1
|
Dai P, He J, Wei Y, Xu M, Zhao J, Zhou X, Tang H. High Dose of Estrogen Protects the Lungs from Ischemia-Reperfusion Injury by Downregulating the Angiotensin II Signaling Pathway. Inflammation 2024; 47:1248-1261. [PMID: 38386131 DOI: 10.1007/s10753-024-01973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
We explored the sex difference in lung ischemia-reperfusion injury (LIRI) and the role and mechanism of estrogen (E2) and angiotensin II (Ang II) in LIRI. We established a model of LIRI in mice. E2, Ang II, E2 inhibitor (fulvestrant), and angiotensin II receptor blocker (losartan) were grouped for treatment. The lung wet/dry weight ratio, natural killer (NK) cells (by flow cytometry), neutrophils (by flow cytometry), expression of key proteins (by Western blot, immunohistochemistry, ELISA, and immunofluorescence), and expression of related protein mRNA (by qPCR) were detected. The ultrastructure of the alveolar epithelial cells was observed by transmission electron microscopy. We found that E2 and Ang II played an important role in the progression of LIRI. The two signaling pathways showed obvious antagonism, and E2 regulates LIRI in the different sexes by downregulating Ang II, leading to a better prognosis. E2 and losartan reduced the inflammatory cell infiltration in lung tissue and key inflammatory factors in serum while fulvestrant and Ang II had the opposite effect. The protective effect of E2 was related with AKT, p38, COX2, and HIF-1α.
Collapse
Affiliation(s)
- Peng Dai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jutong He
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Xu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinping Zhao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xuefeng Zhou
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hexiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Xie Q, Lu J, Cui X. Effects of therapeutic hypercapnia on the expression and function of γδT cells in transplanted lungs in rats. Immun Inflamm Dis 2024; 12:e1220. [PMID: 38506409 PMCID: PMC10953205 DOI: 10.1002/iid3.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
OBJECTIVE To investigate the effect of therapeutic hypercapnia on the expression and function of gamma delta T (γδ T) cells during ischemia-reperfusion injury (IRI) after lung transplantation. METHODS We randomly divided male Wistar rats into three groups (n = 6 in each group), the control group (group N), the IRI group (group I), and the therapeutic hypercapnia group (group H). We then assessed pulmonary edema, neutrophil infiltration, wet-to-dry (W/D) weight ratio, and microscopic histopathology and separately measured the levels of γδT cell surface antigen (TCR) and Interleukin-17 (IL-17) using flow cytometry and enzyme-linked immunosorbent assays (ELISAs). RESULTS The infiltration of neutrophils and the expression of TCR and IL-17 were significantly increased in the I group compared to the control, and the biopsy edema in group I was more severe. Arterial partial pressure of oxygen (PaO2) was decreased after reperfusion in group I compared with the control group. W/D weight ratio, neutrophil infiltration, and the expression of TCR and IL-17 decreased drastically in the H group compared to the I group. CONCLUSION Our findings suggest that γδ T lymphocytes were directly involved in lung injury. In addition, therapeutic hypercapnia effectively reduced the expression of γδ T cells and IL-17, and this has the potential to become a treatment strategy for IRI and an intervention to improve lung function.
Collapse
Affiliation(s)
- Qing Xie
- Department of Anesthesia, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jia Lu
- Department of Anesthesia, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - XiaoGuang Cui
- Department of AnesthesiaFirst Affiliated Hospital of Hainan Medical CollegeHaikouHainanChina
| |
Collapse
|
3
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
4
|
Zhang Z, Gao J, Yu J, Zhang N, Fu Y, Jiang X, Wang X, Song J, Wen Z. Transcriptome analysis of novel macrophage M1-related biomarkers and potential therapeutic agents in ischemia-reperfusion injury after lung transplantation based on the WGCNA and CIBERSORT algorithms. Transpl Immunol 2023; 79:101860. [PMID: 37230395 DOI: 10.1016/j.trim.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Lung transplantation is the last effective treatment for end-stage respiratory failure, however, with ischemia-reperfusion injury (IRI) inevitably occurring in postoperative period. IRI is the major pathophysiologic mechanism of primary graft dysfunction, a severe complication that contributes to prolonged length of stay and overall mortality. The understanding of pathophysiology and etiology remain limited and the underlying molecular mechanism, as well as novel diagnostic biomarkers and therapeutic targets, urgently require exploration. Excessive uncontrolled inflammatory response is the core mechanism of IRI. In this research, a weighted gene co-expression network was established using the CIBERSORT and WGCNA algorithms in order to identify macrophage-related hub genes based on the data downloaded from the GEO database (GSE127003, GSE18995). 692 differentially expressed genes (DEGs) in reperfused lung allografts were identified, with three genes recognized as being related to M1 macrophages and validated as differentially expressed using GSE18995 dataset. Of these putative novel biomarker genes, TCRα subunit constant gene (TRAC) were downregulated, while Perforin-1 (PRF1) and Granzyme B (GZMB) were upregulated in reperfused vs. ischemic lung allografts. Furthermore, we obtained 189 potentially therapeutic small molecules for IRI after lung transplantation from the CMap database among which PD-98059 was the top molecule with the highest absolute correlated connectivity score (CS). Our study provides the novel insights into the impact of immune cells on the etiology of IRI and potential targets for therapeutic intervention. Nevertheless, further investigation of these key genes and therapeutic drugs is needed to validate their effects.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Xingan Wang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiong Song
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|
5
|
Chen LR, Wang XX, Zhang XM, Wang HX. CD1d-dependent natural killer T-cells inactivation aggravates sepsis-induced myocardial injury via T lymphocytes infiltration and IL-6 production in mice. Int Immunopharmacol 2023; 120:110256. [PMID: 37182446 DOI: 10.1016/j.intimp.2023.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Myocardial edema mediated by endothelial dysfunction plays an important role in sepsis-induced cardiomyopathy (SIC); however, its mechanism is unclear. The current study aimed to provide evidence on the cardioprotection of CD1d-dependent natural killer T (NKT) cells and clarify the possible mechanism in a mouse model of sepsis. Wild-type (WT) and CD1d-dependent NKT-cells inactivation (CD1dko) mice were subjected to sepsis induced by intraperitoneal injection of lipopolysaccharide (LPS). The NKT-cells number and CD1d expression were both increased in the hearts and blood of WT mice after LPS treatment. Compared with WT mice, CD1dko mice exhibited remarkably accelerated LPS-induced mortality, cardiac dysfunction, myocardial injury, endothelial apoptosis, microvascular damage, microvascular permeability and cardiac edema. Mechanistically, CD1d deficiency further increased LPS-induced accumulation of T lymphocytes in the myocardium and upregulation of IL-6 protein levels. Administration of an IL-6 neutralizing antibody to CD1dko mice improved cardiac dysfunction, myocardial injury and edema induced by LPS. Our study identified that CD1d-dependent NKT-cells inactivation exacerbated SIC via T lymphocytes infiltration and IL-6 production. Hence, activation of CD1d-dependent NKT cells may be a potential candidate strategy for SIC treatment.
