1
|
Kalhor H, Abolhasani H, Kalhor R, Komeili Movahhed T, Rahimi H. Interactions of heparin derivatives with recombinant human keratinocyte growth factor: Structural stability and bioactivity effect study. Proteins 2023; 91:542-554. [PMID: 36424813 DOI: 10.1002/prot.26448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Heparin and heparan sulfate are important glycosaminoglycans that can regulate the activities of many vital proteins, especially the fibroblast growth factor (FGF) family. Because FGF7 (KGF) has an important role in tissue repair and maintaining the integrity of the mucosal barrier, recombinant human keratinocyte growth factor (rhKGF, palifermin) has been approved for the treatment of wound healing and oral cavity. Due to heparin plays an important role in the KGF signaling pathway, a more detailed study of the drug-drug interactions (DDIs) between rhKGF and heparin at the atomic level and investigating their synergistic effect on each other in terms of biology, especially in silico, is necessary for a better understanding of DDIs. In this study, DDIs between rhKGF and low-molecular weight heparin types (LMWH) were investigated. In this regard, scrutiny of the influence of the synergistic heparin types on the structure and biostability of rhKGF is accomplished using computational methods such as molecular docking and molecular dynamic simulations (MDs). Subsequently, the motion behavior of rhKGF in interaction with LMWHs was evaluated based on eigenvectors by using principal component analysis (PCA). Also, the binding free energies of rhKGF-LMWH complexes were calculated by the molecular mechanics/Poisson-Boltzmann surface area (MM-BPSA) method. The result showed that rhKGF-idraparinux (-6.9 kcal/mol) and rhKGF-heparin (-6.0 kcal/mol) complexes had significant binding affinity as well as they had a more stable binding to rhKGF than to other LMWH during 100 ns simulation. However, in order to confirm the curative effect of these drugs, clinical trials must be done.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reyhaneh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | | | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Host-pathogen Interaction Department, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
2
|
Prospective use of amniotic mesenchymal stem cell metabolite products for tissue regeneration. J Biol Eng 2023; 17:11. [PMID: 36759827 PMCID: PMC9912508 DOI: 10.1186/s13036-023-00331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chronic disease can cause tissue and organ damage constituting the largest obstacle to therapy which, in turn, reduces patients' quality-adjusted life-year. Degenerative diseases such as osteoporosis, Alzheimer's disease, Parkinson's disease, and infectious conditions such as hepatitis, cause physical injury to organs. Moreover, damage resulting from chronic conditions such as diabetes can also culminate in the loss of organ function. In these cases, organ transplantation constitutes the therapy of choice, despite the associated problems of immunological rejection, potential disease transmission, and high morbidity rates. Tissue regeneration has the potential to heal or replace tissues and organs damaged by age, disease, or trauma, as well as to treat disabilities. Stem cell use represents an unprecedented strategy for these therapies. However, product availability and mass production remain challenges. A novel therapeutic alternative involving amniotic mesenchymal stem cell metabolite products (AMSC-MP) has been developed using metabolites from stem cells which contain cytokines and growth factors. Its potential role in regenerative therapy has recently been explored, enabling broad pharmacological applications including various gastrointestinal, lung, bladder and renal conditions, as well as the treatment of bone wounds, regeneration and skin aging due to its low immunogenicity and anti-inflammatory effects. The various kinds of growth factors present in AMSC-MP, namely bFGF, VEGF, TGF-β, EGF and KGF, have their respective functions and activities. Each growth factor is formed by different proteins resulting in molecules with various physicochemical properties and levels of stability. This knowledge will assist in the manufacture and application of AMSC-MP as a therapeutic agent.
