1
|
Mohamed ME, Saqr A, Staley C, Onyeaghala G, Teigen L, Dorr CR, Remmel RP, Guan W, Oetting WS, Matas AJ, Israni AK, Jacobson PA. Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation. Transplantation 2024; 108:1895-1910. [PMID: 38361239 PMCID: PMC11327386 DOI: 10.1097/tp.0000000000004926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The human microbiome is associated with human health and disease. Exogenous compounds, including pharmaceutical products, are also known to be affected by the microbiome, and this discovery has led to the field of pharmacomicobiomics. The microbiome can also alter drug pharmacokinetics and pharmacodynamics, possibly resulting in side effects, toxicities, and unanticipated disease response. Microbiome-mediated effects are referred to as drug-microbiome interactions (DMI). Rapid advances in the field of pharmacomicrobiomics have been driven by the availability of efficient bacterial genome sequencing methods and new computational and bioinformatics tools. The success of fecal microbiota transplantation for recurrent Clostridioides difficile has fueled enthusiasm and research in the field. This review focuses on the pharmacomicrobiome in transplantation. Alterations in the microbiome in transplant recipients are well documented, largely because of prophylactic antibiotic use, and the potential for DMI is high. There is evidence that the gut microbiome may alter the pharmacokinetic disposition of tacrolimus and result in microbiome-specific tacrolimus metabolites. The gut microbiome also impacts the enterohepatic recirculation of mycophenolate, resulting in substantial changes in pharmacokinetic disposition and systemic exposure. The mechanisms of these DMI and the specific bacteria or communities of bacteria are under investigation. There are little or no human DMI data for cyclosporine A, corticosteroids, and sirolimus. The available evidence in transplantation is limited and driven by small studies of heterogeneous designs. Larger clinical studies are needed, but the potential for future clinical application of the pharmacomicrobiome in avoiding poor outcomes is high.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | | | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Graboski AL, Simpson JB, Pellock SJ, Mehta N, Creekmore BC, Ariyarathna Y, Bhatt AP, Jariwala PB, Sekela JJ, Kowalewski ME, Barker NK, Mordant AL, Borlandelli VB, Overkleeft H, Herring LE, Jin J, I James L, Redinbo MR. Advanced piperazine-containing inhibitors target microbial β-glucuronidases linked to gut toxicity. RSC Chem Biol 2024; 5:853-865. [PMID: 39211470 PMCID: PMC11353122 DOI: 10.1039/d4cb00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial β-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation. Here we report the structure-activity relationships of two selective piperazine-containing bacterial GUS inhibitors. We explore the potency and mechanism of action of novel compounds using purified GUS enzymes and co-crystal structures. Our results establish the importance of the piperazine nitrogen placement and nucleophilicity as well as the presence of a cyclohexyl moiety appended to the aromatic core. Using these insights, we synthesized an improved microbial GUS inhibitor, UNC10206581, that potently inhibits both the FMN-binding and loop 1 GUS enzymes in the human gut microbiome, does not inhibit bovine GUS, and is non-toxic within a relevant dosing range. Kinetic analyses demonstrate that UNC10206581 undergoes a slow-binding and substrate-dependent mechanism of inhibition similar to that of the parent scaffolds. Finally, we show that UNC10206581 displays potent activity within the physiologically relevant systems of microbial cultures and human fecal protein lysates examined by metagenomic and metaproteomic methods. Together, these results highlight the discovery of more effective bacterial GUS inhibitors for the alleviation of microbe-mediated homeostatic dysregulation and drug toxicities and potential therapeutic development.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina Chapel Hill North Carolina USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Samuel J Pellock
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Naimee Mehta
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Benjamin C Creekmore
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Yamuna Ariyarathna
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Aadra P Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Josh J Sekela
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill North Carolina USA
| | - Natalie K Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Valentina B Borlandelli
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Hermen Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai New York NY USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
3
|
Ponis G, Decorti G, Barbi E, Stocco G, Maschio M. Decrease in Mycophenolate Mofetil Plasma Concentration in the Presence of Antibiotics: A Case Report in a Cystic Fibrosis Patient with Lung Transplant. Int J Mol Sci 2024; 25:2358. [PMID: 38397035 PMCID: PMC10888672 DOI: 10.3390/ijms25042358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppression management in transplant recipients is a critical component of pharmacotherapy. This becomes particularly crucial when patients are exposed to multiple medications that may lead to pharmacological interactions, potentially compromising the effectiveness of immunosuppression. We present the case of a 46-year-old patient diagnosed with cystic fibrosis in childhood at our hospital, who underwent bilateral lung transplantation and is undergoing immunosuppressive therapy. The patient was hospitalized due to an acute pulmonary exacerbation. During the hospitalization, the patient was administered various classes of antibiotics while continuing the standard antirejection regimen of everolimus and mycophenolate. Plasma concentrations of immunosuppressants, measured after antibiotic therapy, revealed significantly lower levels than the therapeutic thresholds, providing the basis for formulating the hypothesis of a drug-drug interaction phenomenon. This hypothesis is supported by the rationale of antibiotic-induced disruption of the intestinal flora, which directly affects the kinetics of mycophenolate. These levels increased after discontinuation of the antimicrobials. Patients with CF undergoing lung transplantation, especially prone to pulmonary infections due to their medical condition, considering the enterohepatic circulation of mycophenolate mediated by intestinal bacteria, necessitate routine monitoring of mycophenolate concentrations during and immediately following the cessation of antibiotic therapies, that could potentially result in insufficient immunosuppression.
