1
|
Bulum J, Bastos MB, Hlinomaz O, Malkin O, Pawlowski T, Dragula M, Gil R. Pulsatile Left Ventricular Assistance in High-Risk Percutaneous Coronary Interventions: Short-Term Outcomes. J Clin Med 2024; 13:5357. [PMID: 39336843 PMCID: PMC11432136 DOI: 10.3390/jcm13185357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES To document the real-world experience with the use of pneumatic pulsatile mechanical circulatory support (MCS) with the PulseCath iVAC2L during high-risk percutaneous coronary interventions (HR-PCIs). Background: The use of MCS in HR-PCIs may reduce the rate of major adverse cardiovascular events (MACEs) at 90 days. The PulseCath iVAC2L is a short-term pulsatile transaortic left ventricular (LV) assist device that has been in use since 2014. The iVAC2L Registry tracks its safety and efficacy in a variety of hospitals worldwide. Methods: The iVAC2L Registry is a multicenter, observational registry that aggregates clinical data from patients treated with the iVAC2L worldwide. A total of 293 consecutive cases were retrospectively collected and analyzed. Estimated rates of in-hospital clinical endpoints were described. All-cause mortality was used as the primary endpoint and other outcomes of interest were used as secondary endpoints. The rates obtained were reported and contextualized. Results: The in-hospital rate of all-cause mortality was 1.0%, MACE was 3.1%. Severe hypotension occurred in 8.9% of patients. Major bleeding and major vascular complications occurred in 1.0% and 2.1%, respectively. Acute myocardial infarction occurred in 0.7% of patients. Cerebrovascular events occurred in 1.4% of patients. Cardiac arrest occurred in 1.7% of patients. A statistically significant improvement in blood pressure was observed with iVAC2L activation. Conclusions: The results of the present study suggest that the iVAC2L is capable of improving hemodynamics with a low rate of adverse events. However, confirmatory studies are needed to validate these findings.
Collapse
Affiliation(s)
- Josko Bulum
- Department of Internal Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Marcelo B Bastos
- Thoraxcentrum, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ota Hlinomaz
- Department of Cardiology, International Clinical Research Center, St. Anne University Hospital and Masaryk, University School of Medicine, 656 91 Brno, Czech Republic
| | - Oren Malkin
- PulseCath BV, 6811 KS Arnhem, The Netherlands
| | - Tomasz Pawlowski
- Department of Cardiology, National Institute of Medicine, 02-507 Warsaw, Poland
| | - Milan Dragula
- Department of Cardiology, University Hospital in Martin, 036 01 Martin, Slovakia
| | - Robert Gil
- Department of Cardiology, National Medical Institute of the Internal Affairs and Administration Ministry, 02-005 Warsaw, Poland
| |
Collapse
|
2
|
Zambrano BA, Wilson SI, Zook S, Vekaria B, Moreno MR, Kassi M. Computational investigation of outflow graft variation impact on hemocompatibility profile in LVADs. Artif Organs 2024; 48:375-385. [PMID: 37962282 DOI: 10.1111/aor.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Hemocompatibility-related adverse events (HRAE) occur commonly in patients with left ventricular assist devices (LVADs) and add to morbidity and mortality. It is unclear whether the outflow graft orientation can impact flow conditions leading to HRAE. This study presents a simulation-based approach using exact patient anatomy from medical images to investigate the influence of outflow cannula orientation in modulating flow conditions leading to HRAEs. METHODS A 3D model of a proximal aorta and outflow graft was reconstructed from a computed tomography (CT) scan of an LVAD patient and virtually modified to model multiple cannula orientations (n = 10) by varying polar (cranio-caudal) (n = 5) and off-set (anterior-posterior) (n = 2) angles. Time-dependent computational flow simulations were then performed for each anatomical orientation. Qualitative and quantitative hemodynamics metrics of thrombogenicity including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), endothelial cell platelet activation potential (ECAP), particle residence time (PRT), and platelet activation potential (PLAP) were analyzed. RESULTS Within the simulations performed, endothelial cell activation potential (ECAP) and particle residence time (PRT) were found to be lowest with a polar angle of 85°, regardless of offset angle. However, polar angles that produced parameters at levels least associated with thrombosis varied when the offset angle was changed from 0° to 12°. For offset angles of 0° and 12° respectively, flow shear was lowest at 65° and 75°, time averaged wall shear stress (TAWSS) was highest at 85° and 35°, and platelet activation potential (PLAP) was lowest at 65° and 45°. CONCLUSION This study suggests that computational fluid dynamic modeling based on patient-specific anatomy can be a powerful analytical tool when identifying optimal positioning of an LVAD. Contrary to previous work, our findings suggest that there may be an "ideal" outflow cannula for each individual patient based on a CFD-based hemocompatibility profile.
Collapse
Affiliation(s)
- Byron A Zambrano
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shannon I Wilson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Salma Zook
- Houston Methodist, Department of Cardiology, Houston Methodist Research Hospital, Houston, Texas, USA
| | - Bansi Vekaria
- Houston Methodist, Department of Cardiology, Houston Methodist Research Hospital, Houston, Texas, USA
| | - Michael R Moreno
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Mahwash Kassi
- Houston Methodist, Department of Cardiology, Houston Methodist Research Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
Kuroda T, Miyagi C, Polakowski AR, Flick CR, Kuban BD, Fukamachi K, Karimov JH. Preservation of pulsatility with universal ventricular assist device: In vitro assessment for biventricular support. Artif Organs 2024; 48:182-190. [PMID: 37787082 DOI: 10.1111/aor.14656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The objective of this study was to assess the pulsatility preservation capability of the universal ventricular assist device (UVAD) when used as a biventricular assist device (BVAD). This evaluation was conducted through an in vitro experiment, utilizing a pulsatile biventricular circulatory mock loop. METHODS Two UVAD pumps were tested in a dual setup (BVAD) in the circulatory model with the simulated conditions of left heart failure (HF), right HF, and moderate/severe biventricular HF (BHF). The total flow, aortic pulse pressure, the pulse augmentation factor (PAF), the energy-equivalent pressure (EEP), and the surplus hemodynamic energy (SHE) were observed at various pump speeds to evaluate the pulsatility. RESULTS The aortic pulse pressure increased from the baseline (without pump) in all simulated hemodynamic conditions. The PAF ranged from 17%-35% in healthy, left HF, right HF, and mild BHF conditions, with the highest PAF of 90% being observed in the severe BHF condition. The EEP correlated with LVAD flow in all groups (R2 = 0.87-0.97) and increased from the baseline in all cases. The SHE peaked at approximately 5-6 L/min of LVAD support and was likely to decrease at higher LVAD pump flow. The largest decrease in SHE from the baseline, 53%, was observed in the mild BHF conditions with the highest LVAD and RVAD support. CONCLUSIONS The UVAD successfully demonstrated the ability to preserve pulsatility in vitro, and to optimize the cardiac output, as an isolated circulatory support device option (RVAD or LVAD) and when used for BVAD support.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine R Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Cleveland, Ohio, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Vu V, Rossini L, del Alamo JC, Dembitsky W, Gray RA, May-Newman K. Benchtop Models of Patient-Specific Intraventricular Flow During Heart Failure and LVAD Support. J Biomech Eng 2023; 145:111010. [PMID: 37565996 PMCID: PMC10777504 DOI: 10.1115/1.4063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The characterization of intraventricular flow is critical to evaluate the efficiency of fluid transport and potential thromboembolic risk but challenging to measure directly in advanced heart failure (HF) patients with left ventricular assist device (LVAD) support. The study aims to validate an in-house mock loop (ML) by simulating specific conditions of HF patients with normal and prosthetic mitral valves (MV) and LVAD patients with small and dilated left ventricle volumes, then comparing the flow-related indices result of vortex parameters, residence time (RT), and shear-activation potential (SAP). Patient-specific inputs for the ML studies included heart rate, end-diastolic and end-systolic volumes, ejection fraction, aortic pressure, E/A ratio, and LVAD speed. The ML effectively replicated vortex development and circulation patterns, as well as RT, particularly for HF patient cases. The LVAD velocity fields reflected altered flow paths, in which all or most incoming blood formed a dominant stream directing flow straight from the mitral valve to the apex. RT estimation of patient and ML compared well for all conditions, but SAP was substantially higher in the LVAD cases of the ML. The benchtop system generated comparable and reproducible hemodynamics and fluid dynamics for patient-specific conditions, validating its reliability and clinical relevance. This study demonstrated that ML is a suitable platform to investigate the fluid dynamics of HF and LVAD patients and can be utilized to investigate heart-implant interactions.
