1
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Suthisintong T, Changklungmoa N, Kueakhai P. Microbial effects of cold-pressed Sacha inchi oil supplementation in rats. PLoS One 2025; 20:e0319066. [PMID: 39977445 PMCID: PMC11841868 DOI: 10.1371/journal.pone.0319066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Oil supplements have various benefits for metabolism, particularly Sacha inchi oil (SI), which is rich in polyunsaturated fatty acids (PUFAs) such as ω-3 and fat-soluble vitamins. However, the impacts of oil supplements on gut health remain unclear. The aim of this study was to compare the effects of an SI supplement with those of lard oil (LO), known for its high saturated fatty acid content, and a normal diet on gut health in male Sprague Dawley rats for 12 consecutive weeks. Fecal DNA was used to assess gut microbiota diversity and species abundance, diversity, and function prediction. Colon tissue from each rat was examined for colon crypt depth and histology. Rats administered the LO supplement exhibited higher dysbiosis than those administered the SI supplement, with the LO supplement influencing the relative abundance of various bacteria at the genus level. A KEGG analysis was conducted to examine the effects on metabolic pathways, revealing that the SI supplement promoted carbohydrate metabolism while reducing immune system activity. In contrast, the LO supplement increased replication, repair, and translation activities. A histological analysis of the colon tissues showed no significant alterations in crypt depth or lesions in all groups, indicating that neither supplement induced adverse structural changes in the gut. The results of this study suggest that SI supplementation modulates the gut microbiota, thereby enhancing gut health and metabolic function.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Thitikul Suthisintong
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
2
|
Trakulsrichai S, Chuayaupakarn K, Tansuwannarat P, Rittilert P, Tongpoo A, Sriapha C, Wananukul W. Ethephon Poisoning: Clinical Characteristics and Outcomes. TOXICS 2025; 13:115. [PMID: 39997930 PMCID: PMC11861046 DOI: 10.3390/toxics13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Ethephon (2-chloroethylphosphonic acid) is a generally used plant growth regulator, but the data on its toxic effects, especially in humans, are very limited. This study was conducted to describe the clinical characteristics, management, and outcomes of patients exposed to products containing ethephon. We performed an 8-year retrospective study using data from the Ramathibodi Poison Center database (2013-2020), which included 252 patients. Most patients were male, with a median age of 32 years. Almost all patients were exposed through ingestion, mainly in unintentional circumstances. The clinical presentations included local effects, gastrointestinal (GI), neurological, and respiratory symptoms. Some patients required hospital admission; specifically, seven patients received inotropic drugs, and six were intubated with ventilator support. Most patients had either no or only minor clinical effects. However, six patients experienced moderate/severe effects, and two patients died. Age, intentional exposure, and the presence of initial neurological symptoms could prognosticate moderate to fatal outcomes. In conclusion, exposure to ethephon predominantly resulted in no or minor effects, and GI symptoms were the most common clinical manifestation. The cholinergic toxic syndrome was not frequently observed. The mortality rate was very low. Patients presenting with factors associated with worse outcomes should be monitored closely for clinical deterioration and appropriately managed.
Collapse
Affiliation(s)
- Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.T.); (P.R.); (A.T.); (C.S.); (W.W.)
| | - Kanokrat Chuayaupakarn
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Emergency Department, Maharaj Nakhon Si Thammarat Hospital, Nakhon Si Thammarat 80000, Thailand
| | - Phantakan Tansuwannarat
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.T.); (P.R.); (A.T.); (C.S.); (W.W.)
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Panee Rittilert
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.T.); (P.R.); (A.T.); (C.S.); (W.W.)
| | - Achara Tongpoo
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.T.); (P.R.); (A.T.); (C.S.); (W.W.)
| | - Charuwan Sriapha
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.T.); (P.R.); (A.T.); (C.S.); (W.W.)
| | - Winai Wananukul
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.T.); (P.R.); (A.T.); (C.S.); (W.W.)
