1
|
Bull JA, Byrne HM. Quantification of spatial and phenotypic heterogeneity in an agent-based model of tumour-macrophage interactions. PLoS Comput Biol 2023; 19:e1010994. [PMID: 36972297 PMCID: PMC10079237 DOI: 10.1371/journal.pcbi.1010994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/06/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
We introduce a new spatial statistic, the weighted pair correlation function (wPCF). The wPCF extends the existing pair correlation function (PCF) and cross-PCF to describe spatial relationships between points marked with combinations of discrete and continuous labels. We validate its use through application to a new agent-based model (ABM) which simulates interactions between macrophages and tumour cells. These interactions are influenced by the spatial positions of the cells and by macrophage phenotype, a continuous variable that ranges from anti-tumour to pro-tumour. By varying model parameters that regulate macrophage phenotype, we show that the ABM exhibits behaviours which resemble the 'three Es of cancer immunoediting': Equilibrium, Escape, and Elimination. We use the wPCF to analyse synthetic images generated by the ABM. We show that the wPCF generates a 'human readable' statistical summary of where macrophages with different phenotypes are located relative to both blood vessels and tumour cells. We also define a distinct 'PCF signature' that characterises each of the three Es of immunoediting, by combining wPCF measurements with the cross-PCF describing interactions between vessels and tumour cells. By applying dimension reduction techniques to this signature, we identify its key features and train a support vector machine classifier to distinguish between simulation outputs based on their PCF signature. This proof-of-concept study shows how multiple spatial statistics can be combined to analyse the complex spatial features that the ABM generates, and to partition them into interpretable groups. The intricate spatial features produced by the ABM are similar to those generated by state-of-the-art multiplex imaging techniques which distinguish the spatial distribution and intensity of multiple biomarkers in biological tissue regions. Applying methods such as the wPCF to multiplex imaging data would exploit the continuous variation in biomarker intensities and generate more detailed characterisation of the spatial and phenotypic heterogeneity in tissue samples.
Collapse
Affiliation(s)
- Joshua A. Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Ejdrup AL, Lycas MD, Lorenzen N, Konomi A, Herborg F, Madsen KL, Gether U. A density-based enrichment measure for assessing colocalization in single-molecule localization microscopy data. Nat Commun 2022; 13:4388. [PMID: 35902578 PMCID: PMC9334352 DOI: 10.1038/s41467-022-32064-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Dual-color single-molecule localization microscopy (SMLM) provides unprecedented possibilities for detailed studies of colocalization of different molecular species in a cell. However, the informational richness of the data is not fully exploited by current analysis tools that often reduce colocalization to a single value. Here, we describe a tool specifically designed for determination of co-localization in both 2D and 3D from SMLM data. The approach uses a function that describes the relative enrichment of one molecular species on the density distribution of a reference species. The function reframes the question of colocalization by providing a density-context relevant to multiple biological questions. Moreover, the function visualize enrichment (i.e. colocalization) directly in the images for easy interpretation. We demonstrate the approach's functionality on both simulated data and cultured neurons, and compare it to current alternative measures. The method is available in a Python function for easy and parameter-free implementation.
Collapse
Affiliation(s)
- Aske L Ejdrup
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Lorenzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ainoa Konomi
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freja Herborg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Hywood JD, Rice G, Pageon SV, Read MN, Biro M. Detection and characterization of chemotaxis without cell tracking. J R Soc Interface 2021; 18:20200879. [PMID: 33715400 PMCID: PMC8086846 DOI: 10.1098/rsif.2020.0879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Swarming has been observed in various biological systems from collective animal movements to immune cells. In the cellular context, swarming is driven by the secretion of chemotactic factors. Despite the critical role of chemotactic swarming, few methods to robustly identify and quantify this phenomenon exist. Here, we present a novel method for the analysis of time series of positional data generated from realizations of agent-based processes. We convert the positional data for each individual time point to a function measuring agent aggregation around a given area of interest, hence generating a functional time series. The functional time series, and a more easily visualized swarming metric of agent aggregation derived from these functions, provide useful information regarding the evolution of the underlying process over time. We extend our method to build upon the modelling of collective motility using drift-diffusion partial differential equations (PDEs). Using a functional linear model, we are able to use the functional time series to estimate the drift and diffusivity terms associated with the underlying PDE. By producing an accurate estimate for the drift coefficient, we can infer the strength and range of attraction or repulsion exerted on agents, as in chemotaxis. Our approach relies solely on using agent positional data. The spatial distribution of diffusing chemokines is not required, nor do individual agents need to be tracked over time. We demonstrate our approach using random walk simulations of chemotaxis and experiments investigating cytotoxic T cells interacting with tumouroids.