Collapse
Affiliation(s)
- Vi Vu
- Bioengineering Program, Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182;Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993
| | - Lorenzo Rossini
- Mechanical and Aerospace Engineering Department, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093
| | - Juan C. del Alamo
- Center for Cardiovascular Biology & Mechanical Engineering Department, University of Washington, 1400 NE Campus Parkway, Seattle, WA 98195
| | - Walter Dembitsky
- Cardiothoracic Surgery, Mechanical Assist Program, Sharp Memorial Hospital, San Diego 7901 Frost Street, San Diego, CA 92123
| | - Richard A. Gray
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993
| | - Karen May-Newman
- Bioengineering Program, Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| |
Collapse
|
5
|
Mehmood K, Lazoglu I, Küçükaksu DS. Acausal Modelling of Advanced-Stage Heart Failure and the Istanbul Heart Ventricular Assist Device Support with Patient Data. Cardiovasc Eng Technol 2023; 14:726-741. [PMID: 37723332 DOI: 10.1007/s13239-023-00683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND In object-oriented or acausal modelling, components of the model can be connected topologically, following the inherent structure of the physical system, and system equations can be formulated automatically. This technique allows individuals without a mathematics background to develop knowledge-based models and facilitates collaboration in multidisciplinary fields like biomedical engineering. This study conducts a preclinical evaluation of a ventricular assist device (VAD) in assisting advanced-stage heart failure patients in an acausal modelling environment. METHODS A comprehensive object-oriented model of the cardiovascular system with a VAD is developed in MATLAB/SIMSCAPE, and its hemodynamic behaviour is studied. An analytically derived pump model is calibrated for the experimental prototype of the Istanbul Heart VAD. Hemodynamics are produced under healthy, diseased, and assisted conditions. The study features a comprehensive collection of advanced-stage heart failure patients' data from the literature to identify parameters for disease modelling and to validate the resulting hemodynamics. RESULTS Regurgitation, suction, and optimal speeds are identified, and trends in different hemodynamic parameters are observed for the simulated pathophysiological conditions. Using pertinent parameters in disease modelling allows for more accurate results compared to the traditional approach of arbitrary reduction in left ventricular contractility to model dilated cardiomyopathy. CONCLUSION The current research provides a comprehensive and validated framework for the preclinical evaluation of cardiac assist devices. Due to its object-oriented nature, the featured model is readily modifiable for other cardiovascular diseases for studying the effect of pump operating conditions on hemodynamics and vice versa in silico and hybrid mock circulatory loops. The work also provides a potential teaching tool for understanding the pathophysiology of heart failure, diagnosis rationale, and degree of assist requirements.
Collapse
Affiliation(s)
- Khunsha Mehmood
- Department of Mechanical Engineering, Koç University, 34450, Istanbul, Turkey
| | - Ismail Lazoglu
- Department of Mechanical Engineering, Koç University, 34450, Istanbul, Turkey.
| | - Deniz Süha Küçükaksu
- Cardiovascular Surgery Department, School of Medicine, Başkent University, 34662, Istanbul, Turkey
| |
Collapse
|
6
|
Gu Z, Ong CW, Mi Y, Seetharaman A, Ling RR, Ramanathan K, Leo HL. The Impact of Left Ventricular Assist Device Outflow Graft Positioning on Aortic Hemodynamics: Improving Flow Dynamics to Mitigate Aortic Insufficiency. Biomimetics (Basel) 2023; 8:465. [PMID: 37887596 PMCID: PMC10604423 DOI: 10.3390/biomimetics8060465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Heart failure is a global health concern with significant implications for healthcare systems. Left ventricular assist devices (LVADs) provide mechanical support for patients with severe heart failure. However, the placement of the LVAD outflow graft within the aorta has substantial implications for hemodynamics and can lead to aortic insufficiency during long-term support. This study employs computational fluid dynamics (CFD) simulations to investigate the impact of different LVAD outflow graft locations on aortic hemodynamics. The introduction of valve morphology within the aorta geometry allows for a more detailed analysis of hemodynamics at the aortic root. The results demonstrate that the formation of vortex rings and subsequent vortices during the high-velocity jet flow from the graft interacted with the aortic wall. Time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) indicate that modification of the outflow graft location changes mechanical states within the aortic wall and aortic valve. Among the studied geometric factors, both the height and inclination angle of the LVAD outflow graft are important in controlling retrograde flow to the aortic root, while the azimuthal angle primarily determines the rotational direction of blood flow in the aortic arch. Thus, precise positioning of the LVAD outflow graft emerges as a critical factor in optimizing patient outcomes by improving the hemodynamic environment.
Collapse
Affiliation(s)
- Zhuohan Gu
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yongzhen Mi
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Ashwin Seetharaman
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| | - Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore (K.R.)
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore (K.R.)
- Cardiothoracic Intensive Care Unit, National University Heart Centre Singapore, National Univeristy Health System, Singapore 119228, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| |
Collapse
|
7
|
Rosenbaum AN, Rossman TL, Reddy YN, Villavicencio MA, Stulak JM, Spencer PJ, Kushwaha SS, Behfar A. Pulsatile Pressure Delivery of Continuous-Flow Left Ventricular Assist Devices Is Markedly Reduced Relative to Heart Failure Patients. ASAIO J 2023; 69:445-450. [PMID: 36417497 DOI: 10.1097/mat.0000000000001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although continuous-flow left ventricular assist devices (CF-LVADs) provide an augmentation in systemic perfusion, there is a scarcity of in vivo data regarding systemic pulsatility on support. Patients supported on CF-LVAD therapy (n = 71) who underwent combined left/right catheterization ramp study were included. Aortic pulsatility was defined by the pulsatile power index (PPI), which was also calculated in a cohort of high-output heart failure (HOHF, n = 66) and standard HF cohort (n = 44). PPI was drastically lower in CF-LVAD-supported patients with median PPI of 0.006 (interquartile range [IQR], 0.002-0.012) compared with PPI in the HF population at 0.09 (IQR, 0.06-0.17) or HOHF population at 0.25 (IQR, 0.13-0.37; p < 0.0001 among groups). With speed augmentation during ramp, PPI values fell quickly in patients with higher PPI at baseline. PPI correlated poorly with left ventricular ejection fraction (LVEF) in all groups. In CF-LVAD patients, there was a stronger correlation with LV dP/dt (r = 0.41; p = 0.001) than LVEF (r = 0.21; p = 0.08; pint < 0.001). CF-LVAD support is associated with a dramatic reduction in arterial pulsatility as measured by PPI relative to HOHF and HF cohorts and decreases with speed. Further work is needed to determine the applicability to the next generation of device therapy.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
- William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Yogesh N Reddy
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - John M Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Philip J Spencer
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Sudhir S Kushwaha
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
- William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Atta Behfar
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
- William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
A Physiological Control Method Based on SMC and GAPSO for Artificial Heart Pumps to Maintain Pulsatility and Avoid Regurgitation and Suction. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Meani P, Kowalewski M, Raffa GM, Lorusso R. Unloading the left ventricle in venoarterial extracorporeal life support: The urgent need of speaking the same language! JTCVS OPEN 2022; 11:146-148. [PMID: 36172414 PMCID: PMC9510829 DOI: 10.1016/j.xjon.2022.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paolo Meani
- Cardio-Thoracic Surgery Department, ECLS Centrum, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Mariusz Kowalewski
- Cardio-Thoracic Surgery Department, ECLS Centrum, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior in Warsaw, Warsaw, Poland
| | - Giuseppe Maria Raffa
- Cardio-Thoracic Surgery Department, ECLS Centrum, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, ISMETT-IRCCS, Palermo, Italy
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, ECLS Centrum, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Lüsebrink E, Binzenhöfer L, Kellnar A, Müller C, Scherer C, Schrage B, Joskowiak D, Petzold T, Braun D, Brunner S, Peterss S, Hausleiter J, Zimmer S, Born F, Westermann D, Thiele H, Schäfer A, Hagl C, Massberg S, Orban M. Venting during venoarterial extracorporeal membrane oxygenation. Clin Res Cardiol 2022; 112:464-505. [PMID: 35986750 PMCID: PMC10050067 DOI: 10.1007/s00392-022-02069-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
AbstractCardiogenic shock and cardiac arrest contribute pre-dominantly to mortality in acute cardiovascular care. Here, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) has emerged as an established therapeutic option for patients suffering from these life-threatening entities. VA-ECMO provides temporary circulatory support until causative treatments are effective and enables recovery or serves as a bridging strategy to surgical ventricular assist devices, heart transplantation or decision-making. However, in-hospital mortality rate in this treatment population is still around 60%. In the recently published ARREST trial, VA-ECMO treatment lowered mortality rate in patients with ongoing cardiac arrest due to therapy refractory ventricular fibrillation compared to standard advanced cardiac life support in selected patients. Whether VA-ECMO can reduce mortality compared to standard of care in cardiogenic shock has to be evaluated in the ongoing prospective randomized studies EURO-SHOCK (NCT03813134) and ECLS-SHOCK (NCT03637205). As an innate drawback of VA-ECMO treatment, the retrograde aortic flow could lead to an elevation of left ventricular (LV) afterload, increase in LV filling pressure, mitral regurgitation, and elevated left atrial pressure. This may compromise myocardial function and recovery, pulmonary hemodynamics—possibly with concomitant pulmonary congestion and even lung failure—and contribute to poor outcomes in a relevant proportion of treated patients. To overcome these detrimental effects, a multitude of venting strategies are currently engaged for both preventive and emergent unloading. This review aims to provide a comprehensive and structured synopsis of existing venting modalities and their specific hemodynamic characteristics. We discuss in detail the available data on outcome categories and complication rates related to the respective venting option.