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Shaat AR, Sadek KM, Mahmoud SF, Saleh H, Sayed S, Shukry M, Ghamry HI, Zeweil MM. Assessing the Impact of Ghee, Olive Oil and Margarine on Male Rabbit Fertility and Reproductive Hormones. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39548714 DOI: 10.1111/jpn.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
In the present investigation, the impact of natural ghee, olive oil and synthetic margarine on the fertility parameters of male rabbits was evaluated by examining semen quality, fertility hormones, antioxidant markers, lipid profile, and liver and kidney functions. Eighty male rabbits were randomly allotted into four groups (20 rabbits each, four replicates/group). The basal diet supplemented the control group; the margarine group was fed a 10% margarine diet, the ghee group was fed a 10% ghee diet, and the olive oil group was fed a 10% olive oil diet. In the margarine group, the semen quality parameters, total testosterone levels, free testosterone, luteinizing hormone (LH) and antioxidant enzyme levels as catalase showed a significant reduction compared to other groups. At the same time, they were enhanced in ghee and olive oil groups. A substantial increase of triglyceride (TAG), low-density lipoprotein (LDL) and cholesterol, with a decrease of high-density lipoprotein (HDL) levels, were observed in the margarine group contrasted to ghee and olive oil groups. The ghee and the olive oil-treated group showed strong immunoreactions of androgen, FSH, LH receptors and mild caspase 3 in testicular tissue compared to the margarine-treated group. Finally, histopathological examination of rabbit testicular tissue showed proliferation of basal spermatogenic cells, increased luminal spermatid of seminiferous epithelium, and proliferation of interstitial cells in normal interstitial tissue in the ghee and olive oil treated group. Still, it showed severe vacuolation and necrosis in the basal luminal seminiferous epithelium and congestion of blood vessels in the margarine group. This present study revealed that the health influence of olive oil and ghee is better than margarine on male fertility parameters.
Collapse
Affiliation(s)
- Adel R Shaat
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sahar F Mahmoud
- Department of Histology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Hamida Saleh
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Zeweil
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Tuşat M, Eroz R, Bölükbaş F, Özkan E, Erdal H. Evaluation of the protective and therapeutic effects of extra virgin olive oil rich in phenol in experimental model of neonatal necrotizing enterocolitis by clinical disease score, ınflammation, apoptosis, and oxidative stress markers. Pediatr Surg Int 2024; 40:80. [PMID: 38493431 DOI: 10.1007/s00383-024-05669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIM Necrotizing Enterocolitis (NEC) is an inflammation-associated ischemic necrosis of the intestine. To investigate the effects of extra virgin olive oil (EVOO) on inflammation, oxidative stress, apoptosis, and histological changes in NEC-induced newborn rats. MATERIALS AND METHODS 24 rats were randomly divided into three groups: control, NEC and NEC + EVOO. NEC induction was performed using hypoxia-hyperoxia, formula feeding, and cold stress. The NEC + EVOO group received 2 ml/kg EVOO with high phenolic content by gavage twice a day for 3 days. 3 cm of bowel including terminal ileum, cecum, and proximal colon was excised. RESULTS Weight gain and clinical disease scores were significantly higher in the NEC + EVOO group than in the NEC group (p < 0.001). EVOO treatment caused significant decreases in IL1β, IL6 levels (p = 0.016, p = 0.029 respectively) and EGF, MDA levels (p = 0.032, p = 0.013 respectively) compared to NEC group. Significant decreases were observed in IL6 gene expression in the NEC + EVOO group compared to the NEC group (p = 0.002). In the group NEC + EVOO, the number of Caspase-3 positive cells was found to be significantly reduced (p < 0.001) and histopathological examination revealed minimal changes and significantly lower histopathological scores (p < 0.001). CONCLUSION Phenol-rich EVOO prevents intestinal damage caused by NEC by inhibiting inflammation, oxidative stress, apoptosis.
