1
|
Ricci MF, Lourenço EMG, Pereira RDD, Araújo RRS, Oliveira FBR, Barbosa da Silva E, de Oliveira GS, Teixeira MM, Rocha NDN, Chambergo FS, Roman-Campos D, Cruz JS, Ferreira RS, Machado FS. Zileuton, a 5-Lypoxigenase Inhibitor, is Antiparasitic and Prevents Inflammation in the Chronic Stage of Heart Chagas Disease. ACS Infect Dis 2024; 10:4258-4270. [PMID: 39609255 DOI: 10.1021/acsinfecdis.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Chronic Chagas cardiomyopathy is associated with an unbalanced immune response and impaired heart function, and available drugs do not prevent its development. Zileuton (Zi), a 5-lypoxigenase inhibitor, affects inflammatory/pro-resolution mediators. Herein, Zi treatment in the early phase of infection reduced parasitemia associated mainly with the direct effect of Zi on the parasite, and the enzyme epoxide hydrolase was the potential molecular target behind the trypanocidal effect. In the intermediate acute phase of infection, Zi reduced the number of innate and adaptive inflammatory cells, increased the level of SOCS2 expression in the heart associated with lower inflammation, and improved cardiac function. Zi treatment initiated in the chronic stage increased the level of SOCS2 expression in the heart, reduced inflammation, and improved cardiac function. Our data suggest that Zi protects against Trypanosoma cruzi infection by acting directly on the parasite and reducing heart damage and is a promising option for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Mayra Fernanda Ricci
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Estela Mariana Guimarães Lourenço
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Rafaela das Dores Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ronan Ricardo Sabino Araújo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fernando Bento Rodrigues Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Elany Barbosa da Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Gabriel Stephani de Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Nazareth de Novaes Rocha
- Department of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói 24020-141, Rio de Janeiro, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Rafaela Salgado Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| |
Collapse
|
2
|
Rahman F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Front Immunol 2024; 15:1437901. [PMID: 39650648 PMCID: PMC11620876 DOI: 10.3389/fimmu.2024.1437901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Tuberculosis remains the leading cause of death from infectious diseases among adults worldwide. To date, an overarching review of the immune response to Mtb in humans has not been fully elucidated, with innate immunity remaining poorly understood due to historic focus on adaptive immunity. Specifically, there is a major gap concerning the contribution of the immune system to overall bacterial clearance, particularly residual bacteria. This review aims to describe the time course of interactions between the host immune system and Mtb, from the start of the infection to the development of the adaptive response. Concordantly, we aim to crystallize the pathogenic effects and immunoevasive mechanisms of Mtb. The translational value of animal data is also discussed. Methods The literature search was conducted in the PubMed, ScienceDirect, and Google Scholar databases, which included reported research from 1990 until 2024. A total of 190 publications were selected and screened, of which 108 were used for abstraction and 86 were used for data extraction. Graphical summaries were created using the narrative information (i.e., recruitment, recognition, and response) to generate clear visual representations of the immune response at the cellular and molecular levels. Results The key cellular players included airway epithelial cells, alveolar epithelial cells, neutrophils, natural killer cells, macrophages, dendritic cells, T cells, and granulomatous lesions; the prominent molecular players included IFN-γ, TNF-α, and IL-10. The paper also sheds light on the immune response to residual bacteria and applications of the data. Discussion We provide a comprehensive characterization of the key immune players that are implicated in pulmonary tuberculosis, in line with the organs or compartments in which mycobacteria reside, offering a broad vignette of the immune response to Mtb and how it responds to residual bacteria. Ultimately, the data presented could provide immunological insights to help establish optimized criteria for identifying efficacious treatment regimens and durations for relapse prevention in the modeling and simulation space and wider fields.