Collapse
Affiliation(s)
- Li-Rui Chen
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Xiao Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Man Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hong-Xia Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cardiovascular Diseases and Related Metabolic Dysfunction, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
7
|
Mengli Xu, Su J, Yue Z, Yu Y, Zhao X, Xie X. Inflammation and Limb Regeneration: The Role of the Chemokines. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wang R, Wei W, Rong S, Wang T, Li B. Intravenous injection of SDF-1α-overexpressing bone marrow mesenchymal stem cells has a potential protective effect on myocardial ischemia in mice. Curr Stem Cell Res Ther 2022; 17:348-360. [PMID: 35306996 DOI: 10.2174/1574888x17666220318144608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
Background Neutrophils are involved in the injury of myocytes during myocardial ischemia (MI). Stem cells migrate to the site of myocardial injury under homing signals and play a protective role, such as inhibiting inflammation. Chemokine SDF-1α and its related receptor CXCR4 are upregulated after myocardial infarction, which may play an important role in stem cell homing. Objectives This study aimed to explore the potential therapeutic effect of SDF-1α-modified bone marrow mesenchymal stem cells on myocardial ischemia/reperfusion (I/R) injury. Methods We explored the role of SDF-1α modified bone marrow mesenchymal stem cells in vivo and in vitro. SDF-1α and CXCR4 expression was detected under hypoxia/reoxygenation (H/R) condition. Cell migration was detected by the transwell method. The levels of SDF-1α and IL-1β, IL-6, IL-10, and TNF-α were detected in different groups. Results In vivo, SDF-1α was mainly upregulated and secreted by cardiomyocytes, and cardiomyocytes recruited stem cells through the SDF-1/CXCR4 pathway to reduce the damage of polymorphic mononuclear neutrophils to cardiomyocytes under H/R. Upregulation of SDF-1α increased the migration ability of BMSC Stem Cells to H/R-induced cardiomyocytes. In vitro, intravenous injection of SDF-1α gene-modified BMSC Stem Cells reduced inflammatory infiltration in the injured area as well as the level of systemic inflammatory factors. Conclusions SDF-1α-overexpressing BMSC Stem Cells protected the heart function of mice and significantly reduced I/R-induced myocardial injury, which has a potential protective effect on MI.
Collapse
Affiliation(s)
- Ruihua Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wen Wei
- The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi 030024, P.R. China
| | - Shuling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Bao Li
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
9
|
Van Slambrouck J, Van Raemdonck D, Vos R, Vanluyten C, Vanstapel A, Prisciandaro E, Willems L, Orlitová M, Kaes J, Jin X, Jansen Y, Verleden GM, Neyrinck AP, Vanaudenaerde BM, Ceulemans LJ. A Focused Review on Primary Graft Dysfunction after Clinical Lung Transplantation: A Multilevel Syndrome. Cells 2022; 11:cells11040745. [PMID: 35203392 PMCID: PMC8870290 DOI: 10.3390/cells11040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Primary graft dysfunction (PGD) is the clinical syndrome of acute lung injury after lung transplantation (LTx). However, PGD is an umbrella term that encompasses the ongoing pathophysiological and -biological mechanisms occurring in the lung grafts. Therefore, we aim to provide a focused review on the clinical, physiological, radiological, histological and cellular level of PGD. PGD is graded based on hypoxemia and chest X-ray (CXR) infiltrates. High-grade PGD is associated with inferior outcome after LTx. Lung edema is the main characteristic of PGD and alters pulmonary compliance, gas exchange and circulation. A conventional CXR provides a rough estimate of lung edema, while a chest computed tomography (CT) results in a more in-depth analysis. Macroscopically, interstitial and alveolar edema can be distinguished below the visceral lung surface. On the histological level, PGD correlates to a pattern of diffuse alveolar damage (DAD). At the cellular level, ischemia-reperfusion injury (IRI) is the main trigger for the disruption of the endothelial-epithelial alveolar barrier and inflammatory cascade. The multilevel approach integrating all PGD-related aspects results in a better understanding of acute lung failure after LTx, providing novel insights for future therapies.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Cedric Vanluyten
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Prisciandaro
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lynn Willems
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Pulmonary Circulation Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Michaela Orlitová
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yanina Jansen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Geert M. Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arne P. Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
- Department of Anesthesiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
10
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Akimova T, Zhang T, Christensen LM, Wang Z, Han R, Negorev D, Samanta A, Sasson IE, Gaddapara T, Jiao J, Wang L, Bhatti TR, Levine MH, Diamond JM, Beier UH, Simmons RA, Cantu E, Wilkes DS, Lederer DJ, Anderson M, Christie JD, Hancock WW. Obesity-related IL-18 Impairs Treg Function and Promotes Lung Ischemia-reperfusion Injury. Am J Respir Crit Care Med 2021; 204:1060-1074. [PMID: 34346860 DOI: 10.1164/rccm.202012-4306oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Primary graft dysfunction (PGD) is a severe form of acute lung injury, leading to increased early morbidity and mortality after lung transplantation. Obesity is a major health problem, and recipient obesity is one of the most significant risk factors for developing PGD. OBJECTIVES We hypothesized that T-regulatory (Treg) cells are able to dampen early ischemia/reperfusion events and thereby decrease risk of PGD, whereas that action is impaired in obese recipients. METHODS We evaluated Treg, T cells and inflammatory markers, plus clinical data, in 79 lung and 41 liver or kidney transplant recipients and studied two groups of mice on high fat diet (HFD), who developed ("inflammatory" HFD) or not ("healthy" HFD) low-grade inflammation with decreased Treg function. RESULTS We identified increased levels of IL-18 as a previously unrecognized mechanism that impairs Treg suppressive function in obese individuals. IL-18 decreases levels of FOXP3, the key Treg transcription factor, decreases FOXP3 di- and oligomerization and increases the ubiquitination and proteasomal degradation of FOXP3. IL-18-treated Tregs or Treg from obese mice fail to control PGD, while IL-18 inhibition ameliorates lung inflammation. The IL-18 driven impairment in Treg suppressive function pre-transplant was associated with increased risk and severity of PGD in clinical lung transplant recipients. CONCLUSION Obesity-related IL-18 induces Treg dysfunction that may contribute to the pathogenesis of PGD. Evaluation of Treg suppressive function along with IL-18 levels may serve as screening tools to identify pre-transplant obese recipients with increased risk of PGD.