Collapse
Affiliation(s)
- Giuliano Ponis
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.P.); (E.B.); (M.M.)
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Egidio Barbi
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.P.); (E.B.); (M.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Gabriele Stocco
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.P.); (E.B.); (M.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Massimo Maschio
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.P.); (E.B.); (M.M.)
| |
Collapse
|
4
|
Wang S, Ju D, Zeng X. Mechanisms and Clinical Implications of Human Gut Microbiota-Drug Interactions in the Precision Medicine Era. Biomedicines 2024; 12:194. [PMID: 38255298 PMCID: PMC10813426 DOI: 10.3390/biomedicines12010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The human gut microbiota, comprising trillions of microorganisms residing in the gastrointestinal tract, has emerged as a pivotal player in modulating various aspects of human health and disease. Recent research has shed light on the intricate relationship between the gut microbiota and pharmaceuticals, uncovering profound implications for drug metabolism, efficacy, and safety. This review depicted the landscape of molecular mechanisms and clinical implications of dynamic human gut Microbiota-Drug Interactions (MDI), with an emphasis on the impact of MDI on drug responses and individual variations. This review also discussed the therapeutic potential of modulating the gut microbiota or harnessing its metabolic capabilities to optimize clinical treatments and advance personalized medicine, as well as the challenges and future directions in this emerging field.
Collapse
Affiliation(s)
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| |
Collapse
|
5
|
Torres-Carrillo N, Martínez-López E, Torres-Carrillo NM, López-Quintero A, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Hurtado IA. Pharmacomicrobiomics and Drug-Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int J Mol Sci 2023; 24:17100. [PMID: 38069427 PMCID: PMC10707377 DOI: 10.3390/ijms242317100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Microorganisms have a close relationship with humans, whether it is commensal, symbiotic, or pathogenic. Recently, it has been documented that microorganisms may influence the response to drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers to modifications in the microbiome as a result of drug administration. In this context, we introduce the concept of "drug-infection interaction" to describe the influence of pathogenic microorganisms on drug response. This review analyzes the current state of knowledge regarding the relevance of microorganisms in the host's response to drugs. It also highlights promising areas for future research and proposes the term "drug-infection interaction" as an extension of pharmacomicrobiomics.