Collapse
Affiliation(s)
- Fatima Rahman
- Department of Pharmacology, University College London, London, United Kingdom
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
3
|
Chakraborty D, Batabyal S, Ganusov VV. A brief overview of mathematical modeling of the within-host dynamics of Mycobacterium tuberculosis. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2024; 10:1355373. [PMID: 39906541 PMCID: PMC11793202 DOI: 10.3389/fams.2024.1355373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Tuberculosis (TB), a disease caused by bacteria Mycobacterium tuberculosis (Mtb), remains one of the major infectious diseases of humans with 10 million TB cases and 1.5 million deaths due to TB worldwide yearly. Upon exposure of a new host to Mtb, bacteria typically infect one local site in the lung, but over time, Mtb disseminates in the lung and in some cases to extrapulmonary sites. The contribution of various host components such as immune cells to Mtb dynamics in the lung, its dissemination in the lung and outside of the lung, remains incompletely understood. Here we overview different types of mathematical models used to gain insights in within-host dynamics of Mtb; these include models based on ordinary or partial differential equations (ODEs and PDEs), stochastic simulation models based on ODEs, agent-based models (ABMs), and hybrid models (ODE-based models linked to ABMs). We illustrate results from several of such models and identify areas for future resesarch.
Collapse
Affiliation(s)
- Dipanjan Chakraborty
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
| | - Saikat Batabyal
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
| | - Vitaly V. Ganusov
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN37996, USA
| |
Collapse
|
4
|
Sarmah DT, Parveen R, Kundu J, Chatterjee S. Latent tuberculosis and computational biology: A less-talked affair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:17-31. [PMID: 36781150 DOI: 10.1016/j.pbiomolbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Tuberculosis (TB) is a pervasive and devastating air-borne disease caused by the organisms belonging to the Mycobacterium tuberculosis (Mtb) complex. Currently, it is the global leader in infectious disease-related death in adults. The proclivity of TB to enter the latent state has become a significant impediment to the global effort to eradicate TB. Despite decades of research, latent tuberculosis (LTB) mechanisms remain poorly understood, making it difficult to develop efficient treatment methods. In this review, we seek to shed light on the current understanding of the mechanism of LTB, with an accentuation on the insights gained through computational biology. We have outlined various well-established computational biology components, such as omics, network-based techniques, mathematical modelling, artificial intelligence, and molecular docking, to disclose the crucial facets of LTB. Additionally, we highlighted important tools and software that may be used to conduct a variety of systems biology assessments. Finally, we conclude the article by addressing the possible future directions in this field, which might help a better understanding of LTB progression.
Collapse
Affiliation(s)
- Dipanka Tanu Sarmah
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rubi Parveen
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Jayendrajyoti Kundu
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
5
|
Cho SN, Choi JA, Lee J, Son SH, Lee SA, Nguyen TD, Choi SY, Song CH. Ang II-Induced Hypertension Exacerbates the Pathogenesis of Tuberculosis. Cells 2021; 10:cells10092478. [PMID: 34572127 PMCID: PMC8465031 DOI: 10.3390/cells10092478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
It has been known that infection plays a role in the development of hypertension. However, the role of hypertension in the progression of infectious diseases remain unknown. Many countries with high rates of hypertension show geographical overlaps with those showing high incidence rates of tuberculosis (TB). To explore the role of hypertension in tuberculosis, we compared the effects of hypertension during mycobacterial infection, we infected both hypertensive Angiotensin II (Ang II) and control mice with Mycobacterium tuberculosis (Mtb) strain H37Ra by intratracheal injection. Ang II-induced hypertension promotes cell death through both apoptosis and necrosis in Mtb H37Ra infected mouse lungs. Interestingly, we found that lipid accumulation in pulmonary tissues was significantly increased in the hypertension group compared to the normal controls. Ang II-induced hypertension increases the formation of foamy macrophages during Mtb infection and it leads to cell death. Moreover, the hypertension group showed more severe granuloma formation and fibrotic lesions in comparison with the control group. Finally, we observed that the total number of mycobacteria was increased in the lungs in the hypertension group compared to the normal controls. Taken together, these results suggest that hypertension increases intracellular survival of Mtb through formation of foamy macrophages, resulting in severe pathogenesis of TB.
Collapse
Affiliation(s)
- Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seong-Ahn Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Tam-Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Song-Yi Choi
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Translational Immunology Institute, Chungnam National University, Daejeon 34134, Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-580-8245; Fax: +82-42-585-3686
| |
Collapse
|
6
|
Yang A, Wu Y, Yu G, Wang H. Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir Res 2021; 22:204. [PMID: 34261470 PMCID: PMC8279385 DOI: 10.1186/s12931-021-01792-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an essential mechanism of various diseases. The development and resolution of inflammation are complex immune-modulation processes which induce the involvement of various types of immune cells. Specialized pro-resolving lipid mediators (SPMs) have been demonstrated to be signaling molecules in inflammation. SPMs are involved in the pathophysiology of different diseases, especially respiratory diseases, including asthma, pneumonia, and chronic obstructive pulmonary disease. All of these diseases are related to the inflammatory response and its persistence. Therefore, a deeper understanding of the mechanisms and development of inflammation in respiratory disease, and the roles of the SPM family in the resolution process, might be useful in the quest for novel therapies and preventive measures for pulmonary diseases.
