1
|
Garg G, Trisal A, Singh AK. Unlocking the therapeutic potential of gut microbiota for preventing and treating aging-related neurological disorders. Neuroscience 2025; 572:190-203. [PMID: 40073931 DOI: 10.1016/j.neuroscience.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Billions of microorganisms inhabit the human gut and maintain overall health. Recent research has revealed the intricate interaction between the brain and gut microbiota through the microbiota-gut-brain axis (MGBA) and its effect on neurodegenerative disorders (NDDs). Alterations in the gut microbiota, known as gut dysbiosis, are linked to the development and progression of several NDDs. Studies suggest that the gut microbiota may be a viable target for improving cognitive health and reducing hallmarks of brain aging. Numerous pathways including hypothalamic-pituitary-adrenal axis stimulation, neurotransmitter release disruption, system-wide inflammation, and increased intestinal and blood-brain barrier permeability connect gut dysbiosis to neurological conditions. Metabolites produced by the gut microbiota influence neural processes that affect brain function. Clinical interventions depend on the capacity to understand the equilibrium between beneficial and detrimental gut microbiota, as it affects both neurodegeneration and neuroprotection. The importance of the gut microbiota and its metabolites during brain aging and the development of neurological disorders is summarized in this review. Moreover, we explored the possible therapeutic effects of the gut microbiota on age-related NDDs. Highlighting various pathways that connect the gut and the brain, this review identifies several important domains where gut microbiota-based interventions could offer possible solutions for age-related NDDs. Furthermore, prebiotics and probiotics are discussed as effective alternatives for mitigating indirect causes of gut dysbiosis. These therapeutic interventions are poised to play a significant role in improving dysbiosis and NDDs, paving the way for further research.
Collapse
Affiliation(s)
- Geetika Garg
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576 104, India.
| |
Collapse
|
2
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Okunlola FO, Okunlola AR, Adetuyi BO, Soliman MES, Alexiou A, Papadakis M, Fawzy MN, El-Saber Batiha G. Beyond the gut: Unraveling the multifaceted influence of microbiome on cardiovascular health. Clin Nutr ESPEN 2025; 67:71-89. [PMID: 40064239 DOI: 10.1016/j.clnesp.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.
Collapse
Affiliation(s)
- Felix Oladele Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Abimbola Rafiat Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Babatunde Oluwafemi Adetuyi
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Sidoti A, D’Angelo R, Castagnetti A, Viciani E, Scimone C, Alibrandi S, Giannini G. Exploring Trimethylaminuria: Genetics and Molecular Mechanisms, Epidemiology, and Emerging Therapeutic Strategies. BIOLOGY 2024; 13:961. [PMID: 39765628 PMCID: PMC11726875 DOI: 10.3390/biology13120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025]
Abstract
Trimethylaminuria (TMAU) is a rare metabolic syndrome caused by the accumulation of trimethylamine in the body, causing odor emissions similar to rotten fish in affected patients. This condition is determined by both genetic and environmental factors, especially gut dysbiosis. The multifactorial nature of this syndrome makes for a complex and multi-level diagnosis. To date, many aspects of this disease are still unclear. Recent research revealed the FMO3 haplotypes' role on the enzyme's catalytic activity. This could explain why patients showing only combined polymorphisms or heterozygous causative variants also manifest the TMAU phenotype. In addition, another research hypothesized that the behavioral disturbances showed by patients may be linked to gut microbiota alterations. Our review considers current knowledge about TMAU, clarifying its molecular aspects, the therapeutic approaches used to limit this condition, and the new therapies that are under study.
Collapse
Affiliation(s)
- Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
| | - Andrea Castagnetti
- Wellmicro Srl, Via Antonio Canova, 30, 40138 Bologna, Italy; (A.C.); (E.V.)
| | - Elisa Viciani
- Wellmicro Srl, Via Antonio Canova, 30, 40138 Bologna, Italy; (A.C.); (E.V.)
