1
|
Iyaniwura SA, Cassidy T, Ribeiro RM, Perelson AS. A multiscale model of the action of a capsid assembly modulator for the treatment of chronic hepatitis B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603658. [PMID: 39071423 PMCID: PMC11275877 DOI: 10.1101/2024.07.16.603658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle, viral rebound occurs rapidly following treatment interruption. Consequently, functional cure rates of chronic HBV infection remain low and there is increased interest in a novel treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale mathematical model of CAM treatment in chronic HBV infection. By fitting the model to participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate the drug's dose-dependent effectiveness and identify the physiological mechanisms that drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences between HBeAg-positive and negative infection. Finally, we demonstrate analytically and numerically that HBV RNA is more sensitive than HBV DNA to increases in CAM effectiveness.
Collapse
Affiliation(s)
- Sarafa A. Iyaniwura
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Tyler Cassidy
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
2
|
Ciupe SM, Conway JM. Incorporating Intracellular Processes in Virus Dynamics Models. Microorganisms 2024; 12:900. [PMID: 38792730 PMCID: PMC11124127 DOI: 10.3390/microorganisms12050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
| |
Collapse
|
3
|
Kitagawa K, Kim KS, Iwamoto M, Hayashi S, Park H, Nishiyama T, Nakamura N, Fujita Y, Nakaoka S, Aihara K, Perelson AS, Allweiss L, Dandri M, Watashi K, Tanaka Y, Iwami S. Multiscale modeling of HBV infection integrating intra- and intercellular viral propagation to analyze extracellular viral markers. PLoS Comput Biol 2024; 20:e1011238. [PMID: 38466770 PMCID: PMC10957078 DOI: 10.1371/journal.pcbi.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, United States of America
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
- Institute of Mathematics for Industry, Kyushu University; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Japan
- Science Groove Inc., Fukuoka, Japan
| |
Collapse
|
4
|
Kitagawa K, Kim KS, Iwamoto M, Hayashi S, Park H, Nishiyama T, Nakamura N, Fujita Y, Nakaoka S, Aihara K, Perelson AS, Allweiss L, Dandri M, Watashi K, Tanaka Y, Iwami S. Multiscale modeling of HBV infection integrating intra- and intercellular viral propagation for analyzing extracellular viral markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543822. [PMID: 37333409 PMCID: PMC10274663 DOI: 10.1101/2023.06.06.543822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. The quantifying and understanding dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, it requires a liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because of the ethical aspect. We here aimed to develop a non-invasive method for quantifying cccDNA in the liver using surrogate markers present in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations (PDEs), integrates experimental data from in vitro and in vivo investigations. By applying this model, we successfully predicted the amount and dynamics of intrahepatic cccDNA using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The non-invasive quantification of cccDNA using our proposed methodology holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Scientific Computing, Pukyong National University; Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases; Tokyo, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University; Kumamoto, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University; Sapporo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo; Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory; Los Alamos, USA
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites; Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites; Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases; Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences; Chiba, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University; Kumamoto, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences; Chiba, Japan
- Institute of Mathematics for Industry, Kyushu University; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR); Tokyo, Japan
- Science Groove Inc.; Fukuoka, Japan
| |
Collapse
|
5
|
de Faria AC, Correa BHM, Faria LC, Vidigal PVT, Xavier MAP, Ferrari TCA. Occult hepatitis B virus infection in patients with chronic liver disease of different etiology in a Brazilian referral center: comparison of two different hepatitis B virus deoxyribonucleic acid amplification protocols: a cross-sectional study. SAO PAULO MED J 2022; 141:e2022147. [PMID: 36169566 PMCID: PMC10065104 DOI: 10.1590/1516-3180.2022.0147.r1.12072022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Occult hepatitis B virus infection (OBI) is defined as the presence of hepatitis B virus (HBV) deoxyribonucleic acid (DNA) in the liver of individuals with undetectable hepatitis B virus surface antigen (HBsAg) in the serum. The actual prevalence of OBI and its clinical relevance are not yet fully understood. OBJECTIVE To evaluate the prevalence of HBV DNA in liver biopsies of HBsAg-negative patients with chronic liver disease of different etiologies in a referral center in Brazil and compare two different HBV DNA amplification protocols to detect HBV. DESIGN AND SETTING This cross-sectional observational study was conducted at the Liver Outpatient Clinic, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, between January 2016 and December 2019. METHODS HBV DNA was investigated in 104 liver biopsy samples from individuals with chronic liver disease of different etiologies, in whom HBsAg was undetectable in serum by nested-polymerase chain reaction (nested-PCR), using two different protocols. RESULTS OBI, diagnosed by detecting HBV DNA using both protocols, was detected in 6.7% of the 104 individuals investigated. Both protocols showed a good reliability. CONCLUSION In addition to the differences in the prevalence of HBV infection in different regions, variations in the polymerase chain reaction technique used for HBV DNA amplification may be responsible for the large variations in the prevalence of OBI identified in different studies. There is a need for better standardization of the diagnostic methods used to diagnose this entity.