Collapse
Affiliation(s)
- Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| |
Collapse
|
7
|
Jøntvedt Jørgensen M, Nore KG, Aass HCD, Layre E, Nigou J, Mortensen R, Tasken K, Kvale D, Jenum S, Tonby K, Dyrhol-Riise AM. Plasma LOX-Products and Monocyte Signaling Is Reduced by Adjunctive Cyclooxygenase-2 Inhibitor in a Phase I Clinical Trial of Tuberculosis Patients. Front Cell Infect Microbiol 2021; 11:669623. [PMID: 34307194 PMCID: PMC8299478 DOI: 10.3389/fcimb.2021.669623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Eicosanoids and intracellular signaling pathways are potential targets for host-directed therapy (HDT) in tuberculosis (TB). We have explored the effect of cyclooxygenase 2 inhibitor (COX-2i) treatment on eicosanoid levels and signaling pathways in monocytes. Methods Peripheral blood mononuclear cells isolated from TB patients included in a randomized phase I clinical trial of standard TB treatment with (n=21) or without (n=18) adjunctive COX-2i (etoricoxib) were analyzed at baseline, day 14 and day 56. Plasma eicosanoids were analyzed by ELISA and liquid chromatography-mass spectrometry (LC-MS), plasma cytokines by multiplex, and monocyte signaling by phospho-flow with a defined set of phospho-specific antibodies. Results Lipoxygenase (LOX)-derived products (LXA4 and 12-HETE) and pro-inflammatory cytokines were associated with TB disease severity and were reduced during TB therapy, possibly accelerated by adjunctive COX-2i. Phosphorylation of p38 MAPK, NFkB, Erk1/2, and Akt in monocytes as well as plasma levels of MIG/CXCL9 and procalcitonin were reduced in the COX-2i group compared to controls. Conclusion COX-2i may reduce excess inflammation in TB via the LOX-pathway in addition to modulation of phosphorylation patterns in monocytes. Immunomodulatory effects of adjunctive COX-2i in TB should be further investigated before recommended for use as a HDT strategy.
Collapse
Affiliation(s)
- Marthe Jøntvedt Jørgensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristin G Nore
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Emilie Layre
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Kjetil Tasken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Deparment of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Dag Kvale
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Rosales GS. Mathematical and Computational Modeling of Bacterial Infection. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Zhang Q, Sun J, Fu Y, He W, Li Y, Tan H, Xu H, Jiang X. Guttiferone K Exerts the Anti-inflammatory Effect on Mycobacterium Tuberculosis- (H37Ra-) Infected Macrophages by Targeting the TLR/IRAK-1 Mediated Akt and NF- κB Pathway. Mediators Inflamm 2020; 2020:8528901. [PMID: 33100904 PMCID: PMC7569438 DOI: 10.1155/2020/8528901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a great threat to global health, killing more people than any other single infectious agent and causing uncontrollable inflammation in the host. Poorly controlled inflammatory processes can be deleterious and result in immune exhaustion. The current tuberculosis (TB) control is facing the challenge of drugs deficiency, especially in the context of increasingly multidrug resistant (MDR) TB. Under this circumstance, alternative host-directed therapy (HDT) emerges timely which can be exploited to improve the efficacy of TB treatment and disease prognosis by targeting the host. Here, we established the in vitro infection model of Mtb macrophages with H37Ra strain to seek effective anti-TB active agent. The present study showed that Guttiferone K, isolated from Garcinia yunnanensis , could significantly inhibit Mtb-induced inflammation in RAW264.7 and primary peritoneal macrophages. It was evidenced by the decreased production of inflammatory mediators, including interleukin-1β (IL-1β ), tumor necrosis factor-α (TNF-α ), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Further studies with immunoblotting and immunofluorescence revealed that Guttiferone K obviously inhibits the nuclear factor-kappa B (NF-κ B) both in RAW264.7 and primary peritoneal macrophages relying on the TLR/IRAK-1 pathway. Guttiferone K could also suppress the NLRP3 inflammasome activity and induce autophagy by inhibiting the protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) phosphorylation at Ser473 and Ser2448 in both cell lines. Thus, Guttiferone K possesses significant anti-inflammatory effect, alleviating Mtb-induced inflammation with an underlying mechanism that targeting on the TLR/IRAK-1 pathway and inhibiting the downstream NF-κ B and Akt/mTOR signaling pathways. Together, Guttiferone K can be an anti-inflammatory agent candidate for the design of new adjunct HDT drugs fighting against tuberculosis.