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., Via Michele Miraglia, 20, 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., Via Michele Miraglia, 20, 90139 Palermo, Italy
| | | |
Collapse
|
5
|
Moreira MJ, Pintado M, Almeida JMMMD. Are Aptamer-Based Biosensors the Future of the Detection of the Human Gut Microbiome?-A Systematic Review and Meta-Analysis. BIOSENSORS 2024; 14:423. [PMID: 39329798 PMCID: PMC11430143 DOI: 10.3390/bios14090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
The gut microbiome is shaped early in life by dietary and lifestyle factors. Specific compounds in the gut affect the growth of different bacterial species and the production of beneficial or harmful byproducts. Dysbiosis of the gut microbiome has been linked to various diseases resulting from the presence of harmful bacteria and their byproducts. Existing methods for detecting microbial species, such as microscopic observation and molecular biological techniques, are costly, labor-intensive, and require skilled personnel. Biosensors, which integrate a recognition element, transducer, amplifier, signal processor, and display unit, can convert biological events into electronic signals. This review provides a comprehensive and systematic survey of scientific publications from 2018 to June 2024, obtained from ScienceDirect, PubMed, and Scopus databases. The aim was to evaluate the current state-of-the-art and identify knowledge gaps in the application of aptamer biosensors for the determination of gut microbiota. A total of 13 eligible publications were categorized based on the type of study: those using microbial bioreceptors (category 1) and those using aptamer bioreceptors (category 2) for the determination of gut microbiota. Point-of-care biosensors are being developed to monitor changes in metabolites that may lead to disease. They are well-suited for use in the healthcare system and offer an excellent alternative to traditional methods. Aptamers are gaining attention due to their stability, specificity, scalability, reproducibility, low production cost, and low immunogenicity. While there is limited research on using aptamers to detect human gut microbiota, they show promise for providing accurate, robust, and cost-effective diagnostic methods for monitoring the gut microbiome.
Collapse
Affiliation(s)
- Maria João Moreira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.M.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.M.); (M.P.)
| | - José M. M. M. De Almeida
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, University of Porto, 4169-007 Porto, Portugal
- Department of Physics, School of Sciences and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
6
|
Panyod S, Wu WK, Chang CT, Wada N, Ho HC, Lo YL, Tsai SP, Chen RA, Huang HS, Liu PY, Chen YH, Chuang HL, Shen TCD, Tang SL, Ho CT, Wu MS, Sheen LY. Common dietary emulsifiers promote metabolic disorders and intestinal microbiota dysbiosis in mice. Commun Biol 2024; 7:749. [PMID: 38902371 PMCID: PMC11190199 DOI: 10.1038/s42003-024-06224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan, ROC
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Kai Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Bachelor Program of Biotechnology and Food Nutrition, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Ting Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Naohisa Wada
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Ling Lo
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Sing-Ping Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Yi-Hsun Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan, ROC.
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
7
|
Ding J, Gu B, Meng J, Hu M, Wang W, Liu J. Response of serum biochemical profile, antioxidant enzymes, and gut microbiota to dietary Hong-bailanshen supplementation in horses. Front Microbiol 2024; 15:1327210. [PMID: 38444806 PMCID: PMC10912594 DOI: 10.3389/fmicb.2024.1327210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Background Traditional Chinese medicine (TCM) is widely used in humans and animals, which is very important for health. TCM affects the body 's immunity and changes in intestinal flora. This study was conducted to investigate the effects of dietary Hong-bailanshen (HBLS) supplementation in horses on serum biochemical profile, antioxidant enzymes and gut microbiota. Methods In this study, five horses were selected. On day 0, 14, 28, blood samples and feces were collected on days 0, 14, and 28 to analyse gut microbiota, serum biochemical and redox indexes. Results The results showed that the addition of HBLS to horse diets significantly decreased the level of alanine aminotransferase, alkaline phosphatase, creatine kinase and malondialdehyde (p < 0.05, p < 0.01) and significantly increased the activity of total antioxidant capacity, superoxide dismutase and catalase (p < 0.05, p < 0.01). Compared with day 14, the levels of alanine aminotransferase, alkaline phosphatase and creatine kinase were significantly decreased; however, the level of catalase was significantly increased in the horses continuously fed with HBLS for 28 days (p < 0.05, p < 0.01). Alpha diversity analysis was performed that chao1 (p < 0.05), observed_specicies, faith'pd and goods_coverage upregulated in the horses fed HBLS. A total of 24 differential genera were detected adding HBLS to diet increased the abundance of Bacillus, Lactobacillaceae, Leuconostocaceae, Christensenellaceae, Peptostreptococcaceae, Faecalibacterium, Erysipelotrichaceae, Pyramidobacter, Sphaerochaeta, WCHB1-25, Bacteria, Oscillospira, and Acetobacteraceae, while reduced Aerococcus, EtOH8, Syntrophomonas, Caulobacter, Bradyrhizobiaceae, W22, Succinivibrionaceae, and Desulfovibrio (p < 0.05, p < 0.01). Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Reali E, Caliceti C, Lorenzini A, Rizzo P. The Use of Microbial Modifying Therapies to Prevent Psoriasis Exacerbation and Associated Cardiovascular Comorbidity. Inflammation 2024; 47:13-29. [PMID: 37953417 PMCID: PMC10799147 DOI: 10.1007/s10753-023-01915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Paola Rizzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