Collapse
Affiliation(s)
- Tatiana Akimova
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Tianyi Zhang
- The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Lanette M Christensen
- The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Zhonglin Wang
- University of Pennsylvania, 6572, Division of Transplant Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Rongxiang Han
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Dmitry Negorev
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Arabinda Samanta
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Isaac E Sasson
- University of Pennsylvania, 6572, Department of Obstetrics and Gynecology, Philadelphia, Pennsylvania, United States
| | - Trivikram Gaddapara
- University of Pennsylvania, 6572, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Jing Jiao
- The Children's Hospital of Philadelphia, 6567, Division of Nephrology, Department of Pediatrics, Philadelphia, Pennsylvania, United States.,University of Pennsylvania, 6572, Pathology, Philadelphia, Pennsylvania, United States
| | - Liqing Wang
- University of Pennsylvania, 6572, Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Tricia R Bhatti
- University of Pennsylvania, 6572, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States
| | - Matthew H Levine
- University of Pennsylvania, 6572, Division of Transplant Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Joshua M Diamond
- University of Pennsylvania, 6572, Pulmonary/Critical Care, Philadelphia, Pennsylvania, United States
| | - Ulf H Beier
- The Children's Hospital of Philadelphia, 6567, Division of Nephrology, Department of Pediatrics, Philadelphia, Pennsylvania, United States.,University of Pennsylvania Perelman School of Medicine, 14640, Philadelphia, Pennsylvania, United States
| | - Rebecca A Simmons
- The Children's Hospital of Philadelphia, 6567, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Edward Cantu
- University of Pennsylvania Perelman School of Medicine, 14640, Surgery, Philadelphia, Pennsylvania, United States
| | - David S Wilkes
- Indiana University School of Medicine, 12250, Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indianapolis, Indiana, United States.,University of Virginia School of Medicine, 12349, Charlottesville, Virginia, United States
| | - David J Lederer
- Columbia University Vagelos College of Physicians and Surgeons, 12294, Division of Pulmonary, Allergy, and Critical Care Medicine, New York, New York, United States.,Regeneron Pharmaceuticals Inc, 7845, Tarrytown, New York, United States
| | - Michaela Anderson
- Columbia University Medical Center, 21611, Medicine, New York, New York, United States
| | - Jason D Christie
- University of Pennsylvania, 6572, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Philadelphia, Pennsylvania, United States.,University of Pennsylvania, 6572, Division of Cardiovascular Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Wayne W Hancock
- University of Pennsylvania, 6572, Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States.,The Children's Hospital of Philadelphia, 6567, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
12
|
Natalini JG, Diamond JM. Primary Graft Dysfunction. Semin Respir Crit Care Med 2021; 42:368-379. [PMID: 34030200 DOI: 10.1055/s-0041-1728794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury after transplantation characterized by hypoxemia and the development of alveolar infiltrates on chest radiograph that occurs within 72 hours of reperfusion. PGD is among the most common early complications following lung transplantation and significantly contributes to increased short-term morbidity and mortality. In addition, severe PGD has been associated with higher 90-day and 1-year mortality rates compared with absent or less severe PGD and is a significant risk factor for the subsequent development of chronic lung allograft dysfunction. The International Society for Heart and Lung Transplantation released updated consensus guidelines in 2017, defining grade 3 PGD, the most severe form, by the presence of alveolar infiltrates and a ratio of PaO2:FiO2 less than 200. Multiple donor-related, recipient-related, and perioperative risk factors for PGD have been identified, many of which are potentially modifiable. Consistently identified risk factors include donor tobacco and alcohol use; increased recipient body mass index; recipient history of pulmonary hypertension, sarcoidosis, or pulmonary fibrosis; single lung transplantation; and use of cardiopulmonary bypass, among others. Several cellular pathways have been implicated in the pathogenesis of PGD, thus presenting several possible therapeutic targets for preventing and treating PGD. Notably, use of ex vivo lung perfusion (EVLP) has become more widespread and offers a potential platform to safely investigate novel PGD treatments while expanding the lung donor pool. Even in the presence of significantly prolonged ischemic times, EVLP has not been associated with an increased risk for PGD.
Collapse
Affiliation(s)
- Jake G Natalini
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Zhou P, Guo H, Li Y, Liu Q, Qiao X, Lu Y, Mei PY, Zheng Z, Li J. Monocytes promote pyroptosis of endothelial cells during lung ischemia-reperfusion via IL-1R/NF-κB/NLRP3 signaling. Life Sci 2021; 276:119402. [PMID: 33785335 DOI: 10.1016/j.lfs.2021.119402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
In our previous study, we observed that donor pulmonary intravascular nonclassical monocytes play a major role in early PGF, but the specific mechanism remained unclear. In this study, we investigated the mechanistic role of monocytes in inducing pyroptosis of human pulmonary microvascular endothelial cells (HPMECs) during IRI. A murine hilar ligation model of IRI was utilized whereby left lungs underwent 1 h of ischemia and 23 h of reperfusion. Monocyte depletion by intraperitoneal clodronate-liposome treatment on pulmonary edema and pyroptosis activation were determined. In vitro experiments, we performed the co-culture experiments under hypoxia-reoxygenation (H/R) conditions to mimic the IRI environment. We monitored the expression of NLRP3, caspase-1 and IL-1β in co-cultures of monocytes (U937 cells) and HPMECs under H/R conditions. NLRP3, IL-1β and IL-1R siRNA knockdown, caspase-1 and NF-κB pathway inhibitors were employed to elucidate the mechanism modulating HPMEC pyroptosis during H/R. Treatment of mice with clodronate-liposome attenuated IR-induced pulmonary edema, cytokine production and pyroptosis activation. In vitro, NLRP3 knockdown in monocytes reduced caspase-1 and IL-1β secretion in co-cultures of monocytes and HPMECs. Reduced HPMEC pyroptosis was also observed either containing HPMECs with genetically engineered IL-1R knockdown or in co-culture treated with a Triplotide inhibitor that disrupts NF-κB signaling. Monocytes play a vital role in the development of transplant-associated ischemia-reperfusion injury. A potential role is that monocytes secrete IL-1β to induce HPMEC pyroptosis via the IL-1R/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Guo
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Lu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Hsu J, Krishnan A, Lee SA, Dodd-O JM, Kim BS, Illei P, Yarnoff K, Hamad AA, Rabb H, Bush EL. CD3 +CD4 -CD8 - Double-negative αβ T cells attenuate lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2021; 161:e81-e90. [PMID: 31864698 PMCID: PMC7195225 DOI: 10.1016/j.jtcvs.2019.09.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Lung ischemia-reperfusion injury (IRI) is a common complication after lung transplantation, and immune cells have been implicated in modulating outcomes. We hypothesized that a newly described subset of αβ T-cell receptor positive cells; that is, CD4-CD8- (double negative [DN]) T cells, are found in lungs and can protect against lung IRI. METHODS Ischemia was induced in C57BL/6 mice by left pulmonary artery and vein occlusion for 30 minutes followed by 180 minutes of reperfusion. These mice were paired with sham hilar dissected surgical controls. In mice undergoing IRI, adoptive transfer of DN T cells or conventional T cells was performed 12 hours before occlusion. Flow cytometry was used to quantify T cells and inflammatory cytokines, and apoptotic signaling pathways were evaluated with immunoblotting. Lung injury was assessed with Evans blue dye extravasation. RESULTS DN T cells were significantly higher (5.29% ± 1% vs 2.21% ± 3%; P < .01) in IRI lungs and secreted higher levels of interleukin-10 (30% ± 5% vs 6% ± 1%; P < .01) compared with surgical sham controls. Immunoblotting, hematoxylin and eosin staining and Evans blue dye demonstrated that adoptive transfer of DN T cells significantly decreased interstitial edema (P < .01) and attenuated apoptosis/cleaved caspase-3 expression in the lungs following lung IRI (P < .01). CONCLUSIONS DN T cells traffic into lungs during IRI, and have tissue protective functions regulating inflammation and apoptosis. We propose a potential novel immunoregulatory function of DN T cells during lung IRI.