Collapse
|
3
|
Rational Design and Production of Bioactive Analogs of Recombinant Human Keratinocyte Growth Factor (rhKGF) with Reduced Aggregation Propensity. Protein J 2023; 42:37-54. [PMID: 36683078 DOI: 10.1007/s10930-023-10089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 01/24/2023]
Abstract
Recombinant human keratinocyte growth factor (rhKGF) is a highly aggregation-prone therapeutic protein. The present study aimed to reduce aggregation propensity of rhKGF by engineering the aggregation hotspots. Initially, 21 mutants were designed based on the previously-identified aggregation-prone regions (APRs) and then four of them including mutants No. 4 (L91K, I119K), 7 (V13S, L91K), 14 (L91D, I119D), and 21 (A51E) were selected based on molecular dynamics (MD) simulations for further experimental studies. The recombinantly produced rhKGF and mutants were analyzed regarding secondary structure, thermal stability, aggregation propensity, and biological activity. Far-UV CD spectroscopy showed that the mutants have similar secondary structure with rhKGF. A51E mutant showed enhanced stability and decreased monomer loss under heat stress suggesting its reduced aggregation propensity compared to rhKGF. Mutant No. 14 showed higher stability and less aggregation tendency than mutant No. 4 indicating that only mutations decreasing pI of rhKGF are effective in reducing its aggregation tendency. All of the mutants were at least as potent as rhKGF in stimulating proliferation of MCF-7 epithelial cells. Our results identified A51E as an equally potent, more stable, and less aggregation-prone analog of rhKGF which could be a promising alternative drug candidate for the commercially available rhKGF (Palifermin).
Collapse
|
4
|
Haji-Allahverdipoor K, Jalali Javaran M, Rashidi Monfared S, Khadem-Erfan MB, Nikkhoo B, Bahrami Rad Z, Eslami H, Nasseri S. Insights Into The Effects of Amino Acid Substitutions on The Stability of Reteplase Structure: A Molecular Dynamics Simulation Study. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3175. [PMID: 36811105 PMCID: PMC9938932 DOI: 10.30498/ijb.2022.308798.3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/06/2022] [Indexed: 02/24/2023]
Abstract
Background Reteplase (recombinant plasminogen activator, r-PA) is a recombinant protein designed to imitate the endogenous tissue plasminogen activator and catalyze the plasmin production. It is known that the application of reteplase is limited by the complex production processes and protein's stability challenges. Computational redesign of proteins has gained momentum in recent years, particularly as a powerful tool for improving protein stability and consequently its production efficiency. Hence, in the current study, we implemented computational approaches to improve r-PA conformational stability, which fairly correlates with protein's resistance to proteolysis. Objectives The current study was developed in order to evaluate the effect of amino acid substitutions on the stability of reteplase structure using molecular dynamic simulations and computational predictions. Materials and Methods Several web servers designed for mutation analysis were utilized to select appropriate mutations. Additionally, the experimentally reported mutation, R103S, converting wild type r-PA into non-cleavable form, was also employed. Firstly, mutant collection, consisting of 15 structures, was constructed based on the combinations of four designated mutations. Then, 3D structures were generated using MODELLER. Finally, 17 independent 20-ns molecular dynamics (MD) simulations were conducted and different analysis were performed like root-mean-square deviation (RMSD), root-mean-square fluctuations (RMSF), secondary structure analysis, number of hydrogen bonds, principal components analysis (PCA), eigenvector projection, and density analysis. Results Predicted mutations successfully compensated the more flexible conformation caused by R103S substitution, so, improved conformational stability was analyzed from MD simulations. In particular, R103S/A286I/G322I indicated the best results and remarkably enhanced the protein stability. Conclusion The conformational stability conferred by these mutations will probably lead to more protection of r-PA in protease-rich environments in various recombinant systems and potentially enhance its production and expression level.