Collapse
Affiliation(s)
- Alessandra Coutinho de Faria
- MD, MSc. Physician, Department of Internal Medicine, Faculty of
Medicine, Hospital das Clínicas, Universidade Federal de Minas Gerais (UFMG),
Belo Horizonte (MG), Brazil
| | - Bernardo Henrique Mendes Correa
- Research Associate, Undergraduate Student, Department of
Internal Medicine, Faculty of Medicine, Universidade Federal de Minas Gerais
(UFMG), Belo Horizonte (MG), Brazil
| | - Luciana Costa Faria
- MD, PhD. Professor Associate, Department of Internal Medicine,
Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte
(MG), Brazil
| | - Paula Vieira Teixeira Vidigal
- MD, PhD. Professor Associate, Department of Pathological
Anatomy and Forensic Medicine, Faculty of Medicine, Universidade Federal de
Minas Gerais (UFMG), Belo Horizonte (MG), Brazil
| | - Marcelo Antônio Pascoal Xavier
- MD, PhD. Professor, Department of Pathological Anatomy and
Forensic Medicine, Faculty of Medicine, Universidade Federal de Minas Gerais
(UFMG), Belo Horizonte (MG), Brazil
| | - Teresa Cristina Abreu Ferrari
- MD, PhD. Professor, Department of Internal Medicine, Faculty of
Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (MG),
Brazil
| |
Collapse
|
6
|
Martinez MG, Boyd A, Combe E, Testoni B, Zoulim F. Covalently closed circular DNA: The ultimate therapeutic target for curing HBV infections. J Hepatol 2021; 75:706-717. [PMID: 34051332 DOI: 10.1016/j.jhep.2021.05.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Current antiviral therapies, such as pegylated interferon-α and nucleos(t)ide analogues, effectively improve the quality of life of patients with chronic hepatitis B. However, they can only control the infection rather than curing infected hepatocytes. Complete HBV cure is hampered by the lack of therapies that can directly affect the viral minichromosome (in the form of covalently closed circular DNA [cccDNA]). Approaches currently under investigation in early clinical trials are aimed at achieving a functional cure, defined as the loss of HBsAg and undetectable HBV DNA levels in serum. However, achieving a complete HBV cure requires therapies that can directly target the cccDNA pool, either via degradation, lethal mutations or functional silencing. In this review, we discuss cutting-edge technologies that could lead to non-cytolytic direct cccDNA targeting and cure of infected hepatocytes.
Collapse
Affiliation(s)
| | - Anders Boyd
- Stichting HIV Monitoring, Amsterdam, the Netherlands; Department of Infectious Diseases, Research and Prevention, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Emmanuel Combe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude- Bernard (UCBL), 69008 Lyon, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France.
| |
Collapse
|
7
|
Goyal A. Modeling reveals no direct role of the extent of HBV DNA integrations on the outcome of infection. J Theor Biol 2021; 526:110793. [PMID: 34087271 DOI: 10.1016/j.jtbi.2021.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 11/27/2022]
Abstract
Hepatitis B virus (HBV) with its high prevalence and death toll is one of the most important infectious diseases to study. Yet, there is very little progress in the development of within-host models for HBV, which has subsequently hindered our understanding of this virus. The uncertainty around the proliferation of infected hepatocytes has been studied but never in association with other important biological continuous events such as integrations and superinfections. This is despite the fact that these processes affect the diversity and composition of infected cell population in the liver and an improved understanding of the cellular composition will undoubtedly assist in strategizing against this viral infection. Here, we developed novel mathematical models that incorporate these key biological processes and analyzed them both analytically and numerically. Unaffected by the extent of integrated DNA (IDNA), the outcome of HBV infection was primarily dictated by the balance between processes generating and killing infected hepatocytes containing covalent closed circular DNA (cccDNA). The superinfection was found to be a key process in the spread of HBV infection as its exclusion could not reproduce experimentally observed composition of infected hepatocytes at peak of acute HBV infection, a stage where our model predicts that infected hepatocytes most likely carry both cccDNA and IDNA. Our analysis further suggested the existence of some form of selective advantage of infected hepatocytes containing only IDNA to explain the viral dynamics observed during antiviral treatment and the transition from peak to acute infection. Finally, the fine line between liver destruction and resolution of acute HBV infection was found to be highly influenced by the fate of cccDNA during cellular proliferation.