Graphical abstract
Collapse
|
11
|
PERCUTANEOUS CIRCULATORY SUPPORT IN HIGH-RISK PCI: PULSATILE OR CONTINUOUS FLOW DEVICES? Int J Cardiol 2022; 366:80-81. [PMID: 35787432 DOI: 10.1016/j.ijcard.2022.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
|
12
|
Zhang Y, Wu X, Wang Y, Liu H, Liu GM. The hemodynamics and blood trauma in axial blood pump under different operating model. Artif Organs 2022; 46:2159-2170. [PMID: 35735995 DOI: 10.1111/aor.14348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Speed modulation of blood pump has been proved to help restore vascular pulsatility and implemented clinically during treatment for cardiac failure. However, its effect on blood trauma has not been studied thoroughly. In this paper, we study the flow field of an axial pump FW-X under the modes of co-pulse, counter pulse and constant speed to evaluate the blood trauma. Based on the coupling model of cardiovascular system and axial blood pump, aortic pressure and the pump flow were obtained and applied as the boundary conditions at the pump outlet and inlet. The level of shear stress and hemolysis index were derived from computational fluid dynamics (CFD) simulation. Results showed the constant speed mode had the lowest shear stress level and hemolytic index at the expense of diminished pulsatility. Compared with the constant speed mode, the hemolysis index of co-pulse and counter pulse mode was higher, but it was helpful to restore vascular pulsatility. This method can be easily incorporated in the in vitro testing phase to analyze and decrease a pump's trauma before animal experimentation, thereby reducing the cost of blood pump development.
Collapse
Affiliation(s)
- Yunpeng Zhang
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Xiangyu Wu
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Yiming Wang
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Hongtao Liu
- School of Goertek Technology and Industry, Weifang University, Weifang, China
| | - Guang-Mao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
(Physiology of Continuous-flow Left Ventricular Assist Device Therapy. Translation of the document prepared by the Czech Society of Cardiology). COR ET VASA 2022. [DOI: 10.33678/cor.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Rosenbaum AN, Antaki JF, Behfar A, Villavicencio MA, Stulak J, Kushwaha SS. Physiology of Continuous-Flow Left Ventricular Assist Device Therapy. Compr Physiol 2021; 12:2731-2767. [PMID: 34964115 DOI: 10.1002/cphy.c210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
May-Newman K. Dynamic pressure-flow curve analysis of the native heart and left ventricular assist device for full and partial bypass conditions. Artif Organs 2021; 46:1077-1085. [PMID: 34932239 DOI: 10.1111/aor.14157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND During left ventricular assist device (LVAD) support, the external work performed by the native heart combines with the work performed by the rotary LVAD to provide cyclic flow through the LVAD and, in some conditions, through the aortic valve. In this study, a balance of external work was developed and validated for both full and partial bypass conditions that includes valve opening and aortic compliance. METHODS The theory assumes a steady-state contribution of external work from the rotary LVAD and a dynamic portion from the heart. Cyclic flow may be ejected through either the LVAD or ascending aorta, and an energy absorption term accounts for aortic compliance. Mock loop studies were performed for LV ejection fractions of 10%-28% combined with HeartMate II LVAD support at 8 and 11 krpm to produce a range of full and partial bypass conditions. The external work of the LVAD and native heart was computed from the experimental pressure-flow (H-Q) relations and compared to the theory. RESULTS Native heart contraction produces a counterclockwise loop in the pressure-flow relation of the LVAD which increased with ejection fraction, and during full bypass conditions the external work was preserved in the total systemic flow. During partial bypass conditions, forward flow through the ascending aorta was accompanied by a reversal during aortic valve closure resulting in a reduction in energy in the downstream flow. CONCLUSIONS The study presents a balance of external work during full and partial bypass LVAD support. Experimental data validated the additional terms corresponding to forward flow and aortic compliance that contribute to the system balance. This expanded theory can be applied to LVAD design and control to improve pulsatility and aortic valve biomechanics.
Collapse
Affiliation(s)
- Karen May-Newman
- Bioengineering Program, San Diego State University, San Diego, California, USA
| |
Collapse
|
16
|
Ortiz S, Vu V, Montes R, May-Newman K. Left Ventricular Flow Dynamics with the HeartMate3 Left Ventricular Assist Device: Effect of Inflow Cannula Position and Speed Modulation. ASAIO J 2021; 67:1301-1311. [PMID: 34261878 DOI: 10.1097/mat.0000000000001523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Improper left ventricular assist device (LVAD) inflow cannula (IC) positioning creates areas of stasis and low pulsatility that predispose thromboembolism, but may be mitigated with LVAD speed modulation. A mock loop study was performed to assess the sensitivity of left ventricle (LV) flow architecture to IC position and speed modulation during HeartMate3 support. System pressure, flow, and the time-resolved velocity field were measured within a transparent silicone LV for three IC angles and three IC insertion depths at matched levels of cardiac function and LVAD speed. Inflow cannula angulation towards the septum increased the resistance to LVAD flow as well as increasing the size and energy of the counter-clockwise (CCW) vortex. Apical velocity was reduced compared to IC angulation towards the mitral valve, but regional pulsatility was maintained across all angles and LVAD speeds. Increased IC protrusion decreased LVAD flow resistance, increasing velocity within the IC but reducing flow and pulsatility in the adjacent apical region. Increasing LVAD flow resistance improves aortic valve opening and strengthens the CCW vortex which directs inflow towards the septum, producing higher blood residence time and shear activation potential. Despite this impact on flow architecture, pulsatility reduction with increased LVAD speed was minimal with the HeartMate3 speed modulation feature.
Collapse
Affiliation(s)
- Sean Ortiz
- From the Bioengineering Program, Department of Mechanical Engineering, San Diego State University, San Diego, California
| | | | | | | |
Collapse
|
17
|
Prather R, Divo E, Kassab A, DeCampli W. In-silico analysis of outflow graft implantation orientation and cerebral thromboembolism incidence for full LVAD support. Comput Methods Biomech Biomed Engin 2021; 25:1249-1261. [PMID: 34812689 DOI: 10.1080/10255842.2021.2005789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We investigate tailoring cannula implantation angles of left ventricle assist devices (LVAD) to reduce cerebral embolism risk for full LVAD support. We resolve pulsatile hemodynamics with a multi-scale computational fluid dynamics model coupled to a Lagrangian scheme tracking 2-5 mm particles for three cannula implantations. Blood is modeled as non-Newtonian. Cerebral flow distribution is altered depending on anastomosis angle and comparison of means embolization rates between steady and unsteady flow models show that unsteady modeling is more accurate even in the full LVAD support case. Intermediate angle implantation yields lowest cerebral embolization incidence of 11% vs 29% for normal and 36% for shallow implantation.
Collapse
Affiliation(s)
- Ray Prather
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA.,Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA.,Arnold Palmer Children's Hospital, Orlando Health, Orlando, Florida, USA
| | - Eduardo Divo
- Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA
| | - Alain Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - William DeCampli
- Arnold Palmer Children's Hospital, Orlando Health, Orlando, Florida, USA.,College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
18
|
Prather R, Divo E, Kassab A, DeCampli W. Computational Fluid Dynamics Study of Cerebral Thromboembolism Risk in Ventricular Assist Device Patients: Effects of Pulsatility and Thrombus Origin. J Biomech Eng 2021; 143:091001. [PMID: 33843992 DOI: 10.1115/1.4050819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 11/08/2022]
Abstract
This study investigates the hypothesis that by surgically manipulating the outflow graft (OG) implantation during ventricle assist device placement, it may be possible to reduce the risk of cerebral embolism. We investigate this hypothesis using a computational approach on a patient-specific basis under fully pulsatile hemodynamics with a multiscale computational fluid dynamics model incorporating a coupled Eulerian-Lagrangian scheme that effectively tracks emboli in the fluid domain. Blood is modeled as a non-Newtonian fluid based on the hematocrit level. Preliminary flow analysis shows that depending on the anastomosis angle the left ventricular assist device (LVAD) can enhance the flow to the cerebral circulation by nearly 31%. Z-test results suggest that unsteady-flow modeling ought to be an integral part of any cardiovascular simulation with residual ventricular function. Assuming unsteady-flow conditions, a shallow LVAD outflow graft anastomosis angle is the most optimal if thrombi are released from the aortic-root reducing cerebral embolization incidence to 15.5% and from the ventricle to 17%, while a more pronounced anastomosis angle becomes advantageous when particles originate from the LVAD with an embolization rate of 16.9%. Overall, computations suggest that a pronounced LVAD anastomosis angle is the better implementation. Unsteady modeling is shown to be necessary for the presence of significant antegrade aortic-root flow which induces cyclical flow patterns due to residual pulsatility. On the other hand, depending on thrombus origin and ventricular assist devices (VAD) anastomosis angle there is a strong tradeoff in embolization rates.