Collapse
Affiliation(s)
- Kaveh Haji-Allahverdipoor
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mokhtar Jalali Javaran
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Bagher Khadem-Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zhila Bahrami Rad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Eslami
- Department of Pharmacology and Toxicology, School of Pharmacy, Hormozgan University of Medicinal sciences, Bandar Abbas, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
5
|
Amidzadeh Z, Rismani E, Shokrgozar MA, Rahimi H, Golkar M. In silico design of fusion keratinocyte growth factor containing collagen-binding domain for tissue engineering application. J Mol Graph Model 2023; 118:108351. [PMID: 36308945 DOI: 10.1016/j.jmgm.2022.108351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Keratinocyte growth factor (KGF) is a potential therapeutic factor in wound healing. However, its applications have been restricted due to its low stability, short half-life, and limited target specificity. We aimed to immobilize KGF on collagen-based biomaterials for long-lasting and targeted therapy by designing fusion forms of KGF with collagen-binding domains (CBD) from natural origins. Twelve fusion proteins were designed consisting of KGF and CBDs with different lengths and amino acid compositions. Three-dimensional (3D) structures of the fusions were predicted by homology modeling. Physiochemical properties and secondary structure of the fusions were evaluated by bioinformatics tools. Moreover, the effect of the CBDs on the 3D structure and dynamic behavior of the fusions was investigated by molecular dynamics (MD) simulation. The binding affinity of the fusions to collagen, KGF receptor, and heparin was assessed using docking tools. Our results demonstrated that fusions with small CBDs like CBD of mammalian collagenase and decapeptide CBD of von Willebrand factor (VWF) were more stable and properly folded than those with larger CBDs. On the other hand, the insertion of bulky CBDs, including Fibronectin CBD and CBD of Clostridium histolyticum collagenase, into KGF resulted in stronger binding to collagen. Therefore, very small or large CBDs are inappropriate for constructing KGF fusions because they suffer from low collagen affinity or poor stability. By comparing the results of MD simulation and docking, this study proposed that CBDs belonging to Vibrio mimicus metalloprotease and A3 domain of VWF would be good candidates to produce stable fusions with proper affinities toward collagen and KGF receptors. Moreover, the secondary structure analysis showed that the overall structure of KGF and CBDs was better preserved when CBDs were inserted at the C-terminal of KGF. This computational information about novel KGF fusions may help find the best constructs for experimental studies.
Collapse
Affiliation(s)
- Zahra Amidzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran; Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Texas Biomedical Research Center, San Antonio, United States.
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Poorebrahim M, Abazari MF, Moradi L, Shahbazi B, Mahmoudi R, Kalhor H, Askari H, Teimoori-Toolabi L. Multi-targeting of K-Ras domains and mutations by peptide and small molecule inhibitors. PLoS Comput Biol 2022; 18:e1009962. [PMID: 35472201 PMCID: PMC9041843 DOI: 10.1371/journal.pcbi.1009962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
K-Ras activating mutations are significantly associated with tumor progression and aggressive metastatic behavior in various human cancers including pancreatic cancer. So far, despite a large number of concerted efforts, targeting of mutant-type K-Ras has not been successful. In this regard, we aimed to target this oncogene by a combinational approach consisting of small peptide and small molecule inhibitors. Based on a comprehensive analysis of structural and physicochemical properties of predominantly K-Ras mutants, an anti-cancer peptide library and a small molecule library were screened to simultaneously target oncogenic mutations and functional domains of mutant-type K-Ras located in the P-loop, switch I, and switch II regions. The selected peptide and small molecule showed notable binding affinities to their corresponding binding sites, and hindered the growth of tumor cells carrying K-RasG12D and K-RasG12C mutations. Of note, the expression of K-Ras downstream genes (i.e., CTNNB1, CCND1) was diminished in the treated Kras-positive cells. In conclusion, our combinational platform signifies a new potential for blockade of oncogenic K-Ras and thereby prevention of tumor progression and metastasis. However, further validations are still required regarding the in vitro and in vivo efficacy and safety of this approach. K-Ras activating mutations are associated with tumor progression and aggressive metastatic behavior in cancers. We aimed to target this mutated protein as an oncogene with small peptides and small molecules. The selected peptide and small molecules by computational methods showed notable binding affinities to mutated and oncogenic K-Ras. Also, they hindered the proliferation of pancreatic tumor cells. These compounds diminished the expression of downstream genes to mutant K-Ras too. Our combinatorial approach introduces new candidates for blockade of oncogenic K-Ras which is observed in many types of cancer. The effect of these compounds should be validated by further in vitro and in vivo analysis.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moradi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hourieh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