Collapse
Affiliation(s)
- Joshua Hsu
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Aravind Krishnan
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Sul A Lee
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Jefferey M Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Bo S Kim
- Divisions of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Peter Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Kristine Yarnoff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Abdel A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Hamid Rabb
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Errol L Bush
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
15
|
Haque N, Fareez IM, Fong LF, Mandal C, Kasim NHA, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020. [DOI: 10.4252/wjsc.v12.i9.0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
16
|
Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020; 12:938-951. [PMID: 33033556 PMCID: PMC7524697 DOI: 10.4252/wjsc.v12.i9.938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Ismail M Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Liew Fong Fong
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Life Science, Khulna University, Khulna 9208, Bangladesh
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 411007, Indonesia
| | - Kranthi Raja Kacharaju
- Department of Conservative Dentistry, Faculty of Dentistry MAHSA University, Selangor 42610, Malaysia
| | - Pratiwi Soesilawati
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
17
|
Kawashima M, Juvet SC. The role of innate immunity in the long-term outcome of lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:412. [PMID: 32355856 PMCID: PMC7186608 DOI: 10.21037/atm.2020.03.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-term survival after lung transplantation remains suboptimal due to chronic lung allograft dysfunction (CLAD), a progressive scarring process affecting the graft. Although anti-donor alloimmunity is central to the pathogenesis of CLAD, its underlying mechanisms are not fully elucidated and it is neither preventable nor treatable using currently available immunosuppression. Recent evidence has shown that innate immune stimuli are fundamental to the development of CLAD. Here, we examine long-standing assumptions and new concepts linking innate immune activation to late lung allograft fibrosis.
Collapse
Affiliation(s)
- Mitsuaki Kawashima
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Wong A, Zamel R, Yeung J, Bader GD, Dos Santos CC, Bai X, Wang Y, Keshavjee S, Liu M. Potential therapeutic targets for lung repair during human ex vivo lung perfusion. Eur Respir J 2020; 55:13993003.02222-2019. [DOI: 10.1183/13993003.02222-2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
IntroductionThe ex vivo lung perfusion (EVLP) technique has been developed to assess the function of marginal donor lungs and has significantly increased donor lung utilisation. EVLP has also been explored as a platform for donor lung repair through injury-specific treatments such as antibiotics or fibrinolytics. We hypothesised that actively expressed pathways shared between transplantation and EVLP may reveal common mechanisms of injury and potential therapeutic targets for lung repair prior to transplantation.Materials and methodsRetrospective transcriptomics analyses were performed with peripheral tissue biopsies from “donation after brain death” lungs, with 46 pre-/post-transplant pairs and 49 pre-/post-EVLP pairs. Pathway analysis was used to identify and compare the responses of donor lungs to transplantation and to EVLP.Results22 pathways were enriched predominantly in transplantation, including upregulation of lymphocyte activation and cell death and downregulation of metabolism. Eight pathways were enriched predominantly in EVLP, including downregulation of leukocyte functions and upregulation of vascular processes. 27 pathways were commonly enriched, including activation of innate inflammation, cell death, heat stress and downregulation of metabolism and protein synthesis. Of the inflammatory clusters, Toll-like receptor/innate immune signal transduction adaptor signalling had the greatest number of nodes and was central to inflammation. These mechanisms have been previously speculated as major mechanisms of acute lung injury in animal models.ConclusionEVLP and transplantation share common molecular features of injury including innate inflammation and cell death. Blocking these pathways during EVLP may allow for lung repair prior to transplantation.
Collapse
|
19
|
Charles EJ, Chordia MD, Zhao Y, Zhang Y, Mehaffey JH, Glover DK, Dimastromatteo J, Chancellor WZ, Sharma AK, Kron IL, Pan D, Laubach VE. SPECT imaging of lung ischemia-reperfusion injury using [ 99mTc]cFLFLF for molecular targeting of formyl peptide receptor 1. Am J Physiol Lung Cell Mol Physiol 2020; 318:L304-L313. [PMID: 31800262 PMCID: PMC7052676 DOI: 10.1152/ajplung.00220.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Primary graft dysfunction after lung transplantation, a consequence of ischemia-reperfusion injury (IRI), is a major cause of morbidity and mortality. IRI involves acute inflammation and innate immune cell activation, leading to rapid infiltration of neutrophils. Formyl peptide receptor 1 (FPR1) expressed by phagocytic leukocytes plays an important role in neutrophil function. The cell surface expression of FPR1 is rapidly and robustly upregulated on neutrophils in response to inflammatory stimuli. Thus, we hypothesized that use of [99mTc]cFLFLF, a selective FPR1 peptide ligand, would permit in vivo neutrophil labeling and noninvasive imaging of IRI using single-photon emission computed tomography (SPECT). A murine model of left lung IRI was utilized. Lung function, neutrophil infiltration, and SPECT imaging were assessed after 1 h of ischemia and 2, 12, or 24 h of reperfusion. [99mTc]cFLFLF was injected 2 h before SPECT. Signal intensity by SPECT and total probe uptake by gamma counts were 3.9- and 2.3-fold higher, respectively, in left lungs after ischemia and 2 h of reperfusion versus sham. These values significantly decreased with longer reperfusion times, correlating with resolution of IRI as shown by improved lung function and decreased neutrophil infiltration. SPECT results were confirmed using Cy7-cFLFLF-based fluorescence imaging of lungs. Immunofluorescence microscopy confirmed cFLFLF binding primarily to activated neutrophils. These results demonstrate that [99mTc]cFLFLF SPECT enables noninvasive detection of lung IRI and permits monitoring of resolution of injury over time. Clinical application of [99mTc]cFLFLF SPECT may permit diagnosis of lung IRI for timely intervention to improve outcomes after transplantation.