Collapse
Affiliation(s)
- Mustafa Tuşat
- Department of Pediatric Surgery, Aksaray University Medical Faculty, Aksaray, Turkey.
| | - Recep Eroz
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Ferhan Bölükbaş
- Department of Histology and Embryology, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Erkan Özkan
- Faculty of Veterinary Medicine, Department of Parasitology, Aksaray University, Aksaray, Turkey
| | - Hüseyin Erdal
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| |
Collapse
|
5
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Athipornchai A, Changklungmoa N, Kueakhai P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals (Basel) 2024; 17:220. [PMID: 38399435 PMCID: PMC10892392 DOI: 10.3390/ph17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The ability of oil supplementation to inhibit various metabolic syndromes has been recognized. However, there are currently no studies determining the effects of oil supplements on healthy conditions. Plukenetia volubilis L., also known as Sacha inchi, is a seed rich in essential unsaturated fatty acids that improves metabolic syndrome diseases, such as obesity and nonalcoholic fatty liver. However, the health benefits and effects of Sacha inchi oil (SIO) supplementation remain unclear. This study aims to evaluate the chemical effects and properties of Sacha inchi oil. The results of the chemical compound analysis showed that Sacha inchi is an abundant source of ω-3 fatty acids, with a content of 44.73%, and exhibits scavenging activity of 240.53 ± 11.74 and 272.41 ± 6.95 µg Trolox/g, determined via DPPH and ABTS assays, respectively, while both olive and lard oils exhibited lower scavenging activities compared with Sacha inchi. Regarding liver histology, rats given Sacha inchi supplements showed lower TG accumulation and fat droplet distribution in the liver than those given lard supplements, with fat areas of approximately 14.19 ± 6.49% and 8.15 ± 2.40%, respectively. In conclusion, our findings suggest that Sacha inchi oil is a plant source of ω-3 fatty acids and antioxidants and does not induce fatty liver and pathology in the kidney, pancreas, and spleen. Therefore, it has the potential to be used as a dietary supplement to improve metabolic syndrome diseases.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Anan Athipornchai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| |
Collapse
|
6
|
Hamidi N, Feizi F, Azadmehr A, Zabihi E, Khafri S, Zarei-Behjani Z, Babazadeh Z. Disulfiram ameliorates bleomycin induced pulmonary inflammation and fibrosis in rats. Biotech Histochem 2023; 98:584-592. [PMID: 37779489 DOI: 10.1080/10520295.2023.2261367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Bleomycin (BL) is a widely used anticancer drug that can cause pulmonary fibrosis due to increased fibroblast proliferation and increased secretion of extracellular matrix. RASSF1A is a tumor suppressor gene that is down-regulated by DNA methylation during fibrosis. Disulfiram (DSF), a noncytosine DNA methyltransferase inhibitor, can revert epigenetic biomarkers and re-express silenced genes. We investigated anti-inflammatory and anti-fibrotic effects of DSF on regulation of epigenetic molecules and histopathology in a rat model of BL induced pulmonary fibrosis. We used six groups of rats: sesame oil (SO) control (Co) group, BL group, BL + SO group and three BL + DSF groups administered 1 mg/kg DSF (BL + DSF), 10 mg/kg DSF (BL + DSF10) or 100 mg/kg DSF (BL + DSF100), respectively. BL was administered intratracheally to induce pulmonary fibrosis. DSF and SO were injected intraperitoneally (i.p.) 2 days before BL administration; these injections were continued for 3 weeks. At the end of the study, lung tissues were removed for molecular and histopathologic studies. Administration of 10 or 100 mg/kg DSF after BL induced pulmonary inflammation and fibrosis, and up-regulated RASSF1A and down-regulated TNF-α and IL-1 β compared to the BL and BL + SO groups. A RASSF1A unmethylated band was observed using the methylation-specific PCR technique in rats that had been administered 10 and 100 mg/kg DSF, which indicated partial DNA demethylation. Histopathologic evaluation revealed that fibrosis and all inflammatory scores were decreased significantly in the BL + DSF10 and BL + DSF100 groups compared to the BL group. Our findings indicate that DSF modified DNA methylation by up-regulating RASSF1A, which reduced inflammation and fibrosis in BL induced pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Negar Hamidi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Immunology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