Collapse
Affiliation(s)
- Ray Prather
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816; Department of Mechanical Engineering, Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114; Arnold Palmer Children's Hospital, 1222 South Orange Avenue, 92 West Miller Street, Orlando, FL 32806
| | - Eduardo Divo
- Department of Mechanical Engineering, Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114
| | - Alain Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816
| | - William DeCampli
- Arnold Palmer Children's Hospital, 1222 South Orange Avenue, Orlando, FL 32806; College of Medicine, University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827
| |
Collapse
|
19
|
Emmanuel S, Jansz P, Hayward C. How well do we understand pulsatility in the context of modern ventricular assist devices? Int J Artif Organs 2021; 44:923-929. [PMID: 33960234 DOI: 10.1177/03913988211012707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Modern ventricular assist devices (VADs) use a continuous flow design. It has been suggested that a lack of pulsatility contributes to a range of adverse outcomes including pump thrombus, gastrointestinal bleeding and stroke. To better assess the role of pulsatility in these adverse events, we first require a clear definition of 'pulsatility' in the setting of a severely impaired ventricle and a modern continuous flow VAD. METHODS A literature review was conducted to elucidate the understanding of pulsatility in modern VAD literature. Search engines used included PUBMED, EMBASE and the Cochrane library. Articles were appraised on three aspects: Whether they mentioned pulsatility; whether they mentioned which pulsatility measure was used and finally which methodology was used to obtain the value. RESULTS Of 354 articles reviewed, only 13 met our broad inclusion criteria. Of these articles, the most cited measure was pulsatility index (PI) - used by 11 of the publications. The methodology used to obtain the value was not uniform and five articles did not clearly state it. Other measures included pulse pressure and surplus haemodynamic energy. The majority of articles did not directly discuss pulsatility in the setting of patient-pump interaction. CONCLUSION Most publications did not provide a definition for pulsatility. In those that did, the most common measure was PI. Measuring PI was not standardised. Few papers addressed the impact of intrinsic ventricular function and arterial compliance on pulsatility. We suggest that future publications adopt a uniform definition which encompasses both patient and pump characteristics.
Collapse
Affiliation(s)
- Sam Emmanuel
- St Vincent's Hospital (Sydney), Darlinghurst, NSW, Australia.,School of Medicine, University of New South Wales, Sydney, Australia.,School of Medicine, University of Notre Dame, Sydney, Australia.,Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Paul Jansz
- St Vincent's Hospital (Sydney), Darlinghurst, NSW, Australia.,School of Medicine, University of New South Wales, Sydney, Australia.,School of Medicine, University of Notre Dame, Sydney, Australia.,Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Christopher Hayward
- St Vincent's Hospital (Sydney), Darlinghurst, NSW, Australia.,School of Medicine, University of New South Wales, Sydney, Australia.,Victor Chang Cardiac Research Institute, Sydney, Australia
| |
Collapse
|
20
|
Assessment of ocular blood flow in continuous-flow ventricular assist device by laser speckle flowgraphy. J Artif Organs 2021; 24:419-424. [PMID: 33825101 DOI: 10.1007/s10047-021-01265-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Although the influence of continuous-flow left ventricular assist device (CF-LVAD) support on peripheral circulation has been widely discussed, its monitoring modalities are limited. The aim of this study was to assess the peripheral circulation using the laser speckle flowgraph (LSFG) which can quantitatively measure the ocular blood flow. We implanted a centrifugal CF-LVAD (EVAHEART®; Sun Medical Technology Research Corporation, Nagano, Japan) in five adult goats (body weight 44.5 ± 2.9 kg) under general anesthesia. The waveform of the central retinal artery using the mean blur rate (MBR) for ocular blood velocity and fluctuations as a parameter of pulsatility were obtained before LVAD implantation and after LVAD full-bypass support. The MBR waveform and LSFG fluctuation data were compared with the waveform and pulsatility index of the external carotid artery using an ultrasonic flow meter to evaluate circulatory patterns at different levels. The MBR waveform pattern of the central retinal artery was pulsatile before LVAD implantation and less pulsatile under LVAD full bypass. The fluctuation was 14.7 ± 1.86 before LVAD implantation and 3.85 ± 0.61 under LVAD full bypass (p < 0.01), respectively. The fluctuations of LSFG showed a strong correlation with the pulsatility index of the external carotid artery meaning that similar changes in circulatory pattern were observed at two different levels. Measuring the ocular blood flow using LSFG has potential utility for the assessment of the status of the peripheral circulation and its pulsatility during CF-LVAD.
Collapse
|
21
|
Lim J, Won JY, Ahn CB, Kim J, Kim HJ, Jung JS. Comparison of Hemodynamic Energy between Expanded Polytetrafluoroethylene and Dacron Artificial Vessels. J Chest Surg 2021; 54:81-87. [PMID: 33767024 PMCID: PMC8038878 DOI: 10.5090/jcs.20.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background Artificial grafts such as polyethylene terephthalate (Dacron) and expanded polytetrafluoroethylene (ePTFE) are used for various cardiovascular surgical procedures. The compliance properties of prosthetic grafts could affect hemodynamic energy, which can be measured using the energy-equivalent pressure (EEP) and surplus hemodynamic energy (SHE). We investigated changes in the hemodynamic energy of prosthetic grafts. Methods In a simulation test, the changes in EEP for these grafts were estimated using COMSOL MULTIPHYSICS. The Young modulus, Poisson ratio, and density were used to analyze the grafts’ material properties, and pre- and post-graft EEP values were obtained by computing the product of the pressure and velocity. In an in vivo study, Dacron and ePTFE grafts were anastomosed in an end-to-side fashion on the descending thoracic aorta of swine. The pulsatile pump flow was fixed at 2 L/min. Real-time flow and pressure were measured at the distal part of each graft, while clamping the other graft and the descending thoracic aorta. EEP and SHE were calculated and compared. Results In the simulation test, the mean arterial pressure decreased by 39% for all simulations. EEP decreased by 42% for both grafts, and by around 55% for the native blood vessels after grafting. The in vivo test showed no significant difference between both grafts in terms of EEP and SHE. Conclusion The post-graft hemodynamic energy was not different between the Dacron and ePTFE grafts. Artificial grafts are less compliant than native blood vessels; however, they can deliver pulsatile blood flow and hemodynamic energy without any significant energy loss.
Collapse
Affiliation(s)
- Jaekwan Lim
- Biomedical Research Center, Korea Testing Laboratory, Jinju, Korea
| | - Jong Yun Won
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea
| | - Chi Bum Ahn
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Korea
| | - Jieon Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea.,Korea Artificial Organ Center, Korea University, Seoul, Korea
| | - Hee Jung Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea.,Korea Artificial Organ Center, Korea University, Seoul, Korea
| | - Jae Seung Jung
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea.,Korea Artificial Organ Center, Korea University, Seoul, Korea
| |
Collapse
|
22
|
Targeting Peripheral Vascular Pulsatility in Heart Failure Patients with Continuous-Flow Left Ventricular Assist Devices: The Impact of Pump Speed. ASAIO J 2020; 66:291-299. [PMID: 30973399 DOI: 10.1097/mat.0000000000001001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Current continuous-flow left ventricular assist devices (LVADs) decrease peripheral vascular pulsatility, which may contribute to side effects such as bleeding and thrombotic events. However, the actual impact of manipulating LVAD pump speed, revolutions per minute (rpm), on peripheral (brachial) pulsatility index (brachial PI), in patients with heart failure implanted with a HeartWare (HVAD) or HeartMateII (HMII) LVAD is unknown. Therefore, blood velocities (Doppler ultrasound) in the brachial artery were recorded and brachial PI calculated across rpm manipulations which spanned the acceptable clinical outpatient range: 360 rpm (HVAD, n = 10) and 1200 rpm (HMII, n = 10). Left ventricular assist device-derived PIs were also recorded: HVAD maximal blood flow (HVADV max), HVAD minimum blood flow (HVADV min), and HMII PI (HMIIPI). Brachial PI changed significantly with rpm manipulations, from 2.3 ± 0.6 to 4.1 ± 0.8 (HVAD) and from 1.8 ± 0.5 to 3.6 ± 1.0 (HMII). Multilevel linear modeling with random intercepts revealed a 180 rpm decrease of the HVAD resulted in a 0.9 ± 0.1 (37 ± 4%, d = 2.65) increase in brachial PI and a 600 rpm decrease in the HMII resulted in a 0.8 ± 0.1 (38 ± 3%, d = 4.66) increase. Furthermore, a reduction in rpm resulted in a 20.0 ± 0.3% power savings, and a reduction in device reported blood flow of 9 ± 1%. Brachial PI was linearly related to HVADV max, HVADV min, their difference (R = 0.42, R = 0.65, and R = 0.54, respectively), and HMIIPI (R = 0.86). Manipulating LVAD pump speed, within a clinically acceptable outpatient range, resulted in a significant change in brachial PI, which was reflected by pump indices, documenting the potential for LVAD pump speed manipulations to improve LVAD outcomes.
Collapse
|
23
|
Melo TR, Neto JS, Cestari IA, Lima AM. Feedback controller for restoring the basal hemodynamic condition with a rotary blood pump used as left ventricular assist device. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Miyamoto T, Kado Y, Horvath DJ, Kuban BD, Sale S, Fukamachi K, Karimov JH. An advanced universal circulatory assist device for left and right ventricular support: First report of an acute in vivo implant. JTCVS OPEN 2020; 3:140-148. [PMID: 36003855 PMCID: PMC9390363 DOI: 10.1016/j.xjon.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
Background The Advanced ventricular assist device (Advanced VAD) is designed as a universal pump intended to prevent backflow in the event of pump stoppage, to maintain physiological pulse pressure, and to be used as both a left and right VAD. The purpose of this study was to evaluate the performance of the Advanced VAD as both a left and right VAD in an acute in vivo study in calves. Methods The Advanced VAD was implanted through a median sternotomy in 5 healthy calves (weight, 71.4-91.2 kg) as a left VAD (n = 3) or a right VAD (n = 2). After implantation, hemodynamic parameters, including general performance and pump stoppage, were evaluated. Results The Advanced VAD was successfully implanted as a left and right VAD without cardiopulmonary bypass. The speed range of the Advanced VAD was 2500 to 3500 rpm as a left VAD and 2000 to 2500 rpm as a right VAD. Up to 4.3 L/min was achieved for both left and right VAD configurations. To demonstrate the automatic shut-off feature, the pump was stopped without clamping the outflow graft. The outflow graft was then clamped, which produced no significant changes in the arterial pressure waveform. The pulse pressures under the left VAD configuration were 38 mm Hg, 17 mm Hg, 14 mm Hg, and 16 mm Hg at baseline, 2500 rpm, 3000 rpm, and 3500 rpm, respectively. Conclusions This acute in vivo study demonstrated the pump performance, anatomical fitting as both left VAD and right VAD, and regurgitant flow shut-off feature of the Advanced VAD.