7
|
Sadeghi S, Kalhor H, Panahi M, Abolhasani H, Rahimi B, Kalhor R, Mehrabi A, Vahdatinia M, Rahimi H. Keratinocyte growth factor in focus: A comprehensive review from structural and functional aspects to therapeutic applications of palifermin. Int J Biol Macromol 2021; 191:1175-1190. [PMID: 34606789 DOI: 10.1016/j.ijbiomac.2021.09.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Palifermin (Kepivance™) is the first therapeutic approved by the Food and Drug Administration for preventing and managing the oral mucositis provoked by myelotoxic and mucotoxic therapies. Palifermin is a recombinant protein generated from human keratinocyte growth factor (KGF) and imitates the function of endogenous KGF. KGF is an epithelial mitogen involved in various biological processes which belongs to the FGF family. KGF possesses a high level of receptor specificity and plays an important role in tissue repair and maintaining of the mucosal barrier integrity. Based on these unique features, palifermin was developed to enhance the growth of damaged epithelial tissues. Administration of palifermin has shown success in the reduction of toxicities of chemotherapy and radiotherapy, and improvement of the patient's quality of life. Notwithstanding all merits, the clinical application of palifermin is limited owing to its instability and production challenges. Hence, a growing number of ongoing researches are designed to deal with these problems and enhance the physicochemical and pharmaceutical properties of palifermin. In the current review, we discuss KGF structure and function, potential therapeutic applications of palifermin, as well as the latest progress in the production of recombinant human KGF and its challenges ahead.
Collapse
Affiliation(s)
- Solmaz Sadeghi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Applied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirmehdi Mehrabi
- Department of Pharmacoeconomy & Administrative Pharmacy, School Of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Vahdatinia
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC. Mucoadhesive Low Molecular Chitosan Complexes to Protect rHuKGF from Proteolysis: In-vitro Characterization and FHs 74 Int Cell Proliferation Studies. Curr Pharm Biotechnol 2021; 22:969-982. [PMID: 33342408 DOI: 10.2174/1389201021666201218124450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/15/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients. OBJECTIVE Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells. METHODS The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay. RESULTS Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells. CONCLUSION The developed complex improved the stability and the biological function of rHuKGF.
Collapse
Affiliation(s)
- Yi N Tee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Palanirajan V Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Marwan A A Maki
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Manogaran Elumalai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Shiek A K M E H Rahman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine & Health Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Shahbazi Dastjerdeh M, Shokrgozar MA, Rahimi H, Golkar M. Potential aggregation hot spots in recombinant human keratinocyte growth factor: a computational study. J Biomol Struct Dyn 2021; 40:8169-8184. [PMID: 33843469 DOI: 10.1080/07391102.2021.1908912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The recombinant human keratinocyte growth factor (rhKGF) is a highly aggregation-prone therapeutic protein. The high aggregation liability of rhKGF is manifested by loss of the monomeric state, and accumulation of the aggregated species even at moderate temperatures. Here, we analyzed the rhKGF for its vulnerability toward aggregation by detection of aggregation-prone regions (APRs) using several sequence-based computational tools including TANGO, ZipperDB, AGGRESCAN, Zyggregator, Camsol, PASTA, SALSA, WALTZ, SODA, Amylpred, AMYPDB, and structure-based tools including SolubiS, CamSol structurally corrected, Aggrescan3D and spatial aggregation propensity (SAP) algorithm. The sequence-based prediction of APRs in rhKGF indicated that they are mainly located at positions 10-30, 40-60, 61-66, 88-120, and 130-140. Mapping on the rhKGF structure revealed that most of these residues including F16-R25, I43, E45, R47-I56, F61, Y62, N66, L88-E91, E108-F110, A112, N114, T131, and H133-T140 are surface-exposed in the native state which can promote aggregation without major unfolding event, or the conformational change