| | - Soraya Khafri
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Babol University of Medical Science, Babol, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Babazadeh
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Mokhtari T, Lu M, El-Kenawy AEM. Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors. Int Immunopharmacol 2023; 122:110520. [PMID: 37478667 DOI: 10.1016/j.intimp.2023.110520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to examine the effects of luteolin (LUT) on chronic neuropathic pain (NP)-induced mood disorders (i.e., anxiety and depression) by regulating oxidative stress, neurotrophic factors (NFs), and neuroinflammation. Chronic constrictive injury (CCI) was used to induce NP in the animals. Animals in the treatment groups received LUT in three doses of 10, 25, and 50 mg/kg for 21 days. The severity of pain and mood disorders were examined. Finally, animals were sacrificed, and their brain tissue was used for molecular and histopathological studies. CCI led to cold allodynia and thermal hyperalgesia. Mood alterations were proven in the CCI group, according to the behavioral tests. Levels of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), B-cell lymphoma-2 (Bcl2), superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid-2-related factor 2 (Nrf2) were reduced in the hippocampus (HPC) and prefrontal cortex (PFC). Furthermore, the levels of MDA, Bcl-2-associated X protein (Bax), and inflammatory markers, including nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), interleukin-1β (IL-1β), IL-18, IL-6, and tumor necrosis factor-α (TNF-α) significantly increased in the HPC and PFC following CCI induction. LUT treatment reversed the behavioral alterations via regulation of oxidative stress, neurotrophines, and inflammatory mediators in the HPC and PFC. Findings confirmed the potency of LUT in the improvement of chronic pain-induced anxiety- and depressive-like symptoms, probably through antioxidant, anti-inflammatory, and neuroprotective properties in the HPC and PFC.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China.
| | - Min Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | | |
Collapse
|
8
|
Maria Francis Y, Karunakaran B, Ashfaq F, Yahia Qattan M, Ahmad I, Alkhathami AG, Idreesh Khan M, Varadhan M, Govindan L, Ponnusamy Kasirajan S. Mercuric Chloride Induced Nephrotoxicity: Ameliorative Effect of Carica papaya Leaves Confirmed by Histopathology, Immunohistochemistry, and Gene Expression Studies. ACS OMEGA 2023; 8:21696-21708. [PMID: 37360438 PMCID: PMC10286259 DOI: 10.1021/acsomega.3c01045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
The present study analyzes the efficacy of the ethanolic extract of C. papaya leaves (ECP) against HgCl2-induced nephrotoxicity. The effects on the biochemical and percentage of body and organ weight against HgCl2-induced nephrotoxicity in female Wistar rats were studied. Wistar rats were divided into five groups with six animals in each group: control, HgCl2 (2.5 mg/kg b.w.), N-acetylcysteine (NAC 180 mg/kg) + HgCl2, ECP (300 mg/kg b.w.) + HgCl2, and ECP (600 mg/kg) + HgCl2 groups. After 28 days of study, animals were sacrificed on the 29th day to harvest the blood and kidneys for further analysis. The effect ECP was analyzed by immunohistochemistry (NGAL) and real-time PCR (KIM-1 and NGAL mRNA) in HgCl2-induced nephrotoxicity. The results revealed that the HgCl2 group showed prominent damage in the proximal tubules and glomerulus of nephrons and enormous expression of NGAL in immunohistochemistry and KIM-1 and NGAL in real-time PCR compared to the control group. The simultaneous pretreatment with NAC (180 mg/kg) and ECP (600 and 300 mg/kg) reduced renal damage and expression of NGAL in immunohistochemistry and KIM-1 and NGAL gene in real-time PCR. This study attests to the nephroprotective effect of ECP against HgCl2-induced toxicity.