Collapse
Affiliation(s)
- Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
10
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Treatments against Mycobacterium tuberculosis Based on Drug Repurposing. Antibiotics (Basel) 2020; 9:E550. [PMID: 32872158 PMCID: PMC7557778 DOI: 10.3390/antibiotics9090550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis is the leading cause of death, worldwide, due to a bacterial pathogen. This respiratory disease is caused by the intracellular pathogen Mycobacterium tuberculosis and produces 1.5 million deaths every year. The incidence of tuberculosis has decreased during the last decade, but the emergence of MultiDrug-Resistant (MDR-TB) and Extensively Drug-Resistant (XDR-TB) strains of M. tuberculosis is generating a new health alarm. Therefore, the development of novel therapies based on repurposed drugs against MDR-TB and XDR-TB have recently gathered significant interest. Recent evidence, focused on the role of host molecular factors on M. tuberculosis intracellular survival, allowed the identification of new host-directed therapies. Interestingly, the mechanism of action of many of these therapies is linked to the activation of autophagy (e.g., nitazoxanide or imatinib) and other well-known molecular pathways such as apoptosis (e.g., cisplatin and calycopterin). Here, we review the latest developments on the identification of novel antimicrobials against tuberculosis (including avermectins, eltrombopag, or fluvastatin), new host-targeting therapies (e.g., corticoids, fosfamatinib or carfilzomib) and the host molecular factors required for a mycobacterial infection that could be promising targets for future drug development.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
11
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Front Vet Sci 2020; 7:340. [PMID: 32637426 PMCID: PMC7318773 DOI: 10.3389/fvets.2020.00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.
Collapse
Affiliation(s)
- James J Zhu
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Carolina Stenfeldt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth A Bishop
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jessica A Canter
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education (ORISE), Orient, NY, United States
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Luis L Rodriguez
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jonathan Arzt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| |
Collapse
|
12
|
Liu S, Xie Y, Luo W, Dou Y, Xiong H, Xiao Z, Zhang XL. PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism. Front Microbiol 2020; 11:845. [PMID: 32457723 PMCID: PMC7225313 DOI: 10.3389/fmicb.2020.00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) evades the surveillance of immune responses for survival in macrophages. However, the precise mechanism and toxins/proteins encoded by M. tb involved in the bacterial escape remain elusive. The function of Rv1768 protein (also referred to as PE_PGRS31, belonging to the PE_PGRS family) encoded by the region of deletion 14 (RD-14) in the virulent M. tb H37Rv strain has not, to the best of our knowledge, been reported previously. Here, we found that Rv1768 remarkably promotes bacterial survival in macrophages. Compared to wild type (WT) H37Rv, the Rv1768 deficient strain (H37RvΔ1768) showed significantly decreased colony-forming units in the lungs, spleen, and liver of the murine M. tb infection model. The bacterial burdens of WT H37Rv in WT macrophages and C57BL/6 mice were significantly higher than those in S100A9 deficiency cells and mice, but there were no significant differences for H37RvΔRv1768. Rv1768 binds S100A9 with the proline-glutamic acid domain (PE domain) and blocks the interaction between S100A9 and Toll-like receptor 4 (TLR4), and suppresses TLR4-myeloid differentiation factor 88-nuclear factor-kappa B (NF-κB)-tumor necrosis factor α (TNF-α) signaling in macrophages. Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.