Collapse
Affiliation(s)
- Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Andres López-Quintero
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Anahí González-Mercado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
6
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Potential of Fecal Microbiota Transplantation to Prevent Acute GVHD: Analysis from a Phase II Trial. Clin Cancer Res 2023; 29:4920-4929. [PMID: 37787998 PMCID: PMC10841695 DOI: 10.1158/1078-0432.ccr-23-2369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Intestinal microbiota disruptions early after allogeneic hematopoietic cell transplantation have been associated with increased risk for acute GVHD (aGVHD). In our recent randomized phase II trial of oral, encapsulated, third-party fecal microbiota transplantation (FMT) versus placebo, FMT at the time of neutrophil recovery was safe and ameliorated dysbiosis. Here, we evaluated in post hoc analysis whether donor microbiota engraftment after FMT may protect against aGVHD. EXPERIMENTAL DESIGN We analyzed pre- and post-FMT stool samples and estimated donor microbiota engraftment (a preplanned secondary endpoint) by determining the fraction of post-FMT microbiota formed by unique donor taxa (donor microbiota fraction; dMf). RESULTS dMf was higher in patients who later developed grade I or no aGVHD (median 33.9%; range, 1.6%-74.3%) than those who developed grade II-IV aGVHD (median 25.3%; range, 2.2%-34.8%; P = 0.006). The cumulative incidence of grade II-IV aGVHD by day 180 was lower in the group with greater-than-median dMf than the group with less-than-median dMf [14.3% (95% confidence interval, CI, 2.1-37.5) vs. 76.9% (95% CI, 39.7-92.8), P = 0.008]. The only determinant of dMf in cross-validated least absolute shrinkage and selection operator (LASSO)-regularized regression was the patient's pre-FMT microbiota diversity (Pearson correlation coefficient -0.82, P = 1.6 × 10-9), indicating more potent microbiota modulation by FMT in patients with more severe dysbiosis. Microbiota network analysis revealed major rewiring including changes in the most central nodes, without emergence of keystone species, as a potential mechanism of FMT effect. CONCLUSIONS FMT may have protective effects against aGVHD, especially in patients with more severe microbiota disruptions.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota; Minneapolis, MN, USA
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Oncology, University of Washington; Seattle, WA, USA
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Tauseef Ur Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota; Minneapolis, MN, USA
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota; Minneapolis, MN, USA
| | - David Kazadi
- Department of Medicine, University of Minnesota; Minneapolis, MN, USA
| | - Hossam Halaweish
- Department of Surgery, University of Minnesota; Minneapolis, MN, USA
| | - Mohammad H. Khan
- Department of Surgery, University of Minnesota; Minneapolis, MN, USA
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota; Minneapolis, MN, USA
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota; Minneapolis, MN, USA
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota; Minneapolis, MN, USA
- Division of Biostatistics, School of Public Health, University of Minnesota; Minneapolis, MN, USA
| | - Amanda J. Kabage
- Center for Immunology, University of Minnesota; Minneapolis, MN, USA
| | - Sharon Lopez
- Center for Immunology, University of Minnesota; Minneapolis, MN, USA
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota; Minneapolis, MN, USA
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota; Minneapolis, MN, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota; Minneapolis, MN, USA
- Center for Immunology, University of Minnesota; Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota; St. Paul, MN, USA
| | | |
Collapse
|
7
|
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, Tarantino G, Cataldi M. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023; 11:2562. [PMID: 37761003 PMCID: PMC10526314 DOI: 10.3390/biomedicines11092562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.
Collapse
Affiliation(s)
- Annalaura Manes
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Loreta Dodani
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Claudia Gautiero
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Mariastella Di Lauro
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Gilda Nasti
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Espedita Muscariello
- Nutrition Unit, Department of Prevention, Local Health Authority Napoli 3 Sud, 80059 Naples, Italy;
| | - Bruna Guida
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| |
Collapse
|
8
|
Dukaew N, Thongkumkoon P, Sirikaew N, Dissook S, Sakuludomkan W, Tongjai S, Thiennimitr P, Na Takuathung M, Benjanuwattra J, Kongthaweelert P, Koonrungsesomboon N. Gut Microbiota-Mediated Pharmacokinetic Drug-Drug Interactions between Mycophenolic Acid and Trimethoprim-Sulfamethoxazole in Humans. Pharmaceutics 2023; 15:1734. [PMID: 37376182 DOI: 10.3390/pharmaceutics15061734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mycophenolic acid (MPA) and trimethoprim-sulfamethoxazole (TMP-SMX) are commonly prescribed together in certain groups of patients, including solid organ transplant recipients. However, little is known about the pharmacokinetic drug-drug interactions (DDIs) between these two medications. Therefore, the present study aimed to determine the effects of TMP-SMX on MPA pharmacokinetics in humans and to find out the relationship between MPA pharmacokinetics and gut microbiota alteration. This study enrolled 16 healthy volunteers to take a single oral dose of 1000 mg mycophenolate mofetil (MMF), a prodrug of MPA, administered without and with concurrent use of TMP-SMX (320/1600 mg/day) for five days. The pharmacokinetic parameters of MPA and its glucuronide (MPAG) were measured using high-performance liquid chromatography. The composition of gut microbiota in stool samples was profiled using a 16S rRNA metagenomic sequencing technique during pre- and post-TMP-SMX treatment. Relative abundance, bacterial co-occurrence networks, and correlations between bacterial abundance and pharmacokinetic parameters were investigated. The results showed a significant decrease in systemic MPA exposure when TMP-SMX was coadministered with MMF. Analysis of the gut microbiome revealed altered relative abundance of two enriched genera, namely the genus Bacteroides and Faecalibacterium, following TMP-SMX treatment. The relative abundance of the genera Bacteroides, [Eubacterium] coprostanoligenes group, [Eubacterium] eligens group, and Ruminococcus appeared to be significantly correlated with systemic MPA exposure. Coadministration of TMP-SMX with MMF resulted in a reduction in systemic MPA exposure. The pharmacokinetic DDIs between these two drugs were attributed to the effect of TMP-SMX, a broad-spectrum antibiotic, on gut microbiota-mediated MPA metabolism.