Collapse
Affiliation(s)
- Yuvaraj Maria Francis
- Department
of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Balaji Karunakaran
- Department
of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Fauzia Ashfaq
- Department
of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Malak Yahia Qattan
- Health
Sciences Departments, College of Applied Studies and Community Service, King Saud University, KSA-4545, Riyadh 11451, Saudi Arabia
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department
of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohan Varadhan
- Department
of Siddha, TN Dr. MGR Medical University,
Guindy, Chennai 600032, India
| | - Lakshmanan Govindan
- Department
of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Sankaran Ponnusamy Kasirajan
- Department
of Anatomy, All India Institute of Medical
Sciences (AIIMS), Mangalagiri, Andhra Pradesh 522503, India
| |
Collapse
|
9
|
Burgos-Pino J, Gual-Orozco B, Vera-Ku M, Loría-Cervera EN, Guillermo-Cordero L, Martínez-Vega PP, Torres-Tapia LW, Castro-Valencia K, Peraza-Sánchez SR, Gamboa-León R. Acute oral toxicity in BALB/c mice of Tridax procumbens and Allium sativum extracts and (3S)-16,17-didehydrofalcarinol. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115840. [PMID: 36257342 DOI: 10.1016/j.jep.2022.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Approximately 80% of people in developing countries depend on medicinal plants for their health care. Tridax procumbens (T. procumbens) and Allium sativum (A. sativum) have beneficial effects against parasitic and bacterial diseases. On the other side, the biological activity of the oxylipin (3S)-16,17-didehydrofalcarinol isolated from T. procumbens against the parasite Leishmania mexicana has been verified. AIM OF THE STUDY To evaluate the acute oral toxicity of the methanolic extract of T. procumbens, the aqueous extract of A. sativum, their mixture, and pure oxylipin (3S)-16,17-didehydrofalcarinol in BALB/c mice. MATERIALS AND METHODS Doses of 2000 and 5000 mg/kg of the methanolic extract of T. procumbens, the aqueous extract of A. sativum, and their mixture (1:1), and doses of 300 and 500 mg/kg of pure oxylipin were administered orally to female mice of the strain BALB/c, which were observed for 72 h in search of signs of toxicity. After 14 days, the animals were euthanized, blood was extracted for the measurement of transaminases, and the livers were recovered and stained with hematoxylin/eosin for histopathological analysis. RESULTS No clinical signs of toxicity were observed in any of the animals dosed with T. procumbens and A. sativum extracts, while the majority of the animals dosed with pure oxylipin showed signs of toxicity and died. There was no difference in the weight index in most of the animals, except for the animals treated with T. procumbens at doses of 2000 mg/kg who presented an increase in the weight index, nor was there a correlation between the dose of A. sativum and the mixture and food consumption; however, a direct proportional correlation was observed between T. procumbens dose and food consumption. In none of the animals dosed with T. procumbens, A. sativum, and the mixture there was a difference in the levels of transaminases. In the histopathology study, slight lesions were observed in the hepatocytes of the mice treated with T. procumbens, A. sativum, and their mixture at doses of 2000 and 5000 mg/kg. On the other side, moderate injuries were observed in animals treated with pure oxylipin and it was considered as toxic due to almost all the animals died. CONCLUSION The extracts of T. procumbens and A. sativum evaluated and applied orally did not cause signs of acute toxicity or severe liver damage, suggesting to evaluate their chronic toxicity including other biochemical parameters in the future. However, pure oxylipin caused signs of acute toxicity and death so it is recommended to work with lower doses.