Collapse
Affiliation(s)
- Eric J. Charles
- 1Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mahendra D. Chordia
- 2Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yunge Zhao
- 1Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yi Zhang
- 5Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - J. Hunter Mehaffey
- 1Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David K. Glover
- 3Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Julien Dimastromatteo
- 4Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia
| | - W. Zachary Chancellor
- 1Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ashish K. Sharma
- 1Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Irving L. Kron
- 1Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Dongfeng Pan
- 2Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor E. Laubach
- 1Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
20
|
Monticelli LA, Diamond JM, Saenz SA, Tait Wojno ED, Porteous MK, Cantu E, Artis D, Christie JD. Lung Innate Lymphoid Cell Composition Is Altered in Primary Graft Dysfunction. Am J Respir Crit Care Med 2020; 201:63-72. [PMID: 31394048 PMCID: PMC6938146 DOI: 10.1164/rccm.201906-1113oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation, but the immunologic mechanisms are poorly understood. Innate lymphoid cells (ILC) are a heterogeneous family of immune cells regulating pathologic inflammation and beneficial tissue repair. However, whether changes in donor-derived lung ILC populations are associated with PGD development has never been examined.Objectives: To determine whether PGD in chronic obstructive pulmonary disease or interstitial lung disease transplant recipients is associated with alterations in ILC subset composition within the allograft.Methods: We performed a single-center cohort study of lung transplantation patients with surgical biopsies of donor tissue taken before, and immediately after, allograft reperfusion. Donor immune cells from 18 patients were characterized phenotypically by flow cytometry for single-cell resolution of distinct ILC subsets. Changes in the percentage of ILC subsets with reperfusion or PGD (grade 3 within 72 h) were assessed.Measurements and Main Results: Allograft reperfusion resulted in significantly decreased frequencies of natural killer cells and a trend toward reduced ILC populations, regardless of diagnosis (interstitial lung disease or chronic obstructive pulmonary disease). Seven patients developed PGD (38.9%), and PGD development was associated with selective reduction of the ILC2 subset after reperfusion. Conversely, patients without PGD exhibited significantly higher ILC1 frequencies before reperfusion, accompanied by elevated ILC2 frequencies after allograft reperfusion.Conclusions: The composition of donor ILC subsets is altered after allograft reperfusion and is associated with PGD development, suggesting that ILCs may be involved in regulating lung injury in lung transplant recipients.
Collapse
Affiliation(s)
- Laurel A. Monticelli
- Division of Pulmonary and Critical Care Medicine and
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Steven A. Saenz
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | - Elia D. Tait Wojno
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Edward Cantu
- Division of Cardiovascular Surgery, Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | |
Collapse
|
21
|
BOS Is Associated With Decreased SIRT1 in Peripheral Blood Proinflammatory T, NK, and NKT-like Lymphocytes. Transplantation 2019; 103:2255-2263. [DOI: 10.1097/tp.0000000000002817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 2019; 852:68-76. [PMID: 30682335 DOI: 10.1016/j.ejphar.2019.01.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
MiR-21-5p is an anti-apoptotic miRNA known to mediate the protective effect of mesenchymal stromal cell-secreted exosomes (MSC-Exo) against oxidative stress-induced cell death. In the present research we employed murine lung ischemia/reperfusion (I/R) model and in vitro hypoxia/reoxygenation (H/R) model using primary murine pulmonary endothelial cells to investigate whether MSC-Exo could alleviate lung IRI by transporting miR-21-5p. Our data suggested that intratracheal administration of MSC-Exo or miR-21-5p agomir significantly reduced lung edema and dysfunction, M1 polarization of alveolar macrophages as well as secretion of HMGB1, IL-8, IL-1β, IL-6, IL-17 and TNF-α. Pre-challenge of MSCs by H/R significant increased miR-21-5p expression level in exosomes they secreted and the anti-IRI effect of these MSC-Exo, while pre-treatment of MSCs with miR-21-5p antagomir showed opposite effect. We further demonstrated that MSC-Exo ameliorated IRI in vivo or H/R induced apoptosis in vitro by inhibiting both intrinsic and extrinsic apoptosis pathway via miR-21-5p targeting PTEN and PDCD4, while artificial overexpressing PTEN or PDCD4 significantly attenuated the anti-apoptotic effect of MSC-Exo in vitro. Treatment with miR-21-5p agomir mimicked the IRI-reducing and anti-apoptotic effect of MSC-Exo. Our data suggested that MSC-Exo alleviate IRI in lung in an exosomal miR-21-5p-dependent manner. Treatment with MSC-Exo or miR-21-5p agomir might ameliorate IRI in lung.
Collapse
|
23
|
Investigation of the preventive effect of proanthocyanidin in ischemia-reperfusion injury in lung transplantation: An experimental study. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 26:606-613. [PMID: 32082803 DOI: 10.5606/tgkdc.dergisi.2018.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022]
Abstract
Background This study aims to investigate the preventive effect of proanthocyanidin against ischemia-reperfusion injury after lung transplantation. Methods The study included 12 swines (weighing 35±5 kg) and separated into four groups. Groups 1 and 3 were identified as control groups and left upper lobectomy was performed. Groups 2 and 4 were identified as transplantation groups and left lower lobectomy and heterotransplantation were performed. Proanthocyanidin was only given to groups 3 and 4. Tissue samples were analyzed under light microscope and histopathological findings were recorded. Results There was no statistically significant difference between control groups in terms of the numerical values of histopathological findings that include congestion (p=0.565), alveolar edema (p=0.197) and peribronchial inflammation (p=0.444). However, numerical values of acute cellular rejection were statistically significantly different between transplantation groups (p=0.048). Mean oxidative stress enzyme levels were higher in group 2 compared to group 4; however, the difference was not statistically significant (p>0.05). Conclusion According to the findings of our experimental study, proanthocyanidin can be safely used in lung transplantation based on its preventive effect in ischemia-reperfusion injury that may lead to morbidity and mortality.