Collapse
Affiliation(s)
- Jack D. Hywood
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Gregory Rice
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
| | - Sophie V. Pageon
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Mark N. Read
- School of Computer Science & Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Surendran A, Plank MJ, Simpson MJ. Population dynamics with spatial structure and an Allee effect. Proc Math Phys Eng Sci 2020; 476:20200501. [PMID: 33223947 DOI: 10.1098/rspa.2020.0501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
Population dynamics including a strong Allee effect describe the situation where long-term population survival or extinction depends on the initial population density. A simple mathematical model of an Allee effect is one where initial densities below the threshold lead to extinction, whereas initial densities above the threshold lead to survival. Mean-field models of population dynamics neglect spatial structure that can arise through short-range interactions, such as competition and dispersal. The influence of non-mean-field effects has not been studied in the presence of an Allee effect. To address this, we develop an individual-based model that incorporates both short-range interactions and an Allee effect. To explore the role of spatial structure we derive a mathematically tractable continuum approximation of the IBM in terms of the dynamics of spatial moments. In the limit of long-range interactions where the mean-field approximation holds, our modelling framework recovers the mean-field Allee threshold. We show that the Allee threshold is sensitive to spatial structure neglected by mean-field models. For example, there are cases where the mean-field model predicts extinction but the population actually survives. Through simulations we show that our new spatial moment dynamics model accurately captures the modified Allee threshold in the presence of spatial structure.
Collapse
Affiliation(s)
- Anudeep Surendran
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Michael J Plank
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.,Te Pūnaha Matatini, A New Zealand Centre of Research Excellence, Auckland, New Zealand
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
De Oliveira AL, Binder BJ. Discrete Manhattan and Chebyshev pair correlation functions in k dimensions. Phys Rev E 2020; 102:012130. [PMID: 32795028 DOI: 10.1103/physreve.102.012130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Pair correlation functions provide a summary statistic which quantifies the amount of spatial correlation between objects in a spatial domain. While pair correlation functions are commonly used to quantify continuous-space point processes, the on-lattice discrete case is less studied. Recent work has brought attention to the discrete case, wherein on-lattice pair correlation functions are formed by normalizing empirical pair distances against the probability distribution of random pair distances in a lattice with Manhattan and Chebyshev metrics. These distance distributions are typically derived on an ad hoc basis as required for specific applications. Here we present a generalized approach to deriving the probability distributions of pair distances in a lattice with discrete Manhattan and Chebyshev metrics, extending the Manhattan and Chebyshev pair correlation functions to lattices in k dimensions. We also quantify the variability of the Manhattan and Chebyshev pair correlation functions, which is important to understanding the reliability and confidence of the statistic.
Collapse
Affiliation(s)
| | - Benjamin J Binder
- School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
6
|
Owen JP, Kelsh RN, Yates CA. A quantitative modelling approach to zebrafish pigment pattern formation. eLife 2020; 9:52998. [PMID: 32716296 PMCID: PMC7384860 DOI: 10.7554/elife.52998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/21/2020] [Indexed: 12/14/2022] Open
Abstract
Pattern formation is a key aspect of development. Adult zebrafish exhibit a striking striped pattern generated through the self-organisation of three different chromatophores. Numerous investigations have revealed a multitude of individual cell-cell interactions important for this self-organisation, but it has remained unclear whether these known biological rules were sufficient to explain pattern formation. To test this, we present an individual-based mathematical model incorporating all the important cell-types and known interactions. The model qualitatively and quantitatively reproduces wild type and mutant pigment pattern development. We use it to resolve a number of outstanding biological uncertainties, including the roles of domain growth and the initial iridophore stripe, and to generate hypotheses about the functions of leopard. We conclude that our rule-set is sufficient to recapitulate wild-type and mutant patterns. Our work now leads the way for further in silico exploration of the developmental and evolutionary implications of this pigment patterning system.
