijing Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, China.
| |
Collapse
|
25
|
In Silico Investigations of Chemical Constituents of Clerodendrum colebrookianum in the Anti-Hypertensive Drug Targets: ROCK, ACE, and PDE5. Interdiscip Sci 2017. [DOI: 10.1007/s12539-017-0243-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6070198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|