9
|
Li Y, Ma J, Meng J, Li S, Zhang Y, You W, Sai X, Yang J, Zhang S, Sun W. Structural changes in the gut virome of patients with atherosclerotic cardiovascular disease. Microbiol Spectr 2024; 12:e0105023. [PMID: 38051048 PMCID: PMC10782949 DOI: 10.1128/spectrum.01050-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Existing studies have found that there is a close relationship between human virome and numerous diseases, and diseases may affect the diversity and composition of the virome; at the same time, changes in the virome will in turn affect the onset and progression of the disease. However, the composition and functional capabilities of the gut virome associated with atherosclerotic cardiovascular disease (ACVD) have not been systematically investigated. To our knowledge, this is the first study investigating the gut virome in patients with ACVD. We characterized the structural changes in the gut virome of ACVD patients, which may facilitate additional mechanistic, diagnostic, and interventional studies of ACVD and related diseases.
Collapse
Affiliation(s)
- Youshan Li
- Department of Peripheral Vascular Diseases II, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | | | - Yan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei You
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xulin Sai
- Department of Peripheral Vascular Diseases II, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianfeng Yang
- Department of Peripheral Vascular Diseases II, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Zhang
- Department of Peripheral Vascular Diseases II, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Sun
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Akshay A, Gasim R, Ali TE, Kumar YS, Hassan A. Unlocking the Gut-Cardiac Axis: A Paradigm Shift in Cardiovascular Health. Cureus 2023; 15:e51039. [PMID: 38264397 PMCID: PMC10805229 DOI: 10.7759/cureus.51039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
The gut-cardiac axis represents an emerging area of research focusing on the relationship between gut health and cardiovascular function. This narrative review examines the Gut-Cardiac Axis, emphasizing its emerging role in cardiovascular health and disease management. Traditionally viewed as a component of the digestive system, the gut is now recognized for its significant influence on cardiac health. The gut microbiota, its metabolites, and gut-related inflammation are key factors affecting heart structure and function. This review highlights how dietary and nutritional interventions can effectively modulate the gut-cardiac axis, leading to personalized strategies for optimizing cardiovascular health. We discuss the clinical relevance of the gut-cardiac axis, particularly its role in providing diagnostic and prognostic markers for cardiovascular diseases. This exploration of the gut-cardiac axis marks a significant shift in cardiology, integrating gut health into cardiovascular risk assessment and treatment strategies. The review provides an in-depth overview of current research and its potential to impact cardiovascular medicine significantly. We emphasize the importance of this research in advancing patient care and improving cardiac outcomes, underlining the potential of the gut-cardiac axis to transform cardiovascular health management.
Collapse
Affiliation(s)
| | - Rayan Gasim
- Internal Medicine, University of Khartoum, Khartoum, SDN
| | - Thowaiba E Ali
- Medicine and Surgery, University of Tennessee, Chattanooga, USA
| | | | | |
Collapse
|
11
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
12
|
Panyod S, Wu WK, Peng SY, Tseng YJ, Hsieh YC, Chen RA, Huang HS, Chen YH, Chuang HL, Hsu CC, Shen TCD, Yang KC, Ho CT, Wu MS, Sheen LY. Ginger essential oil and citral ameliorates atherosclerosis in ApoE -/- mice by modulating trimethylamine-N-oxide and gut microbiota. NPJ Sci Food 2023; 7:19. [PMID: 37210385 PMCID: PMC10199921 DOI: 10.1038/s41538-023-00196-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/27/2023] [Indexed: 05/22/2023] Open
Abstract
Recently, the role of the gut microbiota in diseases, including cardiovascular disease (CVD), has gained considerable research attention. Trimethylamine-N-oxide (TMAO), which is formed during ʟ-carnitine metabolism, promotes the formation of atherosclerotic plaques, causing thrombosis. Here, we elucidated the anti-atherosclerotic effect and mechanism of ginger (Zingiber officinale Roscoe) essential oil (GEO) and its bioactive compound citral in Gubra Amylin NASH (GAN) diet with ʟ-carnitine-induced atherosclerosis female ApoE-/- mice. Treatment with GEO at both low and high doses and citral inhibited the formation of aortic atherosclerotic lesions, improved plasma lipid profile, reduced blood sugar, improved insulin resistance, decreased plasma TMAO levels, and inhibited plasma inflammatory cytokines, especially interleukin-1β. Additionally, GEO and citral treatment modulated gut microbiota diversity and composition by increasing the abundance of beneficial microbes and decreasing the abundance of CVD-related microbes. Overall, these results showed that GEO and citral may serve as potential dietary supplements for CVD prevention by improving gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Sin-Yi Peng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Yea-Jing Tseng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Ya-Chi Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Yi-Hsun Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan, ROC.