Collapse
Affiliation(s)
- Jennifer P Owen
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Christian A Yates
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
7
|
|
8
|
Johnston ST, Crampin EJ. Corrected pair correlation functions for environments with obstacles. Phys Rev E 2019; 99:032124. [PMID: 30999485 DOI: 10.1103/physreve.99.032124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Indexed: 01/30/2023]
Abstract
Environments with immobile obstacles or void regions that inhibit and alter the motion of individuals within that environment are ubiquitous. Correlation in the location of individuals within such environments arises as a combination of the mechanisms governing individual behavior and the heterogeneous structure of the environment. Measures of spatial structure and correlation have been successfully implemented to elucidate the roles of the mechanisms underpinning the behavior of individuals. In particular, the pair correlation function has been used across biology, ecology, and physics to obtain quantitative insight into a variety of processes. However, naively applying standard pair correlation functions in the presence of obstacles may fail to detect correlation, or suggest false correlations, due to a reliance on a distance metric that does not account for obstacles. To overcome this problem, here we present an analytic expression for calculating a corrected pair correlation function for lattice-based domains containing obstacles. We demonstrate that this obstacle pair correlation function is necessary for isolating the correlation associated with the behavior of individuals, rather than the structure of the environment. Using simulations that mimic cell migration and proliferation we demonstrate that the obstacle pair correlation function recovers the short-range correlation known to be present in this process, independent of the heterogeneous structure of the environment. Further, we show that the analytic calculation of the obstacle pair correlation function derived here is significantly faster to implement than the corresponding numerical approach.
Collapse
Affiliation(s)
- Stuart T Johnston
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edmund J Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,School of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Szabó A, Theveneau E, Turan M, Mayor R. Neural crest streaming as an emergent property of tissue interactions during morphogenesis. PLoS Comput Biol 2019; 15:e1007002. [PMID: 31009457 PMCID: PMC6497294 DOI: 10.1371/journal.pcbi.1007002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/02/2019] [Accepted: 04/03/2019] [Indexed: 12/05/2022] Open
Abstract
A fundamental question in embryo morphogenesis is how a complex pattern is established in seemingly uniform tissues. During vertebrate development, neural crest cells differentiate as a continuous mass of tissue along the neural tube and subsequently split into spatially distinct migratory streams to invade the rest of the embryo. How these streams are established is not well understood. Inhibitory signals surrounding the migratory streams led to the idea that position and size of streams are determined by a pre-pattern of such signals. While clear evidence for a pre-pattern in the cranial region is still lacking, all computational models of neural crest migration published so far have assumed a pre-pattern of negative signals that channel the neural crest into streams. Here we test the hypothesis that instead of following a pre-existing pattern, the cranial neural crest creates their own migratory pathway by interacting with the surrounding tissue. By combining theoretical modeling with experimentation, we show that streams emerge from the interaction of the hindbrain neural crest and the neighboring epibranchial placodal tissues, without the need for a pre-existing guidance cue. Our model suggests that the initial collective neural crest invasion is based on short-range repulsion and asymmetric attraction between neighboring tissues. The model provides a coherent explanation for the formation of cranial neural crest streams in concert with previously reported findings and our new in vivo observations. Our results point to a general mechanism of inducing collective invasion patterns.
Collapse
Affiliation(s)
- András Szabó
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Theveneau
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Melissa Turan
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Roberto Mayor
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Surendran A, Plank MJ, Simpson MJ. Spatial Moment Description of Birth-Death-Movement Processes Incorporating the Effects of Crowding and Obstacles. Bull Math Biol 2018; 80:2828-2855. [PMID: 30097916 DOI: 10.1007/s11538-018-0488-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
Birth-death-movement processes, modulated by interactions between individuals, are fundamental to many cell biology processes. A key feature of the movement of cells within in vivo environments is the interactions between motile cells and stationary obstacles. Here we propose a multi-species model of individual-level motility, proliferation and death. This model is a spatial birth-death-movement stochastic process, a class of individual-based model (IBM) that is amenable to mathematical analysis. We present the IBM in a general multi-species framework and then focus on the case of a population of motile, proliferative agents in an environment populated by stationary, non-proliferative obstacles. To analyse the IBM, we derive a system of spatial moment equations governing the evolution of the density of agents and the density of pairs of agents. This approach avoids making the usual mean-field assumption so that our models can be used to study the formation of spatial structure, such as clustering and aggregation, and to understand how spatial structure influences population-level outcomes. Overall the spatial moment model provides a reasonably accurate prediction of the system dynamics, including important effects such as how varying the properties of the obstacles leads to different spatial patterns in the population of agents.
Collapse
Affiliation(s)
- Anudeep Surendran
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael J Plank
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
- Te Pūnaha Matatini, A New Zealand Centre of Research Excellence, Auckland, New Zealand
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Gavagnin E, Owen JP, Yates CA. Pair correlation functions for identifying spatial correlation in discrete domains. Phys Rev E 2018; 97:062104. [PMID: 30011502 DOI: 10.1103/physreve.97.062104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 12/16/2022]
Abstract
Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular, and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of spatial correlation in irregular lattices for which recognizing correlation is less intuitive.
Collapse
Affiliation(s)
- Enrico Gavagnin
- Centre for Mathematical Biology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Jennifer P Owen
- Centre for Mathematical Biology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Christian A Yates
- Centre for Mathematical Biology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| |
Collapse
|