Collapse
Affiliation(s)
- Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yuichiro Kado
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Barry D. Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Medical Device Solutions, Cleveland Clinic, Cleveland, Ohio
| | - Shiva Sale
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Address for reprints: Jamshid H. Karimov, MD, PhD, Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave/ND20, Cleveland, OH 44195.
| |
Collapse
|
25
|
Wu T, Lin H, Zhu Y, Huang P, Lin F, Chen C, Hsu PL. Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: An in vitro study. Proc Inst Mech Eng H 2020; 234:1235-1242. [DOI: 10.1177/0954411920937919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Long-term using continuous flow ventricular assist devices could trigger complications associated with diminished pulsatility, such as valve insufficiency and gastrointestinal bleeding. One feasible solution is to produce pulsatile flow assist with speed regulation in continuous flow ventricular assist devices. A third-generation blood pump with pulsatile operation control algorithm was first characterized alone under pulsatile mode at various speeds, amplitudes, and waveforms. The pump was then incorporated in a Mock circulation system to evaluate in vitro hemodynamic effects when using continuous and different pulsatile operations. Pulsatility was evaluated by surplus hemodynamic energy. Results showed that pulsatile operations provided sufficient hemodynamic assistance and increased pulsatility of the circulatory system (53% increment), the mean aortic pressure (65% increment), and cardiac output (27% increment). The pulsatility of the system under pulsatile operation support was increased 147% compared with continuous operation support. The hemodynamic performance of pulsatile operations is susceptible to phase shifts, which could be a tacking angle for physiological control optimization. This study found third-generation blood pumps using different pulsatile operations for ventricular assistance promising.
Collapse
Affiliation(s)
- Tingting Wu
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | - Hao Lin
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | - Yuxin Zhu
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | - Penghui Huang
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | | | - Chen Chen
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
- CH Biomedical, Inc., Suzhou, China
| | - Po-Lin Hsu
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Wisniewski A, Medart D, Wurm FH, Torner B. Evaluation of clinically relevant operating conditions for left ventricular assist device investigations. Int J Artif Organs 2020; 44:92-100. [PMID: 32605416 DOI: 10.1177/0391398820932925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Standardized boundary conditions for flow rate and pressure difference are currently not available for the development and certification process of ventricular assist devices. Thus, interdisciplinary studies lack comparability and quantitative assessment. Universally valid boundary conditions could be used for the application of numerical and experimental investigations and the approval procedure of ventricular assist devices. In order to define such boundaries, physiological data from INCOR® patients were evaluated. A total of 599 out of possible 627 ventricular assist device patients were analyzed regarding their cardiac demands of flow rate and pressure head. An analysis of long-term data was performed, in order to provide respective, static mean values for benchmark testing. Furthermore, the short-term data of 188 patients delivered field data-based dynamic flow and pressure curves. The results of the study revealed physiologically reasonable boundary conditions, which can be applied in numerical or experimental investigations of ventricular assist devices. For steady flow analysis, single values for flow rate (4.46 L/min) and pressure head (62 mmHg) are suggested. For the support of pulsatile and unsteady flow studies, seven typical patients and one representative dynamic curve for flow rate and pressure head are proposed.The standardized results provided in this article, can be used in favor of interdisciplinary comparability of future numerical computations or in vitro ventricular assist device tests in research, development, and approval.
Collapse
Affiliation(s)
- A Wisniewski
- Berlin Heart GmbH, Berlin, Germany.,Universität Rostock, Fakultät für Maschinenbau und Schiffstechnik, Rostock, Germany
| | - D Medart
- Berlin Heart GmbH, Berlin, Germany
| | - F-H Wurm
- Universität Rostock, Fakultät für Maschinenbau und Schiffstechnik, Rostock, Germany
| | - B Torner
- Universität Rostock, Fakultät für Maschinenbau und Schiffstechnik, Rostock, Germany
| |
Collapse
|
27
|
Quantification of Pulsed Operation of Rotary Left Ventricular Assist Devices with Wave Intensity Analysis. ASAIO J 2020; 65:324-330. [PMID: 29863632 DOI: 10.1097/mat.0000000000000821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The current generation of left ventricular assist devices (LVADs) provides continuous flow and has the capacity to reduce aortic pulsatility, which may be related to a range of complications associated with these devices. Pulsed LVAD operation using speed modulation presents a mechanism to restore aortic pulsatility and potentially mitigate complications. We sought to investigate the interaction of axial and centrifugal LVADs with the LV and quantify the effects of continuous and pulsed LVAD operations on LV generated wave patterns under different physiologic conditions using wave intensity analysis (WIA) method. The axial LVAD created greater wave intensity associated with LV relaxation. In both LVADs, there were only minor and variable differences between the continuous and pulsed operations. The response to physiologic stress was preserved with LVAD implantation as wave intensity increased marginally with volume loading and significantly with infusion of norepinephrine. Our findings and a new approach of investigating aortic wave patterns based on WIA are expected to provide useful clinical insights to determine the ideal operation of LVADs.
Collapse
|
28
|
Okamoto E, Yano T, Inoue Y, Shiraishi Y, Yambe T, Mitamura Y. In vitro performance of trans-valve left ventricular assist device installed at aortic valve position. Artif Organs 2020; 44:1067-1072. [PMID: 32216103 DOI: 10.1111/aor.13687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Abstract
In this study, we developed a trans-valve left ventricular assist device (LVAD) that unites a rear-impeller axial-flow blood pump (AFBP) and a polymer membrane valve placed at the aortic valve position. The diameter and length of the rear impeller AFBP was 12 and 63 mm, respectively. The polymer membrane valve was similar to the jelly-fish valve consisting of a valve leaflet made of silicone rubber (thickness 0.5 mm), valve ring (diameter: 25 mm), and valve spokes. The trans-valve LVAD was examined in a mock circulation. An implantable pulsatile flow (PF) VAD was connected to an atrial reservoir to simulate the left ventricle (LV), and the Hall valve was worn in the inflow port, and the trans-valve LVAD was placed in the outflow port as an outflow valve. When the motor rotational speed increased to 26 400 rpm, the mean aortic flow increased from 4.2 to 5.3 L/min, mean aortic pressure increased from 83.4 to 100 mm Hg, and mean motor current of the implantable PF VAD decreased from 1.18 to 0.94 A (unloading effect on LV -21%). The energy equivalent pressure increased from 85.2 to 102 mm Hg, and surplus hemodynamic energy (SHE) decreased by -15.4% from the baseline. In conclusion, the trans-valve LVAD has an advantage of preserving pulsatility without any complicated mechanism and is a novel and promising LV support device.
Collapse
Affiliation(s)
- Eiji Okamoto
- Sapporo Liberal Arts Center, Tokai University, Sapporo, Japan
| | - Tetsuya Yano
- Graduate School of Science and Engineering, Hirosaki University, Hirosaki, Japan
| | - Yusuke Inoue
- Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Shiraishi
- Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomoyuki Yambe
- Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan
| | | |
Collapse
|
29
|
The Effect of Inflow Cannula Angle on the Intraventricular Flow Field of the Left Ventricular Assist Device-Assisted Heart: An In Vitro Flow Visualization Study. ASAIO J 2020; 65:139-147. [PMID: 29613888 DOI: 10.1097/mat.0000000000000790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous studies have identified left ventricular assist device (LVAD) inflow cannula (IC) malposition as a significant risk for pump thrombosis. Thrombus development is a consequence of altered flow dynamics, which can produce areas of flow stasis or high shear that promote coagulation. The goal of this study was to measure the effect of IC orientation on the left ventricle (LV) flow field using a mock circulatory loop, and identify flow-based indices that are sensitive measures of cannula malposition. Experimental studies were performed with a customized silicone model of the dilated LV and the EVAHEART Centrifugal LVAS (Evaheart, Inc.; Houston TX). The velocity field of the LV midplane was measured for a transparent IC oriented parallel to and rotated 15° toward the septum under matched hemodynamic conditions. Vortex structures were analyzed and localized stasis calculated within the IC and combined with a map of normalized pulsatile velocity. The velocity fields revealed increased apical stasis and lower pulsatility with a small angulation of the IC. A significant change in vortex dynamics with the angled IC was observed, doubling the size of the counterclockwise (CCW) vortex while reducing the kinetic energy provided by LVAD support. A significant decrease in average and systolic velocities within the IC was found with cannula angulation, suggesting an increased resistance that affects primarily systolic flow and is worsened with increased LVAD support. These common echocardiographic indices offer the opportunity for immediate clinical application during ramp study assessment. Optimized IC positioning may be determined preoperatively using imaging techniques to develop patient-specific surgical recommendations.