Collapse
Affiliation(s)
- Janelly Burgos-Pino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, 97100, Mérida, Yucatán, Mexico.
| | - Brandon Gual-Orozco
- CONACYT-GERMOLAB/Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Marina Vera-Ku
- CONACYT-GERMOLAB/Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Elsy Nalleli Loría-Cervera
- Laboratorio de Inmunología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Av. Itzaes por 59, No. 490, Centro, 97000, Mérida, Yucatán, Mexico.
| | - Leonardo Guillermo-Cordero
- Cuerpo Académico en Salud Animal de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, 97100, Mérida, Yucatán, Mexico.
| | - Pedro Pablo Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Av. Itzaes por 59, No. 490, Centro, 97000, Mérida, Yucatán, Mexico.
| | - Luis W Torres-Tapia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Karla Castro-Valencia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Sergio R Peraza-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Rubi Gamboa-León
- Laboratorio de Ciencias Biomédicas, Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, Km. 5 Carretera Tamazunchale-San Martin, 79960, Tamazunchale, San Luis Potosí, Mexico.
| |
Collapse
|
10
|
The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats. Pharmaceuticals (Basel) 2022; 15:ph15091103. [PMID: 36145324 PMCID: PMC9502270 DOI: 10.3390/ph15091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
A metabolic disease called hypercholesterolemia is connected to both oxidative damage and inflammation. The goal of the current investigation was to determine if olive oil and palm oil could prevent hypercholesterolemia-induced oxidative stress in the liver of rats fed a high-cholesterol diet (HCD). The experimental mice were given HCD for three months while also receiving 0.5 mL/kg of either palm or olive oil. Serum triglycerides, total cholesterol, LDL cholesterol, vLDL cholesterol, and the atherogenic index all significantly increased in HCD-fed rats, while HDL cholesterol significantly dropped. Additionally, HCD caused a notable rise in proinflammatory cytokines and serum transaminases in liver tissue. Additionally, HCD significantly increased the production of nitric oxide and lipid peroxidation in the liver while decreasing antioxidant enzymes. Treatment with palm and olive oils dramatically reduced the levels of pro-inflammatory cytokines and lipid peroxidation, improved antioxidant defenses, and considerably improved liver function indicators. Additionally, the examined oils dramatically decreased the expression of fatty acid synthase (FAS) in the liver of rats receiving HCD. In conclusion, HCD-fed rats exhibit significant antihyperlipidemic and cholesterol-lowering benefits from palm and olive oils. The improved antioxidant defenses, lower inflammation and lipid peroxidation, and altered hepatic FAS mRNA expression were the main mechanisms by which palm and olive oils produced their advantageous effects.
Collapse
|
11
|
Involvement of NF-κB/NLRP3 axis in the progression of aseptic loosening of total joint arthroplasties: a review of molecular mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:757-767. [PMID: 35377011 DOI: 10.1007/s00210-022-02232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Particulate wear debris can trigger pro-inflammatory bone resorption and result in aseptic loosening. This complication remains major postoperative discomforts and complications for patients who underwent total joint arthroplasty. Recent studies have indicated that wear debris-induced aseptic loosening is associated with the overproduction of pro-inflammatory cytokines. The activation of osteoclasts as a result of inflammatory responses is associated with osteolysis. Moreover, stimulation of inflammatory signaling pathways such as the NF-κB/NLRP3 axis results in the production of pro-inflammatory cytokines. In this review, we first summarized the potential inflammatory mechanisms of wear particle-induced peri-implant osteolysis. Then, the therapeutic approaches, e.g., biological inhibitors, herbal products, and stem cells or their derivatives, with the ability to suppress the inflammatory responses, mainly NF-κB/NLRP3 signaling pathways, were discussed. Based on the results, activation of macrophages following inflammatory stimuli, overproduction of pro-inflammatory cytokines, and subsequent differentiation of osteoclasts in the presence of wear particles lead to bone resorption. The activation of NF-κB/NLRP3 signaling pathways within the macrophages stimulates the production of pro-inflammatory cytokines, e.g., IL-1β, IL-6, and TNF-α. According to in vitro and in vivo studies, novel therapeutics significantly promoted osteogenesis, suppressed osteoclastogenesis, and diminished particle-mediated bone resorption. Conclusively, these findings offer that suppressing pro-inflammatory cytokines by regulating both NF-κB and NLRP3 inflammasome represents a novel approach to attenuate wear-particle-related osteolytic diseases.