Collapse
|
24
|
Gotti M, Chiumello D, Cressoni M, Guanziroli M, Brioni M, Safaee Fakhr B, Chiurazzi C, Colombo A, Massari D, Algieri I, Lonati C, Cadringher P, Taccone P, Pizzocri M, Fumagalli J, Rosso L, Palleschi A, Benti R, Zito F, Valenza F, Gattinoni L. Inflammation and primary graft dysfunction after lung transplantation: CT-PET findings. Minerva Anestesiol 2018; 84:1169-1177. [DOI: 10.23736/s0375-9393.18.12651-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L301-L312. [PMID: 29745255 PMCID: PMC6139659 DOI: 10.1152/ajplung.00004.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Pranav K Baderdinni
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
26
|
Mehaffey JH, Charles EJ, Narahari AK, Schubert S, Laubach VE, Teman NR, Lynch KR, Kron IL, Sharma AK. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. J Thorac Cardiovasc Surg 2018; 156:910-917. [PMID: 29609890 PMCID: PMC6056006 DOI: 10.1016/j.jtcvs.2018.02.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sphingosine-1-phosphate regulates endothelial barrier integrity and promotes cell survival and proliferation. We hypothesized that upregulation of sphingosine-1-phosphate during ex vivo lung perfusion would attenuate acute lung injury and improve graft function. METHODS C57BL/6 mice (n = 4-8/group) were euthanized, followed by 1 hour of warm ischemia and 1 hour of cold preservation in a model of donation after cardiac death. Subsequently, mice underwent 1 hour of ex vivo lung perfusion with 1 of 4 different perfusion solutions: Steen solution (Steen, control arm), Steen with added sphingosine-1-phosphate (Steen + sphingosine-1-phosphate), Steen plus a selective sphingosine kinase 2 inhibitor (Steen + sphingosine kinase inhibitor), or Steen plus both additives (Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor). During ex vivo lung perfusion, lung compliance and pulmonary artery pressure were continuously measured. Pulmonary vascular permeability was assessed with injection of Evans Blue dye. RESULTS The combination of 1 hour of warm ischemia, followed by 1 hour of cold ischemia created significant lung injury compared with lungs that were immediately harvested after circulatory death and put on ex vivo lung perfusion. Addition of sphingosine-1-phosphate or sphingosine kinase inhibitor alone did not significantly improve lung function during ex vivo lung perfusion compared with Steen without additives. However, group Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor resulted in significantly increased compliance (110% ± 13.9% vs 57.7% ± 6.6%, P < .0001) and decreased pulmonary vascular permeability (33.1 ± 11.9 μg/g vs 75.8 ± 11.4 μg/g tissue, P = .04) compared with Steen alone. CONCLUSIONS Targeted drug therapy with a combination of sphingosine-1-phosphate + sphingosine kinase inhibitor during ex vivo lung perfusion improves lung function in a murine donation after cardiac death model. Elevation of circulating sphingosine-1-phosphate via specific pharmacologic modalities during ex vivo lung perfusion may provide endothelial protection in marginal donor lungs leading to successful lung rehabilitation for transplantation.
Collapse
Affiliation(s)
- J Hunter Mehaffey
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Adishesh K Narahari
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Sarah Schubert
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Nicholas R Teman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
27
|
van den Akker F, Vrijsen KR, Deddens JC, Buikema JW, Mokry M, van Laake LW, Doevendans PA, Sluijter JPG. Suppression of T cells by mesenchymal and cardiac progenitor cells is partly mediated via extracellular vesicles. Heliyon 2018; 4:e00642. [PMID: 30003150 PMCID: PMC6040605 DOI: 10.1016/j.heliyon.2018.e00642] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/11/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Adverse remodeling after myocardial infarction (MI) is strongly influenced by T cells. Stem cell therapy after MI, using mesenchymal stem cells (MSC) or cardiomyocyte progenitor cells (CMPC), improved cardiac function, despite low cell retention and limited differentiation. As MSC secrete many factors affecting T cell proliferation and function, we hypothesized the immune response could be affected as one of the targets of stem cell therapy. Therefore, we studied the immunosuppressive properties of human BM-MSC and CMPC and their extracellular vesicles (EVs) in co-culture with activated T cells. Proliferation of T cells, measured by carboxyfluorescein succinimidyl ester dilution, was significantly reduced in the presence of BM-MSC and CMPC. The inflammatory cytokine panel of the T cells in co-culture, measured by Luminex assay, changed, with strong downregulation of IFN-gamma and TNF-alpha. The effect on proliferation was observed in both direct cell contact and transwell co-culture systems. Transfer of conditioned medium to unrelated T cells abrogated proliferation in these cells. EVs isolated from the conditioned medium of BM-MSC and CMPC prevented T cell proliferation in a dose-dependent fashion. Progenitor cells presence induces up- and downregulation of multiple previously unreported pathways in T cells. In conclusion, both BM-MSC and CMPC have a strong capacity for in vitro immunosuppression. This effect is mediated by paracrine factors, such as extracellular vesicles. Besides proliferation, many additional pathways are influenced by both BM-MSC and CMPC.
Collapse
Affiliation(s)
- F van den Akker
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - K R Vrijsen
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - J C Deddens
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - J W Buikema
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - M Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - L W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | - P A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands.,ICIN - Netherlands Heart Institute, Utrecht, The Netherlands
| | - J P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands.,ICIN - Netherlands Heart Institute, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
28
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
29
|
Li J, Tan J, Martino MM, Lui KO. Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front Immunol 2018; 9:585. [PMID: 29662491 PMCID: PMC5890151 DOI: 10.3389/fimmu.2018.00585] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The identification of stem cells and growth factors as well as the development of biomaterials hold great promise for regenerative medicine applications. However, the therapeutic efficacy of regenerative therapies can be greatly influenced by the host immune system, which plays a pivotal role during tissue repair and regeneration. Therefore, understanding how the immune system modulates tissue healing is critical to design efficient regenerative strategies. While the innate immune system is well known to be involved in the tissue healing process, the adaptive immune system has recently emerged as a key player. T-cells, in particular, regulatory T-cells (Treg), have been shown to promote repair and regeneration of various organ systems. In this review, we discuss the mechanisms by which Treg participate in the repair and regeneration of skeletal and heart muscle, skin, lung, bone, and the central nervous system.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jean Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
30
|
Zhang W, Qi Z, Wang Y. BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats. Inflammation 2018; 40:778-787. [PMID: 28168659 DOI: 10.1007/s10753-017-0522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung ischemia-reperfusion (I/R) injury is a critical complication following a lung transplant, cardiopulmonary bypass, pulmonary embolism, and trauma. Immune cells and their effector functions are involved in the lung I/R injury. Store-operated calcium channels (SOCC) are highly Ca2+-selective cation channels and have crucial effects on the immune system. It has been indicated that BTP2, a potent SOCC blocker, could inhibit pro-inflammatory cytokine production from immune cells both in vitro and in vivo. Therefore, this study was conducted to investigate the beneficial effects of BTP2 on lung I/R injury in Sprague-Dawley (SD) rats. The left lungs of male SD rats underwent ischemia for 60 min and reperfusion for 2 h. Treated animals received BTP2 4 mg/kg or 10 mg/kg intraperitoneally 30 min before the ischemia. The results revealed that pretreatment with BTP2 markedly attenuated I/R injury-induced pulmonary edema, microvascular protein leakage, neutrophil infiltration, adhesion molecules, cytokine production (e.g., ICAM-1, TNF-α, IL-1β, and IL-2), and the transcription factor nuclear factor of activated T cells c1 nuclear translocation in the lung tissue. These findings indicate that BTP2 can be a potential therapeutic drug for lung I/R injury and suggest that SOCC may play a critical role in lung I/R injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyou Qi
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
31
|
Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, Henson SM. Human CD8 + EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 2018; 17. [PMID: 29024417 PMCID: PMC5770853 DOI: 10.1111/acel.12675] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence is accompanied by a senescence‐associated secretory phenotype (SASP). We show here that primary human senescent CD8+ T cells also display a SASP comprising chemokines, cytokines and extracellular matrix remodelling proteases that are unique to this subset and contribute to age‐associated inflammation. We found the CD8+CD45RA+CD27−EMRA subset to be the most heterogeneous, with a population aligning with the naïve T cells and another with a closer association to the effector memory subset. However, despite the differing processes that give rise to these senescent CD8+ T cells once generated, they both adopt a unique secretory profile with no commonality to any other subset, aligning more closely with senescence than quiescence. Furthermore, we also show that the SASP observed in senescent CD8+ T cells is governed by p38 MAPK signalling.