Collapse
|
30
|
Bastos MB, van Wiechen MP, Van Mieghem NM. PulseCath iVAC2L: next-generation pulsatile mechanical circulatory support. Future Cardiol 2020; 16:103-112. [PMID: 31934785 DOI: 10.2217/fca-2019-0060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contemporary state of the art percutaneous coronary intervention techniques offer treatment strategies and solutions to an increasing number of patients with heart failure and complex coronary artery disease. Percutaneous mechanical circulatory support is intended to alleviate the mechanical and energetic workload imposed to a failing ventricle by reducing left ventricle pressures and volumes and potentially also increasing coronary blood flow. The PulseCath iVAC2L is a transaortic left ventricular assist device that applies a pneumatic driving system to produce pulsatile forward flow. Herein, the essential aspects regarding iVAC2L are discussed with focus on its mechanisms of action and the available clinical experience.
Collapse
Affiliation(s)
- Marcelo B Bastos
- Department of Interventional Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten P van Wiechen
- Department of Interventional Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicolas M Van Mieghem
- Department of Interventional Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Miyamoto T, Byram N, Karimov JH, Adams J, Dessoffy R, Kuban BD, Gao S, Horvath DJ, Fukamachi K. The design modification of advanced ventricular assist device to enhance pulse augmentation and regurgitant flow shut-off. Artif Organs 2019; 43:961-965. [PMID: 31070800 DOI: 10.1111/aor.13484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 11/27/2022]
Abstract
The new Advanced ventricular assist device (Advanced VAD) has many features such as improving pulsatility and preventing regurgitant flow during pump stoppage. The purpose of this study was to evaluate the effects of design modifications of the Advanced VAD on these features in vitro. Bench testing of four versions of the Advanced VAD was performed on a static or pulsatile mock loop with a pneumatic device. After pump performance was evaluated, each pump was run at 3000 rpm to evaluate pulse augmentation, then was stopped to assess regurgitant flow through the pump. There was no significant difference in pump performance between the pump models. The average pulse pressure in the pulsatile mock loop was 23.0, 34.0, 39.3, 33.8, and 37.3 mm Hg without pump, with AV010, AV020 3S, AV020 6S, and AV020 RC, respectively. The pulse augmentation factor was 48%, 71%, 47%, and 62% with AV010, AV020 3S, AV020 6S, and AV020 RC, respectively. In the pump stop test, regurgitant flow was -0.60 ± 0.70, -0.13 ± 0.57, -0.14 ± 0.09, and -0.18 ± 0.06 L/min in AV010, AV020 3S, AV020 6S, and AV020 RC, respectively. In conclusion, by modifying the design of the Advanced VAD, we successfully showed the improved pulsatility augmentation and regurgitant flow shut-off features.
Collapse
Affiliation(s)
- Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nicole Byram
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Joseph Adams
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Raymond Dessoffy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Medical Device Solutions, Cleveland Clinic, Cleveland, Ohio
| | - Shengqiang Gao
- Medical Device Solutions, Cleveland Clinic, Cleveland, Ohio
| | | | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
32
|
WU XIAO, ZHANG XIWEN, HAO PENGFEI, HE FENG. COMPARISON OF THREE CONTROL STRATEGIES FOR AXIAL BLOOD PUMP. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Facing the gradually increased prevalence of heart failure (HF) and the shortage of donated hearts, the blood pump is widely used to prolong the life of end-stage HF patients: however, the pump generates continuous flow under constant rotational speed, declining the arterial pulsatility and causing related complications. Previous studies show that synchronous copulsation might be the best control strategy for restoring pulsatility, but synchronous strategies are needed to monitor the phase of the heartbeat, which will make the controller complex and impair its robustness. Here, we compare constant speed, synchronous copulsation in a model of a cardiovascular system with a blood pump, which shows that copulsation offers more arterial pulsatility, less pump power-consumption, and thus better battery endurance, and constant speed offers a greater ventricular unloading effect. Meanwhile, we design a strategy based on transforming left ventricular pressure, which is easier to implement and has similar effect to synchronous copulsation.
Collapse
Affiliation(s)
- XIAO WU
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - XIWEN ZHANG
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - PENGFEI HAO
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - FENG HE
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
33
|
May‐Newman K, Montes R, Campos J, Marquez‐Maya N, Vu V, Zebrowski E, Motomura T, Benkowski R. Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artif Organs 2019; 43:834-848. [DOI: 10.1111/aor.13477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Karen May‐Newman
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Ricardo Montes
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Josue Campos
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Nikolas Marquez‐Maya
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | - Vi Vu
- Bioengineering Program, Department of Mechanical Engineering San Diego State University San Diego California
| | | | | | | |
Collapse
|
34
|
Gharaie SH, Amir Moghadam AA, Al'Aref SJ, Caprio A, Alaie S, Zgaren M, Min JK, Dunham S, Mosadegh B. A Proof-of-Concept Demonstration for a Novel Soft Ventricular Assist Device. J Med Device 2019. [DOI: 10.1115/1.4043052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Patients treated by current ventricular assist devices (VADs) suffer from various post implantation complications including gastrointestinal bleeding and arteriovenous malformation. These issues are related to intrinsically mismatch of generated flow by VADs and the physiological flow. In addition, the common primary drawback of available VADs is excessive surgical dissection during implantation, which limits these devices to less morbid patients. We investigated an alternative soft VAD (SVAD) system that generates physiological flow, and designed to be implanted using minimally invasive surgery by leveraging soft materials. A soft VAD (which is an application of intraventricular balloon pump) is developed by utilizing a polyurethane balloon, which generates pulsatile flow by displacing volume within the left ventricle during its inflation and deflation phases. Our results show that the SVAD system generates an average ejection fraction of 50.18 ± 1.52% (n = 6 ± SD) in explanted porcine hearts. Since the SVAD is implanted via the apex of the heart, only a minithoracotomy should be required for implantation. Our results suggest that the SVAD system has the performance characteristics that could potentially make it useful for patients in acute and/or chronic heart failure, thus serving as a bridge-to-transplantation or bridge-to-recovery.
Collapse
Affiliation(s)
- Saleh H. Gharaie
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Amir Ali Amir Moghadam
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Subhi J. Al'Aref
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Alexandre Caprio
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Seyedhamidreza Alaie
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Mohamed Zgaren
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - James K. Min
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Simon Dunham
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| |
Collapse
|
35
|
Miyamoto T, Karimov JH, Fukamachi K. Acute and chronic effects of continuous‐flow support and pulsatile‐flow support. Artif Organs 2019; 43:618-623. [DOI: 10.1111/aor.13446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Takuma Miyamoto
- Department of Biomedical Engineering Lerner Research Institute, Cleveland Clinic Cleveland Ohio
| | - Jamshid H. Karimov
- Department of Biomedical Engineering Lerner Research Institute, Cleveland Clinic Cleveland Ohio
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering Lerner Research Institute, Cleveland Clinic Cleveland Ohio
| |
Collapse
|
36
|
The Physiological Rationale for Incorporating Pulsatility in Continuous-Flow Left Ventricular Assist Devices. Cardiol Rev 2018; 26:294-301. [DOI: 10.1097/crd.0000000000000202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Selmi M, Chiu WC, Chivukula VK, Melisurgo G, Beckman JA, Mahr C, Aliseda A, Votta E, Redaelli A, Slepian MJ, Bluestein D, Pappalardo F, Consolo F. Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis? Int J Artif Organs 2018; 42:113-124. [PMID: 30354870 DOI: 10.1177/0391398818806162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction: Despite significant technical advancements in the design and manufacture of Left Ventricular Assist Devices, post-implant thrombotic and thromboembolic complications continue to affect long-term outcomes. Previous efforts, aimed at optimizing pump design as a means of reducing supraphysiologic shear stresses generated within the pump and associated prothrombotic shear-mediated platelet injury, have only partially altered the device hemocompatibility. Methods: We examined hemodynamic mechanisms that synergize with hypershear within the pump to contribute to the thrombogenic potential of the overall Left Ventricular Assist Device system. Results: Numerical simulations of blood flow in differing regions of the Left Ventricular Assist Device system, that is the diseased native left ventricle, the pump inflow cannula, the impeller, the outflow graft and the anastomosed downstream aorta, reveal that prothrombotic hemodynamic conditions might occur at these specific sites. Furthermore, we show that beyond hypershear, additional hemodynamic abnormalities exist within the pump, which may elicit platelet activation, such as recirculation zones and stagnant platelet trajectories. We also provide evidences that particular Left Ventricular Assist Device implantation configurations and specific post-implant patient management strategies, such as those allowing aortic valve opening, are more hemodynamically favorable and reduce the thrombotic risk. Conclusion: We extend the perspective of pump thrombosis secondary to the supraphysiologic shear stress environment of the pump to one of Left Ventricular Assist Device system thrombosis, raising the importance of comprehensive characterization of the different prothrombotic risk factors of the total system as the target to achieve enhanced hemocompatibility and improved clinical outcomes.