Collapse
|
12
|
Al-Asmari KM, Altayb HN, Al-Attar AM, Qahl SH, Al-Thobaiti SA, Abu Zeid IM. Arabica coffee and olive oils mitigate malathion-induced nephrotoxicity in rat: In silico, immunohistochemical and biochemical evaluation. Saudi J Biol Sci 2022; 29:103307. [PMID: 35602869 PMCID: PMC9120970 DOI: 10.1016/j.sjbs.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
|
13
|
Prevention of Hepatorenal Insufficiency Associated with Lead Exposure by Hibiscus sabdariffa L. Beverages Using In Vivo Assay. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7990129. [PMID: 35187171 PMCID: PMC8853787 DOI: 10.1155/2022/7990129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/15/2022] [Indexed: 01/29/2023]
Abstract
Lead pollution is a major environmental challenge worldwide. Therefore, dietary interventions that are aimed at preventing lead's deleterious effects on body organs are needed. The study's goal was to study and compare the protective effect of cold and hot beverages of Roselle (Hibiscus sabdariffa L.) red calyces (CRB and HRB, respectively) on liver and kidney insufficiency associated with lead exposure in male rats. Adult albino rats (32 males) were divided into four groups of equal number, including a normal control (group 1), while groups from 2 to 4 received lead acetate (20 mg/kg body weight/day) and were kept untreated (group 2). The 3rd and the 4th groups received CRB and HRB (0.5 ml/100 g body weight/day), respectively, for 6 weeks. The gain in the body and relative weights of the liver and kidneys were calculated. Liver and kidney functions were determined in serum, while lead, delta-aminolevulinic acid dehydratase, and oxidative stress markers were established in tissues. Specimens from the liver and kidney of sacrificed rats were histopathologically examined. The total activity of antioxidants and total content of anthocyanin of both beverages were determined. Lead exposure resulted in its accumulation in tissues, leading to overweight and liver and kidney insufficiency along with oxidative stress, which was further confirmed by histological staining. CRB was more efficient than HRB in preventing the deleterious effects of lead intoxication. Due to their antioxidant properties, the present study proved that Roselle red calyx beverages, particularly the cold ones, are protective agents against lead-associated disorders in a rat model.
Collapse
|
14
|
Bilal RM, Liu C, Zhao H, Wang Y, Farag MR, Alagawany M, Hassan FU, Elnesr SS, Elwan HAM, Qiu H, Lin Q. Olive Oil: Nutritional Applications, Beneficial Health Aspects and its Prospective Application in Poultry Production. Front Pharmacol 2021; 12:723040. [PMID: 34512350 PMCID: PMC8424077 DOI: 10.3389/fphar.2021.723040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
Plant polyphenols have promoting health features, including anti-mutagenic, anti-inflammatory, anti-thrombotic, anti-atherogenic, and anti-allergic effects. These polyphenols improve the immune system by affecting the white blood cell proliferation, as well as by the synthesis of cytokines and other factors, which contribute to immunological resistance. Olive trees are one of the most famous trees in the world. Whereas, olive olive oil and derivatives represent a large group of feeding resource for farm animals. In recent years, remarkable studies have been carried out to show the possible use of olive oil and derivatives for improvement of both animal performance and product quality. In vivo application of olive oil and its derived products has shown to maintain oxidative balance owing to its polyphenolic content. Consumption of extra virgin olive oil reduces the inflammation, limits the risk of liver damage, and prevents the progression of steatohepatitis through its potent antioxidant activities. Also, the monounsaturated fatty acids content of olive oil (particularly oleic acid), might have positive impacts on lipid peroxidation and hepatic protection. Therefore, this review article aims to highlight the nutritional applications and beneficial health aspects of olive oil and its effect on poultry production.