Collapse
Affiliation(s)
- Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nutnicha Sirikaew
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivamoke Dissook
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wannachai Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Tongjai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Juthipong Benjanuwattra
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Prachya Kongthaweelert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Przybyciński J, Drożdżal S, Wilk A, Dziedziejko V, Szumilas K, Pawlik A. The Effect of the Gut Microbiota on Transplanted Kidney Function. Int J Mol Sci 2023; 24:ijms24021260. [PMID: 36674775 PMCID: PMC9866452 DOI: 10.3390/ijms24021260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
The intestinal microflora is extremely important, not only in the processes of absorption, digestion and biosynthesis of vitamins, but also in shaping the immune and cognitive functions of the human body. Several studies demonstrate a correlation between microbiota composition and such events as graft rejection, kidney interstitial fibrosis, urinary tract infections, and diarrhoea or graft tolerance. Some of those changes might be directly linked with pathologies such as colonization with pathogenic bacterial strains. Gut microbiota composition also plays an important role in metabolic complications and viral infections after transplantation. From the other side, gut microbiota might induce graft tolerance by promotion of T and B regulatory cells. Graft tolerance induction is still an extremely important issue regarding transplantology and might allow the reduction or even avoidance of immunosuppressive treatment. Although there is a rising evidence of the pivotal role of gut microbiota in aspects of kidney transplantation there is still a lack of knowledge on the direct mechanisms of microbiota action. Furthermore, some of those negative effects could be reversed by probiotics of faecal microbiota trapoinsplantation. While diabetes and hypertension as well as BKV and CMV viremia are common and important complications of transplantation, both worsening the graft function and causing systemic injuries, it opens up potential clinical treatment options. As has been also suggested in the current review, some bacterial subsets exhibit protective properties. However, currently, there is a lack of evidence on pro- and prebiotic supplementation in kidney transplant patients. In the current review, we describe the effect of the microbiota on the transplanted kidney in renal transplant recipients.
Collapse
Affiliation(s)
- Jarosław Przybyciński
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Sylwester Drożdżal
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Wilk
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kamila Szumilas
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
10
|
Khan MH, Onyeaghala GC, Rashidi A, Holtan SG, Khoruts A, Israni A, Jacobson PA, Staley C. Fecal β-glucuronidase activity differs between hematopoietic cell and kidney transplantation and a possible mechanism for disparate dose requirements. Gut Microbes 2022; 14:2108279. [PMID: 35921529 PMCID: PMC9351555 DOI: 10.1080/19490976.2022.2108279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota produces β-glucuronidase that plays an essential role in the metabolism of the immunosuppressant mycophenolate mofetil (MMF). This drug is commonly used in organ and hematopoietic cell transplantation (HCT), with variations in dosing across transplant types. We hypothesized that β-glucuronidase activity differs between transplant types, which may account for differences in dosing requirements. We evaluated fecal β-glucuronidase activity in patients receiving MMF post-allogeneic HCT and post-kidney transplant. Kidney transplant patients had significantly greater β-glucuronidase activity (8.48 ± 6.21 nmol/hr/g) than HCT patients (3.50 ± 3.29 nmol/hr/g; P = .001). Microbially mediated β-glucuronidase activity may be a critical determinant in the amount of mycophenolate entering the systemic circulation and an important factor to consider for precision dosing of MMF.
Collapse
Affiliation(s)
- Mohammad Haneef Khan
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Armin Rashidi
- Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shernan G. Holtan
- Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Alexander Khoruts
- Gastroenterology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ajay Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States,Nephrology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Pamala A. Jacobson
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Christopher Staley
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States,CONTACT Christopher Staley 420 Delaware St, SE, MMC 195, Minneapolis, Minnesota55455, United States
| |
Collapse
|