Collapse
Affiliation(s)
- Matteo Selmi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Surgery, Division of Cardiac Surgery, Università di Verona, Verona, Italy
| | - Wei-Che Chiu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | | | - Giulio Melisurgo
- Anesthesia and Cardiothoracic Intensive Care, San Raffaele Scientific Institute, Milano, Italy
| | | | - Claudius Mahr
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Marvin J Slepian
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Departments of Medicine and Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Federico Pappalardo
- Anesthesia and Cardiothoracic Intensive Care, San Raffaele Scientific Institute, Milano, Italy
- Advanced Heart Failure and Mechanical Circulatory Support Program, San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Filippo Consolo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Advanced Heart Failure and Mechanical Circulatory Support Program, San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
38
|
Liao S, Wu EL, Neidlin M, Li Z, Simpson B, Gregory SD. The Influence of Rotary Blood Pump Speed Modulation on the Risk of Intraventricular Thrombosis. Artif Organs 2018; 42:943-953. [PMID: 30260033 DOI: 10.1111/aor.13330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rotary left ventricular assist devices (LVADs) are commonly operated at a constant speed, attenuating blood flow pulsatility. Speed modulation of rotary LVADs has been demonstrated to improve vascular pulsatility and pump washout. The effect of LVAD speed modulation on intraventricular flow dynamics is not well understood, which may have an influence on thromboembolic events. This study aimed to numerically evaluate intraventricular flow characteristics with a speed modulated LVAD. A severely dilated anatomical left ventricle was supported by a HeartWare HVAD in a three-dimensional multiscale computational fluid dynamics model. Three LVAD operating scenarios were evaluated: constant speed and sinusoidal co- and counter-pulsation. In all operating scenarios, the mean pump speed was set to restore the cardiac output to 5.0 L/min. Co- and counter-pulsation was speed modulated with an amplitude of 750 rpm. The risk of thrombosis was evaluated based on blood residence time, ventricular washout, kinetic energy densities, and a pulsatility index map. Blood residence time for co-pulsation was on average 1.8 and 3.7% lower than constant speed and counter-pulsation mode, respectively. After introducing fresh blood to displace preexisting blood for 10 cardiac cycles, co-pulsation had 1.5% less old blood in comparison to counter-pulsation. Apical energy densities were 84 and 27% higher for co-pulsation in comparison to counter-pulsation and constant speed mode, respectively. Co-pulsation had an increased pulsatility index around the left ventricular outflow tract and mid-ventricle. Improved flow dynamics with co-pulsation was caused by increased E-wave velocities which minimized blood stasis. In the studied scenario and from the perspective of intraventricular flow dynamics, co-pulsation of rotary LVADs could minimize the risk of intraventricular thrombosis.
Collapse
Affiliation(s)
- Sam Liao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Eric L Wu
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Zhiyong Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Benjamin Simpson
- Department of Engineering, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Shaun D Gregory
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, The University of Queensland, St. Lucia, Queensland, Australia.,Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Meani P, Delnoij T, Raffa GM, Morici N, Viola G, Sacco A, Oliva F, Heuts S, Sels JW, Driessen R, Roekaerts P, Gilbers M, Bidar E, Schreurs R, Natour E, Veenstra L, Kats S, Maessen J, Lorusso R. Protracted aortic valve closure during peripheral veno-arterial extracorporeal life support: is intra-aortic balloon pump an effective solution? Perfusion 2018; 34:35-41. [PMID: 30024298 PMCID: PMC6304680 DOI: 10.1177/0267659118787426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Left ventricular (LV) afterload increase with protracted aortic valve (AV)
closure may represent a complication of veno-arterial extracorporeal
membrane oxygenation (V-A ECMO). The aim of the present study was to assess
the effects of an intra-aortic balloon pump (IABP) to overcome such a
hemodynamic shortcoming in patients submitted to peripheral V-A ECMO. Methods: Among 184 adult patients who were treated with peripheral V-A ECMO support at
Medical University Center Maastricht Hospital between 2007 and 2018,
patients submitted to IABP implant for protracted AV closure after V-A ECMO
implant were retrospectively identified. All clinical and hemodynamic data,
including echocardiographic monitoring, were collected and analyzed. Results: During the study period, 10 subjects (mean age 60 years old, 80% males)
underwent IABP implant after peripheral V-A ECMO positioning due to the
diagnosis of protracted AV closure and inefficient LV unloading as assessed
by echocardiography and an absence of pulsation in the arterial pressure
wave. Recovery of blood pressure pulsatility and enhanced LV unloading were
observed in 8 patients after IABP placement, with no significant differences
in the main hemodynamic parameters, inotropic therapy or in the ECMO flow
(p=0.48). The weaning rate in this patient subgroup (mean ECMO duration 8
days), however, was only 10%, with another patient finally transplanted,
leading to a 20% survival-to-hospital discharge. Conclusion: IABP placement was an effective solution in order to reverse the protracted
AV closure and impaired LV unloading observed during peripheral V-A ECMO
support. However, the impact on the weaning rate and survival needs further
investigations.
Collapse
Affiliation(s)
- Paolo Meani
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,2 Cardiology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Thijs Delnoij
- 2 Cardiology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,3 Intensive Care Unit, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Giuseppe M Raffa
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,4 Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation and Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Nuccia Morici
- 5 De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy.,6 Department of Clinical Sciences and Community Health, Università degli Studi, Milan, Italy
| | - Giovanna Viola
- 5 De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Alice Sacco
- 5 De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Fabrizio Oliva
- 5 De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Sam Heuts
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jan-Willem Sels
- 2 Cardiology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,3 Intensive Care Unit, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Rob Driessen
- 2 Cardiology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,3 Intensive Care Unit, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Paul Roekaerts
- 3 Intensive Care Unit, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Martijn Gilbers
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Elham Bidar
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Rick Schreurs
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Ehsan Natour
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Leo Veenstra
- 2 Cardiology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Suzanne Kats
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jos Maessen
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Roberto Lorusso
- 1 Department of Cardio-Thoracic Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
40
|
Association of Pulsatility with Gastrointestinal Bleeding in a Cohort of HeartMate II Recipients. ASAIO J 2018; 64:472-479. [PMID: 29489463 DOI: 10.1097/mat.0000000000000766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
41
|
Park SM, Yang S, Rye SM, Choi SW. Effect of pulsatile flow perfusion on decellularization. Biomed Eng Online 2018; 17:15. [PMID: 29391037 PMCID: PMC5796601 DOI: 10.1186/s12938-018-0445-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/16/2018] [Indexed: 11/20/2022] Open
Abstract
Background Decellularized animal organs have been used as scaffolds for tissue engineering. To make a properly functioning scaffolds, the extracellular matrix (ECM) components must be preserved after decellularization. Because pulsatile flow is known to be beneficial for tissue perfusion, pulsatile perfusion of a detergent might decrease the exposure time of the tissues to the detergent used for decellularization. Using Energy Equivalent Pressure (EEP) as a pulsatility parameter, the effect of pulsatile flow in decellularization process is studied. Results Twelve rat hearts were decellularization with 1% sodium dodecyl sulfate (SDS) solution for 2 h. They are divided into two groups, one with pulsatile perfusion (n = 6), the other with non-pulsatile perfusion (n = 6) of SDS. The initial mean perfusion pressures were same in both group. The result indicated that the EEP and the perfusion flow were increased significantly in the pulsatile group compared to the non-pulsatile group. Photographs taken during the decellularization showed more profound decellularization in the pulsatile group. The residual DNA content in the scaffolds was significantly lower in the pulsatile group. However, the level of ECM components, collagen and GAG showed no significant differences between the groups. Conclusions Decellularization is more efficient in pulsatile flow than in non-pulsatile flow but still preserves the ECM molecules.
Collapse
Affiliation(s)
- Sung Min Park
- School of Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Seran Yang
- School of Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Se-Min Rye
- School of Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Seong Wook Choi
- Program of Mechanical and Biomedical Engineering, College of Engineering, Kangwon National University, Chuncheon-si, Republic of Korea.
| |
Collapse
|
42
|
Chen Z, Jena SK, Giridharan GA, Koenig SC, Slaughter MS, Griffith BP, Wu ZJ. Flow features and device-induced blood trauma in CF-VADs under a pulsatile blood flow condition: A CFD comparative study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:10.1002/cnm.2924. [PMID: 28859253 PMCID: PMC5803368 DOI: 10.1002/cnm.2924] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 05/11/2023]
Abstract
In this study, the flow features and device-associated blood trauma in 4 clinical ventricular assist devices (VADs; 2 implantable axial VADs, 1 implantable centrifugal VAD, and 1 extracorporeal VAD) were computationally analyzed under clinically relevant pulsatile flow conditions. The 4 VADs were operated at fixed pump speed at a mean rate of 4.5 L/min. Mean pressure difference, wall shear stress, volume distribution of scalar shear stress (SSS), and shear-induced hemolysis index (HI) were derived from the flow field of each VAD and were compared. The computationally predicted mean pressure difference across the 3 implantable VADs was ~70 mmHg, and the extracorporeal VAD was ~345 mmHg, which matched well with their reported pressure-flow curves. The axial VADs had higher mean wall shear stress and SSS compared with the centrifugal VADs. However, the residence time of the centrifugal VADs was much longer compared with the axial VADs because of the large volume of the centrifugal VADs. The highest SSS was observed in one axial VAD, and the longest exposure time was observed in 1 centrifugal VAD. These 2 VADs generated the highest HI. The shear-induced HI varied as a function of flow rate within each cardiac cycle. At fixed pump speed, the HI was greatest at low flow rate due to longer exposure time to shear stress compared with at high flow rate. Subsequently, we hypothesize that to reduce the risk of blood trauma during VAD support, shear stress magnitude and exposure time need to be minimized.