Collapse
Affiliation(s)
- Sheng Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wei Luo
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yafeng Dou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhen Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
13
|
Pavan Kumar N, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Shanmugam S, Hissar S, Kornfeld H, Babu S. Plasma Eicosanoid Levels in Tuberculosis and Tuberculosis-Diabetes Co-morbidity Are Associated With Lung Pathology and Bacterial Burden. Front Cell Infect Microbiol 2019; 9:335. [PMID: 31632923 PMCID: PMC6779700 DOI: 10.3389/fcimb.2019.00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Host eicosanoids are lipid mediators of inflammation that are commonly accepted as important modulators of the host immune response in Mycobacterium tuberculosis infection. During active tuberculosis (TB), eicosanoids may play an important role in the regulation of inflammatory responses. However, a detailed investigation of the relationship of eicosanoids in TB and TB-diabetes comorbidity (TB-DM) and association to disease pathology or bacterial burdens has not been studied. To study this, we examined the plasma levels of Lipoxin A4 (LXA4), 15-epi-LXA4, Leukotriene B4 (LTB4), and Prostaglandin E2 (PGE2) in individuals with either TB-DM, TB, diabetes mellitus (DM) or healthy controls (HC). Plasma levels of LXA4, 15-epi-LXA4, and PGE2 were significantly increased while the levels of LTB4 were significantly decreased in TB-DM and TB group compared to DM and HC. The ratio of LXA4 to LTB4 and 15-epiLXA4 to LTB4 was significantly enhanced in TB-DM compared to TB. Moreover, the levels of LXA4, 15-epi-LXA4 and the ratios of LXA4 to LTB4 and 15-epiLX4 to LTB4 were significantly increased in TB individuals with bilateral or cavitary disease and these markers also revealed a significant positive relationship with bacterial burden. At the completion of anti-tuberculosis therapy (ATT), levels of LXA4, 15-epi-LXA4, and PGE2 in TB-DM and TB groups were diminished and levels of LTB4 were enhanced in the TB group compared to pre-treatment. Our data imply that alteration and upregulation of eicosanoids are standard characteristics of TB-DM co-morbidity. Our data also demonstrate that modulation in the eicosanoid levels reflect disease severity and extent in TB and TB-DM and are modulated by ATT.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Arul Nancy
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | | | | | - Sivakumar Shanmugam
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Syed Hissar
- Department of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Silva CAM, Belisle JT. Host Lipid Mediators in Leprosy: The Hypothesized Contributions to Pathogenesis. Front Immunol 2018; 9:134. [PMID: 29472920 PMCID: PMC5810268 DOI: 10.3389/fimmu.2018.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The spectrum of clinical forms observed in leprosy and its pathogenesis are dictated by the host's immune response against Mycobacterium leprae, the etiological agent of leprosy. Previous results, based on metabolomics studies, demonstrated a strong relationship between clinical manifestations of leprosy and alterations in the metabolism of ω3 and ω6 polyunsaturated fatty acids (PUFAs), and the diverse set of lipid mediators derived from PUFAs. PUFA-derived lipid mediators provide multiple functions during acute inflammation, and some lipid mediators are able to induce both pro- and anti-inflammatory responses as determined by the cell surface receptors being expressed, as well as the cell type expressing the receptors. However, little is known about how these compounds influence cellular immune activities during chronic granulomatous infectious diseases, such as leprosy. Current evidence suggests that specialized pro-resolving lipid mediators (SPMs) are involved in the down-modulation of the innate and adaptive immune response against M. leprae and that alteration in the homeostasis of pro-inflammatory lipid mediators versus SPMs is associated with dramatic shifts in the pathogenesis of leprosy. In this review, we discuss the possible consequences and present new hypotheses for the involvement of ω3 and ω6 PUFA metabolism in the pathogenesis of leprosy. A specific emphasis is placed on developing models of lipid mediator interactions with the innate and adaptive immune responses and the influence of these interactions on the outcome of leprosy.