Collapse
Affiliation(s)
- Lauren A. Callender
- Translational Medicine and Therapeutics, William Harvey Research Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; Charterhouse Square London EC1M 6BQ UK
| | - Elizabeth C. Carroll
- Translational Medicine and Therapeutics, William Harvey Research Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; Charterhouse Square London EC1M 6BQ UK
| | - Robert W. J. Beal
- Microvascular Research, William Harvey Research Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; Charterhouse Square London EC1M 6BQ UK
| | - Emma S. Chambers
- Division of Infection and Immunity; University College London; London WC1E 6JF UK
| | - Sussan Nourshargh
- Microvascular Research, William Harvey Research Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; Charterhouse Square London EC1M 6BQ UK
| | - Arne N. Akbar
- Division of Infection and Immunity; University College London; London WC1E 6JF UK
| | - Sian M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; Charterhouse Square London EC1M 6BQ UK
| |
Collapse
|
32
|
Stone ML, Zhao Y, Robert Smith J, Weiss ML, Kron IL, Laubach VE, Sharma AK. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respir Res 2017; 18:212. [PMID: 29268735 PMCID: PMC5740880 DOI: 10.1186/s12931-017-0704-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. Methods C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Results Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. Conclusions These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.
Collapse
Affiliation(s)
- Matthew L Stone
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA, 22908, USA
| | - Yunge Zhao
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA, 22908, USA
| | - J Robert Smith
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Irving L Kron
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA, 22908, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA, 22908, USA
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA, 22908, USA.
| |
Collapse
|
33
|
Schnapper A, Christmann A, Knudsen L, Rahmanian P, Choi YH, Zeriouh M, Karavidic S, Neef K, Sterner-Kock A, Guschlbauer M, Hofmaier F, Maul AC, Wittwer T, Wahlers T, Mühlfeld C, Ochs M. Stereological assessment of the blood-air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non-heart-beating donor model for lung transplantation. J Anat 2017; 232:283-295. [PMID: 29193065 DOI: 10.1111/joa.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
More frequent utilization of non-heart-beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury-related graft damage or dysfunction. Due to their immunomodulating and tissue-remodelling properties, bone-marrow-derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short- and long-term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood-gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham-operated control group. In pigs of groups 2-4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion-fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury-related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra-alveolar oedema, and the intracellular and intra-alveolar surfactant pool. Additionally, the volume-weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume-weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2-4: 0.180-0.373 μm³) compared with the sham control group (median 0.814 μm³). This was due to a lower number of large lb profiles (size classes 5-15). In contrast, the intra-alveolar surfactant system was not altered significantly. No significant differences were encountered comparing ischaemia alone (group 2) or ischaemia plus application of MSCs (groups 3 and 4) in this short-term model.
Collapse
Affiliation(s)
- Anke Schnapper
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Astrid Christmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Parwis Rahmanian
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Mohamed Zeriouh
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Samira Karavidic
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Klaus Neef
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anja Sterner-Kock
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Maria Guschlbauer
- Center for Experimental Medicine, University of Cologne, Cologne, Germany.,Decentral Animal Facility, University of Cologne, Cologne, Germany
| | - Florian Hofmaier
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Alexandra C Maul
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wittwer
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
34
|
Abstract
Primary graft dysfunction is a form of acute injury after lung transplantation that is associated with significant short- and long-term morbidity and mortality. Multiple mechanisms contribute to the pathogenesis of primary graft dysfunction, including ischemia reperfusion injury, epithelial cell death, endothelial cell dysfunction, innate immune activation, oxidative stress, and release of inflammatory cytokines and chemokines. This article reviews the epidemiology, pathogenesis, risk factors, prevention, and treatment of primary graft dysfunction.
Collapse
Affiliation(s)
- Mary K Porteous
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | - James C Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Morrison MI, Pither TL, Fisher AJ. Pathophysiology and classification of primary graft dysfunction after lung transplantation. J Thorac Dis 2017; 9:4084-4097. [PMID: 29268419 DOI: 10.21037/jtd.2017.09.09] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term primary graft dysfunction (PGD) incorporates a continuum of disease severity from moderate to severe acute lung injury (ALI) within 72 h of lung transplantation. It represents the most significant obstacle to achieving good early post-transplant outcomes, but is also associated with increased incidence of bronchiolitis obliterans syndrome (BOS) subsequently. PGD is characterised histologically by diffuse alveolar damage, but is graded on clinical grounds with a combination of PaO2/FiO2 (P/F) and the presence of radiographic infiltrates, with 0 being absence of disease and 3 being severe PGD. The aetiology is multifactorial but commonly results from severe ischaemia-reperfusion injury (IRI), with tissue-resident macrophages largely responsible for stimulating a secondary 'wave' of neutrophils and lymphocytes that produce severe and widespread tissue damage. Donor history, recipient health and operative factors may all potentially contribute to the likelihood of PGD development. Work that aims to minimise the incidence of PGD in ongoing, with techniques such as ex vivo perfusion of donor lungs showing promise both in research and in clinical studies. This review will summarise the current clinical status of PGD before going on to discuss its pathophysiology, current therapies available and future directions for clinical management of PGD.
Collapse
Affiliation(s)
- Morvern Isabel Morrison
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas Leonard Pither
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew John Fisher
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
36
|
NKT cells are important mediators of hepatic ischemia-reperfusion injury. Transpl Immunol 2017; 45:15-21. [PMID: 28797737 PMCID: PMC5694034 DOI: 10.1016/j.trim.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 12/16/2022]
Abstract
Introduction IRI results from the interruption then reinstatement of an organ's blood supply, and this poses a significant problem in liver transplantation and resectional surgery. In this paper, we explore the role T cells play in the pathogenesis of this injury. Materials & methods We used an in vivo murine model of warm partial hepatic IRI, genetically-modified mice, in vivo antibody depletion, adoptive cell transfer and flow cytometry to determine which lymphocyte subsets contribute to pathology. Injury was assessed by measuring serum alanine aminotransfersase (ALT) and by histological examination of liver tissue sections. Results The absence of T cells (CD3εKO) is associated with significant protection from injury (p = 0.010). Through a strategy of antibody depletion it appears that NKT cells (p = 0.0025), rather than conventional T (CD4 + or CD8 +) (p = 0.11) cells that are the key mediators of injury. Discussion Our results indicate that tissue-resident NKT cells, but not other lymphocyte populations are responsible for the injury in hepatic IRI. Targeting the activation of NKT cells and/or their effector apparatus would be a novel approach in protecting the liver during transplantation and resection surgery; this may allow us to expand our current criteria for surgery. Hepatic IRI worsens outcome in liver transplantation. T cells are important in hepatic IRI. These are tissue-resident rather than recruited T cells. NKT, but not conventional T or NK cells, are key mediators of hepatic IRI. Targeting NKT activation or their effector apparatus may offer therapeutic potential.