may occur in the oligomers. The other regions are buried in the native state and their contribution to non-native aggregation is mediated by a preceding unfolding event. The structure-based prediction of APRs using the SAP tool limited the number of identified APRs to the dynamically-exposed hydrophobic residues including V12, A50, V51, L88, I89, L90, I118, L135, and I139 mediating the native-state aggregation. Our analysis of APRs in rhKGF identified the regions determining the intrinsic aggregation propensity of the rhKGF which are the candidate positions for engineering the rhKGF to reduce its aggregation tendency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Chen J, Bekale LA, Khomtchouk KM, Xia A, Cao Z, Ning S, Knox SJ, Santa Maria PL. Locally administered heparin-binding epidermal growth factor-like growth factor reduces radiation-induced oral mucositis in mice. Sci Rep 2020; 10:17327. [PMID: 33060741 PMCID: PMC7567084 DOI: 10.1038/s41598-020-73875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023] Open
Abstract
Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p < 0.01), ventral tongue (30,793 vs 39,095 µm2, *p < 0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| | - Kelly M Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shoucheng Ning
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| |
Collapse
|
11
|
Alizadeh AA, Jafari B, Dastmalchi S. Application of bioinformatics and molecular dynamics simulation approaches for identification of fibroblast growth factor 10 analogues with potentially improved thermostability. Growth Factors 2020; 38:197-209. [PMID: 34121575 DOI: 10.1080/08977194.2021.1881501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fibroblast growth factor 10 functions as a paracrine mesenchymal molecule to initiate signalling pathways regarding to cellular development and health. However, the low thermal stability restricts it's functionality in the human body and the shelf-life of FGF10-based formulations. The current study aimed to employ rational design and bioinformatics approaches to identify some point mutations which may improve the thermal stability of FGF10. Bioinformatics analyses resulted in N105D, C106F, K144R, K153M and I156R as the potential stability conferring mutations. The identified mutants were subjected to MD simulation indicating that all mutations are both structurally and energetically favoured. Finally, the effects of the identified mutations on receptor binding of FGF10 were predicted and the results showed that K144R and K153M mutations may increase the binding affinity relative to the wild type. The findings of the current study propose potentially improved FGF10 analogues for further experimental investigations.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Nicosia, Turkey
| |
Collapse
|
12
|
Kalhor H, Sadeghi S, Marashiyan M, Enssi M, Kalhor R, Ganji M, Rahimi H. In silico mutagenesis in recombinant human keratinocyte growth factor: Improvement of stability and activity in addition to decrement immunogenicity. J Mol Graph Model 2020; 97:107551. [PMID: 32032931 DOI: 10.1016/j.jmgm.2020.107551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
The recombinant human keratinocyte growth factor (rhKGF) is clinically applied to decrease the incidence and duration of cancer therapeutic agents. Particularly, it is extensively used for oral mucositis after chemotherapy-induced damage of different human cancers. However, the usage of rhKGF in treatment is limited owing to its short half-life, poor stability, immunogenicity, tendency to aggregate, and side effects. Therefore, there is a need to enhance the stability and to reduce immunogenicity of rhKGF for therapeutic applications. In this study, the stability, activity, and immunogenicity of rhKGF were improved using computational methods. The several mutations were generated based on sequence alignment, amino acids physic-chemical properties, and the structure simulation. The 3D structure of rhKGF and proposed mutants were predicted by Modeller v9.15 program, and then were evaluated using PROSESS, PROCHECK, and ProSA web tools. Afterwards, the effect of these mutants on rhKGF structure, stability, activity, and its interaction with fibroblast growth factor receptor2-IIb (FGFR2-IIb) was analyzed through utilizing GROMACS molecular dynamics simulations and docking tools, respectively. Also, binding free energies were calculated by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. We found that F63Y, R121K, and combine1 (K38R, F63Y, K72E, N105S) mutants lead to reduction of the number of T-cell epitopes. However, all of the selected mutants, except for R121K, could considerably increase stability and affinity of the rhKGF to FGFR2-IIb, in silico. In conclusion, this study, for the first time, offered that the combine1 and F63Y mutants could highly improve the stability and activity of rhKGF and even reduce immunogenicity without having any significant effect on the biological functions of rhKGF.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Enssi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR, Iran.