Collapse
Affiliation(s)
- Zengsheng Chen
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sofen K Jena
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Guruprasad A Giridharan
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Steven C Koenig
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mark S Slaughter
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Fischell Department of Bioengineering, A James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
43
|
The Effect of Inflow Cannula Length on the Intraventricular Flow Field: An In Vitro Flow Visualization Study Using the Evaheart Left Ventricular Assist Device. ASAIO J 2017; 63:592-603. [DOI: 10.1097/mat.0000000000000559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
44
|
Smith PA, Timms DL, McMahon RA. Hemodynamic effects of synchronizing an intra-aortic VAD in reverse-rotation control with left ventricle: a mock loop study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4300-4304. [PMID: 28269231 DOI: 10.1109/embc.2016.7591678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The IntraVAD is an intra-aortic left ventricular assist device (LVAD) to be located in the ascending aorta. In order to enhance unloading and promote coronary flow for the left ventricle (LV), an operating mechanism, reverse-rotation control (RRc) mode, has been developed for the IntraVAD and tested in vitro in a mock circulation loop (MCL). The RRc mode consists of forward rotation (FR) and reverse rotation (RR). The synchronization between the IntraVAD and the LV was studied to offload the ventricle more effectively and to improve myocardial perfusion. The percentage time length of the FR period in the cardiac cycle (Tlf) and time offset between the central-lines of the FR period and the LV systole (Toc) are two parameters of the RRc mode that were varied to adjust the synchronization between the IntraVAD and the LV. The ejection fraction (EF), coronary perfusion pressure (CPP), and arterial pulsatility index (API) were measured at different Tlf and Toc values. These hemodynamic results closely correlated to the LV unloading, coronary perfusion, and peripheral arterial pulsatility. The EF, CPP and API were fed into a weighted normalized scalar (WNS) which was implemented to comprehensively evaluate the hemodynamic influence. The WNS result shows that the overall hemodynamic response is more sensitive to the changes in Toc value than Tlf value. The result shows a significant reduction in LV afterload by starting the FR before LV contraction, then switching to RR at the onset of ventricular dilation. The optimal phase shift of -π/5 was found to precede LV contraction, indicating that changes in LV afterload are more sensitive to the phase shift at the start of the ventricular systole than at the end. Thus, a phase advance between intra-aortic pumps and the LV is critical to unload the ventricle and promote myocardial recovery.
Collapse
|
45
|
Effect of Outflow Graft Size on Flow in the Aortic Arch and Cerebral Blood Flow in Continuous Flow Pumps: Possible Relevance to Strokes. ASAIO J 2016; 63:144-149. [PMID: 28033184 DOI: 10.1097/mat.0000000000000507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One of the most devastating complications of continuous flow left ventricular devices (CFLVADS) is stroke, with a higher incidence in HeartWare Ventricular Assist Device (HVAD) as compared with HEARTMATE II. The reason for the observed difference in stroke rates is unclear. Because outflow graft diameters are different, we hypothesized that this could contribute to the difference in stroke rates. A computational fluid-structure interaction model was created from the computed tomography (CT) scan of a patient. Pressures were used as the boundary condition and the flow through the cerebral vessels was derived as outputs. Flow into the innominate artery was very sensitive to the anastomosis angle for a 10 mm as compared with a 14 mm graft, with the net innominate flow severely compromised with a 10 mm graft at 45° angle. Aortic insufficiency seems to affect cerebral blood flow nonlinearly with an 80% decrease at certain angles of outflow graft anastomosis. Arterial return in to the arch through a narrow graft has important jet effects and results in significant flow perturbations in the aortic arch and cerebral vessels and stasis. A 10 mm graft is more sensitive to angle of insertion than a 14 mm graft. Under some conditions, serious hypoperfusion of the innominate artery is possible. Aortic incompetence results in significant decrease of cerebral blood flow. No stasis was found in the pulsatile flow compared with LVAD flow.
Collapse
|
46
|
Capoccia M. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New "Gold Standard"? J Cardiovasc Dev Dis 2016; 3:E35. [PMID: 29367578 PMCID: PMC5715724 DOI: 10.3390/jcdd3040035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
The impact of left ventricular assist devices (LVADs) for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs), based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs). The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial) and the HeartWare HVAD (centrifugal) rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal) is now emerging as the new promising device with encouraging preliminary results. There are now enough pumps on the market: it is time to focus on the complications in order to achieve the full potential and selling-point of this type of technology for the treatment of the increasing heart failure patient population.
Collapse
Affiliation(s)
- Massimo Capoccia
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow G81 4DY, UK.
- Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK.
| |
Collapse
|
47
|
Modeling the Link between Left Ventricular Flow and Thromboembolic Risk Using Lagrangian Coherent Structures. FLUIDS 2016. [DOI: 10.3390/fluids1040038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Kleinheyer M, Timms DL, Tansley GD, Nestler F, Greatrex NA, Frazier OH, Cohn WE. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller. Artif Organs 2016; 40:824-33. [DOI: 10.1111/aor.12827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Matthias Kleinheyer
- School of Engineering; Griffith University; Southport Queensland Australia
- Department of Engineering; BiVACOR Inc.; Houston TX USA
| | | | | | - Frank Nestler
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- School of Information Technology and Electrical Engineering; The University of Queensland; St. Lucia, Queensland Australia
| | | | - O. Howard Frazier
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- Department of Cardiovascular Surgery; Texas Heart Institute; Houston TX USA
| | - William E. Cohn
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- Department of Cardiovascular Surgery; Texas Heart Institute; Houston TX USA
| |
Collapse
|
49
|
Gu K, Gao B, Chang Y, Zeng Y. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study. Med Sci Monit 2016; 22:2284-94. [PMID: 27363758 PMCID: PMC4933548 DOI: 10.12659/msm.896291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background BJUT-II VAD is a novel left ventricular assist device (LVADs), directly implanted into the ascending aorta. The pulsatile support mode is proposed to achieve better unloading performance than constant speed mode. However, the hemodynamic effects of this support mode on the aorta are still unclear. The aim of this study was to clarify the hemodynamic effects BJUT-II VAD under pulsatile support mode on the aorta. Material/Methods Computational fluid dynamics (CFD) studies, based on a patient-specific aortic geometric model, were conducted. Wall shear stress (WSS), averaged WSS (avWSS), oscillatory shear index (OSI), and averaged helicity density (Ha) were calculated to compare the differences in hemodynamic effects between pulsatile support mode and constant speed mode. Results The results show that avWSS under pulsatile support mode is significantly higher than that under constant speed mode (0.955Pa vs. 0.675Pa). Similarly, the OSI value under pulsatile mode is higher than that under constant speed mode (0.104 vs. 0.057). In addition, Ha under pulsatile mode for all selected cross-sections is larger than that under constant mode. Conclusions BJUT-II VAD, under pulsatile control mode, may prevent atherosclerosis lesions and aortic remodeling. The precise effects of pulsatile support mode on atherosclerosis and aortic remodeling need to be further studied in animal experiments.
Collapse
Affiliation(s)
- Kaiyun Gu
- School of Life Sciences and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| | - Bin Gao
- School of Life Sciences and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| | - Yu Chang
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| | - Yi Zeng
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| |
Collapse
|
50
|
Ji B, Undar A. Review Article: Comparison of perfusion modes on microcirculation during acute and chronic cardiac support: is there a difference? Perfusion 2016; 22:115-9. [PMID: 17708160 DOI: 10.1177/0267659107080115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although heart-lung machines and cardiac assist devices have been used successfully for acute and chronic cardiac support for decades, controversies still remain concerning the benefits of pulsatile and non-pulsatile perfusion. The core of the debate is whether enough energy is generated by the artificial pulse to keep capillary beds open and cell metabolism stabilized during acute or chronic cardiac support. In other words, does artificial pulsatility exist in the microcirculation: small vessels of less than 100 μm in diameter? Many investigators have tried to use different tools and biomarkers to reflect directly or indirectly the state of the microcirculation when comparing the two different perfusion modes during acute and chronic cardiac support. However, the results are controversial. First, direct observation of the state of the microcirculation during acute and chronic cardiac support is limited; and reports concerning direct observation of the microcirculation with different perfusion modes in contemporary literature are rare. Secondly, different investigators have used their own criteria to define pulsatile flow. Therefore, it is necessary to develop more efficient methodologies, enabling direct observation of the microcirculation during acute and chronic cardiac support and also establish common criteria that will precisely quantify the pulsatile flow in terms of energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) levels. Using these critical parameters may explain how excess energy is created by pulsatile flow and maintains perfusion through the microcirculation by ensuring capillary patency. Perfusion (2007) 22, 115—119.
Collapse
Affiliation(s)
- Bingyang Ji
- Department of Pediatrics, Penn State Children's Hospital, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | | |
Collapse
|