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
13
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Jakubczyk K, Janda-Milczarek K, Czarnecka W, Rębacz-Maron E, Zacha S, Sieńko J, Zeair S, Dalewski B, Marlicz W, Łoniewski I, Skonieczna-Żydecka K. Clinical Relevance of Gut Microbiota Alterations under the Influence of Selected Drugs-Updated Review. Biomedicines 2023; 11:biomedicines11030952. [PMID: 36979931 PMCID: PMC10046554 DOI: 10.3390/biomedicines11030952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As pharmacology and science progress, we discover new generations of medicines. This relationship is a response to the increasing demand for medicaments and is powered by progress in medicine and research about the respective entities. However, we have questions about the efficiency of pharmacotherapy in individual groups of patients. The effectiveness of therapy is controlled by many variables, such as genetic predisposition, age, sex and diet. Therefore, we must also pay attention to the microbiota, which fulfill a lot of functions in the human body. Drugs used in psychiatry, gastroenterology, diabetology and other fields of medicine have been demonstrated to possess much potential to change the composition and probably the function of the intestinal microbiota, which consequently creates long-term risks of developing chronic diseases. The article describes the amazing interactions between gut microbes and drugs currently used in healthcare.
Collapse
Affiliation(s)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Institute of Biology, Department of Ecology and Anthropology, University of Szczecin, 71-415 Szczecin, Poland
| | - Sławomir Zacha
- Department of Pediatric Orthopedics and Oncology of the Musculoskeletal System, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Jerzy Sieńko
- Department of General and Gastroenterology Oncology Surgery, Pomeranian Medical University in Szczecin, 71-899 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Samir Zeair
- General and Transplant Surgery Ward with Sub-Departments of Pomeranian Regional Hospital in Szczecin, 71-455 Arkonska, Poland
| | - Bartosz Dalewski
- Department of Dental Prosthetics, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | |
Collapse
|
15
|
Kapoor B, Gulati M, Rani P, Gupta R. Psoriasis: Interplay between dysbiosis and host immune system. Clin Exp Rheumatol 2022; 21:103169. [PMID: 35964945 DOI: 10.1016/j.autrev.2022.103169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of both gut and skin microbiota in the pathogenesis of psoriasis. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts, have been identified as possible triggers for recurrent episodes of psoriasis. Mechanistically, gut dysbiosis leads to "leaky gut syndrome" via disruption of epithelial bilayer, thereby, resulting in translocation of bacteria and other endotoxins to systemic circulation, which in turn, results in inflammatory response. Similarly, skin dysbiosis disrupts the cutaneous homeostasis, leading to invasion of bacteria and other pathogens to deeper layers of skin or even systemic circulation further enhanced by injury caused by pruritus-induced scratching, and elicit innate and adaptive inflammation. The present review explores the correlation of both skin and gut microbiota dysbiosis with psoriasis. Also, the studies highlighting the potential of bacteriotherapeutic approaches including probiotics, prebiotics, metabiotics, and fecal microbiota transplantation for the management of psoriasis have been discussed.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
16
|
Panyod S, Wu WK, Chen PC, Chong KV, Yang YT, Chuang HL, Chen CC, Chen RA, Liu PY, Chung CH, Huang HS, Lin AYC, Shen TCD, Yang KC, Huang TF, Hsu CC, Ho CT, Kao HL, Orekhov AN, Wu MS, Sheen LY. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes 2022; 8:4. [PMID: 35087050 PMCID: PMC8795425 DOI: 10.1038/s41522-022-00266-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of ʟ-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in ʟ-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Chen Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kent-Vui Chong
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tang Yang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chieh-Chang Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Hsien-Li Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan.
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|