Collapse
Affiliation(s)
- Carlos A. M. Silva
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Prado MKB, Locachevic GA, Zoccal KF, Paula-Silva FWG, Fontanari C, Ferreira JC, Pereira PAT, Gardinassi LG, Ramos SG, Sorgi CA, Darini ALC, Faccioli LH. Leukotriene B 4 is essential for lung host defence and alpha-defensin-1 production during Achromobacter xylosoxidans infection. Sci Rep 2017; 7:17658. [PMID: 29247243 PMCID: PMC5732241 DOI: 10.1038/s41598-017-17993-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
Leukotriene B4 (LTB4) is essential for host immune defence. It increases neutrophil recruitment, phagocytosis and pathogen clearance, and decreases oedema and inflammasome activation. The host response and the role of LTB4 during Achromobacter xylosoxidans infection remain unexplored. Wild-type (129sv) and LTB4 deficient (Alox5 -/-) mice were intratracheally infected with A. xylosoxidans. Wild-type 129sv infected mice survived beyond the 8th day post-infection, exhibited increased levels of LTB4 in the lung on the 1st day, while levels of PGE2 increased on the 7th day post-infection. Infected Alox5 -/- mice showed impaired bacterial clearance, increased lung inflammation, and succumbed to the infection by the 7th day. We found that exogenous LTB4 does not affect the phagocytosis of A. xylosoxidans by alveolar macrophages in vitro. However, treatment of infected animals with LTB4 protected from mortality, by reducing the bacterial load and inflammation via BLT1 signalling, the high affinity receptor for LTB4. Of importance, we uncovered that LTB4 induces gene and protein expression of α-defensin-1 during the infection. This molecule is essential for bacterial clearance and exhibits potent antimicrobial activity by disrupting A. xylosoxidans cell wall. Taken together, our data demonstrate a major role for LTB4 on the control of A. xylosoxidans infection.
Collapse
Affiliation(s)
- Morgana K B Prado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gisele A Locachevic
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina F Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco W G Paula-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Caroline Fontanari
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Joseane C Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Priscilla A T Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Simone G Ramos
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Lúcia C Darini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Effect of diseases on symbiotic systems. Biosystems 2017; 159:36-50. [PMID: 28709805 DOI: 10.1016/j.biosystems.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 05/17/2017] [Accepted: 07/05/2017] [Indexed: 11/24/2022]
Abstract
There are many species living in symbiotic communities. In this study, we analyzed models in which populations are in the mutualism symbiotic relations subject to a disease spreading among one of the species. The main goal is the characterization of symbiotic relations of coexisting species through their mutual influences on their respective carrying capacities, taking into account that this influence can be quite strong. The functional dependence of the carrying capacities reflects the fact that the correlations between populations cannot be realized merely through direct interactions, as in the usual predator-prey Lotka-Volterra model, but also through the influence of each species on the carrying capacities of the other one. Equilibria are analyzed for feasibility and stability, substantiated via numerical simulations, and global sensitivity analysis identifies the important parameters having a significant impact on the model dynamics. The infective growth rate and the disease-related mortality rate may alter the stability behavior of the system. Our results show that introducing a symbiotic species is a plausible way to control the disease in the population.
Collapse
|
17
|
MCL Plays an Anti-Inflammatory Role in Mycobacterium tuberculosis-Induced Immune Response by Inhibiting NF- κB and NLRP3 Inflammasome Activation. Mediators Inflamm 2017. [PMID: 28642632 PMCID: PMC5470027 DOI: 10.1155/2017/2432904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a significant menace to global health as it induces granulomatous lung lesions and systemic inflammatory responses during active tuberculosis (TB). Micheliolide (MCL), a sesquiterpene lactone, was recently reported to have a function of relieving LPS-induced inflammatory response, but the regulative role of MCL on the immunopathology of TB still remains unknown. In this experiment, we examined the inhibitory effect of MCL on Mtb-induced inflammatory response in mouse macrophage-like cell line Raw264.7 by downregulating the activation of nuclear factor kappa B (NF-κB) and NLRP3 inflammasome. Evidences showed that MCL decreased the secretion of Mtb-induced inflammatory cytokines (IL-1β and TNF-α) in a dose-dependent manner. Meanwhile, MCL dramatically suppressed Mtb-induced activation of iNOS and COX2 as well as subsequent production of NO. Furthermore, MCL inhibited Mtb-induced phosphorylation of Akt (Ser 473) in Raw264.7. According to our results, MCL plays an important role in modulating Mtb-induced inflammatory response through PI3K/Akt/NF-κB pathway and subsequently downregulating the activation of NLRP3 inflammasome. Therefore, MCL may represent as a potential drug candidate in the adjuvant treatment of TB by regulating host immune response.
Collapse
|