Collapse
Affiliation(s)
- Rana M. Bilal
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| |
Collapse
|
15
|
Albrakati A. Aged garlic extract rescues ethephon-induced kidney damage by modulating oxidative stress, apoptosis, inflammation, and histopathological changes in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6818-6829. [PMID: 33011947 DOI: 10.1007/s11356-020-10997-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Ethephon is an organophosphorus plant growth regulator used to accelerate the ripening process and decrease the duration of cultivation. Here, the potential protective role of aged garlic extract (AGE) was investigated against ethephon-mediated nephrotoxicity. Four experimental groups were established (n = 15), including control, AGE (250 mg/kg), ethephon (200 mg/kg), and AGE + ethephon. In the current work, kidney function parameters (urea, creatinine, and KIM-1) along with oxidative stress biomarkers, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, glutathione, and its related enzymes, superoxide dismutase, catalase, malondialdehyde, and nitric oxide, were determined. The expression of inflammatory mediators namely tumor necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B, and apoptotic markers (caspase 3, Bax, and Bcl2) were determined in the renal tissue. Additionally, the histopathological alterations in response to treatments were examined. Ethephon exposure increased the levels of kidney function markers along with relative kidney weight coupled with histological changes in the kidney tissue. Additionally, ethephon increased the levels of the tested pro-oxidant markers and decreased the antioxidant indices, resulting in oxidative damage to renal tissues. An elevation in the pro-inflammatory mediators was also recorded following ethephon intoxication. Furthermore, renal cell loss was observed through histological examinations and biochemical measurements upon ethephon administration. On the other hand, AGE significantly ameliorated the molecular, biochemical, and structural changes elicited by ethephon. These findings suggest that AGE may be used to decrease or prevent the side effects of ethephon exposure in kidneys, through the activation of Nrf2 and inhibition of inflammation and apoptotic response.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
16
|
Elghareeb MM, Elshopakey GE, Hendam BM, Rezk S, Lashen S. Synergistic effects of Ficus Carica extract and extra virgin olive oil against oxidative injury, cytokine liberation, and inflammation mediated by 5-Fluorouracil in cardiac and renal tissues of male albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4558-4572. [PMID: 32946057 DOI: 10.1007/s11356-020-10778-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
5-Fluorouracil (5-FU), a chemotherapeutic drug, has adverse effects on heart and kidney functions. Ficus Carica (fig) and extra virgin olive oil (EVOO) are natural sources which have antioxidant effects. This study investigated the synergistic effects of fig extract and EVOO against cardiac and renal damage induced by 5-FU. Forty rats were equally divided into five groups and treated with physiological saline (control), five intravenous injections of 5-FU (40 mg/kg b.w) (5-FU), fig (1 g/kg b.w/day, orally) with 5-FU (Fig/5-FU), EVOO (7 g/kg b.w/day, orally) with 5-FU (EVOO/5-FU), combined treatment of fig and EVOO with five 5-FU injections (Fig/EVOO/5-FU). After 30 days, blood and tissue samples (Heart and kidney) were collected to be used in the examinations. 5-FU significantly increased serum creatine kinase activity, renal biomarkers, cholesterol, triglycerides, C-reactive protein, tumor necrosis factor-α, and interleukin-1β as well as cardiac and renal lipid peroxides (malondialdehyde). Meanwhile, serum levels of immunoglobulins, interleukins (IL-10, IL-12), and antioxidants of heart and kidney tissues were significantly decreased in 5-FU group. It also downregulated cardiac and renal Bcl2, and upregulated cardiac troponin and renin gene expressions. As well, histological alterations clarified that 5-FU induced cardiac cell damage, distorted renal corpuscles and tubules, inflammatory cell infiltrations, and severe congestion and hemorrhage in the blood vessels. The treatment with fig and olive oil, especially the combined treatment, modulated the toxic effect of 5-FU on the heart and kidney. Our results revealed that fig extract and EVOO have a powerful antioxidant and many protective effects against cardiac and renal toxicity induced by 5-FU, especially when using fig and EVOO together as a combined treatment.
Collapse
Affiliation(s)
- Mona M Elghareeb
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|