Collapse
Affiliation(s)
- Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, United States
| |
Collapse
|
8
|
Kadelka S, Dahari H, Ciupe SM. Understanding the antiviral effects of RNAi-based therapy in HBeAg-positive chronic hepatitis B infection. Sci Rep 2021; 11:200. [PMID: 33420293 PMCID: PMC7794570 DOI: 10.1038/s41598-020-80594-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
The RNA interference (RNAi) drug ARC-520 was shown to be effective in reducing serum hepatitis B virus (HBV) DNA, hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) in HBeAg-positive patients treated with a single dose of ARC-520 and daily nucleosidic analogue (entecavir). To provide insights into HBV dynamics under ARC-520 treatment and its efficacy in blocking HBV DNA, HBsAg, and HBeAg production we developed a multi-compartmental pharmacokinetic-pharamacodynamic model and calibrated it with frequent measured HBV kinetic data. We showed that the time-dependent single dose ARC-520 efficacies in blocking HBsAg and HBeAg are more than 96% effective around day 1, and slowly wane to 50% in 1-4 months. The combined single dose ARC-520 and entecavir effect on HBV DNA was constant over time, with efficacy of more than 99.8%. The observed continuous HBV DNA decline is entecavir mediated, the strong but transient HBsAg and HBeAg decays are ARC-520 mediated. The modeling framework may help assess ongoing RNAi drug development for hepatitis B virus infection.
Collapse
Affiliation(s)
- Sarah Kadelka
- Department of Mathematics, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Harel Dahari
- Program for Experimental and Theoretical Modeling, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
9
|
Shi R, Lu T, Wang C. Dynamic analysis of a fractional-order delayed model for hepatitis B virus with CTL immune response. Virus Res 2019; 277:197841. [PMID: 31887328 DOI: 10.1016/j.virusres.2019.197841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
In this paper, a fractional-order delayed model with Holling II functional response and CTL immune response is constructed to describe the transmission of hepatitis B virus. Firstly, the existence and uniqueness of positive solutions are proved. Secondly, the basic reproduction number and the sufficient conditions for the existence of three equilibriums are obtained. Thirdly, the stability of three equilibriums are investigated. In addition, some sufficient conditions for the occurrence of Hopf bifurcation near the endemic equilibrium are demonstrated by using time delay as the bifurcation parameter. After that, some numerical simulations are performed to verify the theoretical prediction. At last, a brief discussion is presented to end this paper.
Collapse
Affiliation(s)
- Ruiqing Shi
- School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China.
| | - Ting Lu
- School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China.
| | - Cuihong Wang
- School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
10
|
Goyal A, Liao LE, Perelson AS. Within-host mathematical models of hepatitis B virus infection: Past, present, and future. ACTA ACUST UNITED AC 2019; 18:27-35. [PMID: 31930181 DOI: 10.1016/j.coisb.2019.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mathematical modeling has been instrumental in enhancing our understanding of the viral dynamics of hepatitis B virus (HBV) infection. We give a primer on HBV infection in humans and a brief overview of the development of within-host mathematical models of HBV infection. In the last decade, models have advanced from considering chronic HBV infections under therapy to the pathogenesis of infection. We also summarize estimates of key viral dynamic parameters that have varied greatly among studies, and show that they impact model predictions. Future directions for mathematical modeling of HBV infection are proposed to better understand emerging therapies, the HBV life cycle, predicting cure, and the mechanisms involved in the immune response to HBV infection.
Collapse
Affiliation(s)
- Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Laura E Liao
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| |
Collapse
|
11
|
A Network Pharmacology Approach to Uncover the Potential Mechanism of Yinchensini Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2178610. [PMID: 30671125 PMCID: PMC6317126 DOI: 10.1155/2018/2178610] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023]
Abstract
Objective To predict and explore the potential mechanism of Yinchensini decoction (YCSND) based on systemic pharmacology. Method TCMSP database was searched for the active constituents and related target proteins of YCSND. Cytoscape 3.5.1 was used to construct the active ingredient-target interaction of YCSND and network topology analysis, with STRING online database for protein-protein interaction (PPI) network construction and analysis; and collection from the UniProt database of target protein gene name, with the DAVID database for the gene ontology (GO) functional analysis, KEGG pathway enrichment analysis mechanism and targets of YCSND. Results The results indicate the core compounds of YCSND, namely, kaempferol, 7-Methoxy-2-methyl isoflavone, and formononetin. And its core targets are prostaglandin G/H synthase 2, estrogen receptor, Calmodulin, heat shock protein HSP 90, etc. PPI network analysis shows that the key components of the active ingredients of YCSND are JUN, TP53, MARK1, RELA, MYC, and so on. The results of the GO analysis demonstrate that extracellular space, cytosol, and plasma membrane are the main cellular components of YCSND. Its molecular functions are mainly acting on enzyme binding, protein heterodimerization activity, and drug binding. The biological process of YCSND is focused on response to drug, positive regulation of transcription from RNA polymerase II promoter, the response to ethanol, etc. KEGG results suggest that the pathways, including pathways in cancer, hepatitis B, and pancreatic cancer, play a key role in YCSND. Conclusion YCSND exerts its drug effect through various signaling pathways and acts on kinds of targets. By system pharmacology, the potential role of drugs and the mechanism of action can be well predicted.
Collapse
|