| | - Reyhaneh Kalhor
- Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
An engineered analog of insulin-like growth factor 1 with reduced immunogenicity and retained mitogenicity. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Qu Y, Cao C, Wu Q, Huang A, Song Y, Li H, Zuo Y, Chu C, Li J, Man Y. The dual delivery of KGF and bFGF by collagen membrane to promote skin wound healing. J Tissue Eng Regen Med 2018; 12:1508-1518. [PMID: 29706001 DOI: 10.1002/term.2691] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 08/17/2017] [Accepted: 04/16/2018] [Indexed: 02/05/2023]
Abstract
The major challenges associated with skin regeneration can include hindered vascularization and an insufficient degree of epithelization. In view of the complexity of these processes and the control signals on which they depend, one possible solution to these limitations could be simulating normal skin development and wound repair via the exogenous delivery of multiple cytokines. Here, we report the use of keratinocyte growth factor (KGF or FGF-7) and basic fibroblast growth factor (bFGF or FGF-2) released chemically modified collagen membranes to facilitate skin wound healing. The results from in vitro studies confirmed that this system resulted in higher cellular proliferation and faster cell migration. After transplanting the biomaterial onto an excisional wound healing model, the dual growth factor group, compared with the single growth factor groups and empty control group, showed more highly developed vascular networks and organized epidermal regeneration in the wounds. As a consequence, this experimental group showed mature epidermal coverage. Overall, this novel approach of releasing growth factors from a collagen membrane opens new avenues for fulfilling unmet clinical needs for wound care.
Collapse
Affiliation(s)
- Yili Qu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Cong Cao
- Center of Stomatology, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Ai Huang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Ying Song
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Hongling Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, and Analytical and Testing Center, Sichuan University, Chengdu, P. R. China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials, and Analytical and Testing Center, Sichuan University, Chengdu, P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
15
|
Xu HL, Xu J, Zhang SS, Zhu QY, Jin BH, ZhuGe DL, Shen BX, Wu XQ, Xiao J, Zhao YZ. Temperature-sensitive heparin-modified poloxamer hydrogel with affinity to KGF facilitate the morphologic and functional recovery of the injured rat uterus. Drug Deliv 2017; 24:867-881. [PMID: 28574291 PMCID: PMC8241134 DOI: 10.1080/10717544.2017.1333173] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Endometrial injury usually results in intrauterine adhesion (IUA), which is an important cause of infertility and recurrent miscarriage in reproductive women. There is still lack of an effective therapeutic strategy to prevent occurrence of IUA. Keratinocyte growth factor (KGF) is a potent repair factor for epithelial tissues. Here, a temperature-sensitive heparin-modified poloxamer (HP) hydrogel with affinity to KGF (KGF-HP) was used as a support matrix to prevent IUA and deliver KGF. The rheology of KGF-HP hydrogel was carefully characterized. The cold KGF-HP solution was rapidly transited to hydrogel with suitable storage modulus (G') and loss modulus (G″) for the applications of uterus cavity at temperature of 33 °C. In vitro release demonstrated that KGF was released from HP hydrogels in sustained release manner for a long time. In vivo bioluminescence imaging showed that KGF-HP hydrogel was able to prolong the retention of the encapsulated KGF in injured uterus of rat model. Moreover, the morphology and function of the injured uterus were significantly recovered after administration of KGF-HP hydrogel, which were evaluated by two-dimensional ultrasound imaging and receptive fertility. Not only proliferation of endometrial glandular epithelial cells and luminal epithelial cells but also angiogenesis of injured uterus were observed by Ki67 and CD31 staining after 7 d of treatment with KGF-HP hydrogel. Finally, a close relatively relationship between autophagy and proliferation of endometrial epithelial cells (EEC) and angiogenesis was firstly confirmed by detecting expression of LC3-II and P62 after KGF treatment. Overall, KGF-HP may be used as a promising candidate for IUA treatment.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Jie Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Si-Si Zhang
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, PR China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Xue-Qing Wu
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, PR China
| | - Jian Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| |
Collapse
|
16
|
Karan S, Kashyap VK, Shafi S, Saxena AK. Structural and inhibition analysis of novel sulfur-rich 2-mercaptobenzothiazole and 1,2,3-triazole ligands against Mycobacterium tuberculosis DprE1 enzyme. J Mol Model 2017; 23:241. [DOI: 10.1007/s00894-017-3403-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
|