Collapse
|
37
|
Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, Mulligan MS. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1114-1120. [PMID: 28818404 DOI: 10.1016/j.healun.2017.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital and Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Maher A Baz
- Departments of Medicine and Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Ciara M Shaver
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas M Egan
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Micheal S Mulligan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
38
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
39
|
Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9634803. [PMID: 28751936 PMCID: PMC5511669 DOI: 10.1155/2017/9634803] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
Lung ischemia/reperfusion (I/R) injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF) leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase) activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.
Collapse
|
40
|
Ge H, Zhu H, Xu N, Zhang D, Ou J, Wang G, Fang X, Zhou J, Song Y, Bai C. Increased Lung Ischemia-Reperfusion Injury in Aquaporin 1-Null Mice Is Mediated via Decreased Hypoxia-Inducible Factor 2α Stability. Am J Respir Cell Mol Biol 2017; 54:882-91. [PMID: 26649797 DOI: 10.1165/rcmb.2014-0363oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aquaporin (AQP) 1, a water channel protein expressed widely in vascular endothelia, has been shown to regulate cell migration, angiogenesis, and organ regeneration. Even though its role in the pathogenesis of lung ischemia-reperfusion (IR) injury has been defined, the functional role of AQP1 during long-term IR resolution remains to be clarified. Here, we found that AQP1 expression was increased at late time points (7-14 d) after IR and colocalized with endothelial cell (EC) marker CD31. Compared with IR in wild-type mice, IR in Aqp1(-/-) mice had significantly enhanced leukocyte infiltration, collagen deposition, and microvascular permeability, as well as inhibited angiogenic factor expression. AQP1 knockdown repressed hypoxia-inducible factor (HIF)-2α protein stability. HIF-2α overexpression rescued the angiogenic factor expression in pulmonary microvascular ECs with AQP1 knockdown exposed to hypoxia-reoxygenation. Furthermore, AQP1 knockdown suppressed cellular viability and capillary tube formation, and enhanced permeability in pulmonary microvascular ECs, which were partly rescued by HIF-2α overexpression. Thus, this study demonstrates that AQP1 deficiency delays long-term IR resolution, partly through repressing angiogenesis mediated by destabilizing HIF-2α. These results suggest that AQP1 participates in long-term IR resolution, at least in part by promoting angiogenesis.
Collapse
Affiliation(s)
- Haiyan Ge
- 1 Department of Pulmonary Medicine, Huadong Hospital, and.,2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huili Zhu
- 1 Department of Pulmonary Medicine, Huadong Hospital, and
| | - Nuo Xu
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Zhang
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaxian Ou
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guifang Wang
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaocong Fang
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Abbas AA, Diamond J, Chehoud C, Chang B, Kotzin J, Young J, Imai I, Haas A, Cantu E, Lederer D, Meyer K, Milewski R, Olthoff K, Shaked A, Christie J, Bushman F, Collman R. The Perioperative Lung Transplant Virome: Torque Teno Viruses Are Elevated in Donor Lungs and Show Divergent Dynamics in Primary Graft Dysfunction. Am J Transplant 2017; 17:1313-1324. [PMID: 27731934 PMCID: PMC5389935 DOI: 10.1111/ajt.14076] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023]
Abstract
Primary graft dysfunction (PGD) is a principal cause of early morbidity and mortality after lung transplantation, but its pathogenic mechanisms are not fully clarified. To date, studies using standard clinical assays have not linked microbial factors to PGD. We previously used comprehensive metagenomic methods to characterize viruses in lung allografts >1 mo after transplant and found that levels of Anellovirus, mainly torque teno viruses (TTVs), were significantly higher than in nontransplanted healthy controls. We used quantitative polymerase chain reaction to analyze TTV and shotgun metagenomics to characterize full viral communities in acellular bronchoalveolar lavage from donor organs and postreperfusion allografts in PGD and non-PGD lung transplant recipient pairs. Unexpectedly, TTV DNA levels were elevated 100-fold in donor lungs compared with healthy adults (p = 0.0026). Although absolute TTV levels did not differ by PGD status, PGD cases showed a smaller increase in TTV levels from before to after transplant than did control recipients (p = 0.041). Metagenomic sequencing revealed mainly TTV and bacteriophages of respiratory tract bacteria, but no viral taxa distinguished PGD cases from controls. These findings suggest that conditions associated with brain death promote TTV replication and that greater immune activation or tissue injury associated with PGD may restrict TTV abundance in the lung.
Collapse
Affiliation(s)
- A. A. Abbas
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.M. Diamond
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - C. Chehoud
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - B. Chang
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.J. Kotzin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.C. Young
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - I. Imai
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - A.R. Haas
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - E. Cantu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - D.J. Lederer
- Departments of Medicine and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - K. Meyer
- School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - R.K. Milewski
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - K.M. Olthoff
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - A. Shaked
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.D. Christie
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - F.D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Corresponding authors: Frederic Bushman: , Ronald Collman:
| | - R.G. Collman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Corresponding authors: Frederic Bushman: , Ronald Collman:
| |
Collapse
|
42
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
43
|
Guo L, Lee HH, Noriega MDLM, Paust HJ, Zahner G, Thaiss F. Lymphocyte-specific deletion of IKK2 or NEMO mediates an increase in intrarenal Th17 cells and accelerates renal damage in an ischemia-reperfusion injury mouse model. Am J Physiol Renal Physiol 2016; 311:F1005-F1014. [PMID: 27582100 DOI: 10.1152/ajprenal.00242.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is associated with poor patient outcome and a global burden for end-stage renal disease. Ischemia-reperfusion injury (IRI) is one of the major causes of AKI, and experimental work has revealed many details of the inflammatory response in the kidney, such as activation of the NF-κB pathway. Here, we investigated whether deletion of the NF-κB kinases IKK2 or NEMO in lymphocytes or systemic inhibition of IKK2 would cause different kidney inflammatory responses after IRI induction. Serum creatinine, blood urea nitrogen (BUN) level, and renal tubular injury score were significantly increased in CD4creIKK2f/f (CD4xIKK2Δ) and CD4creNEMOf/f (CD4xNEMOΔ) mice compared with CD4cre mice after IRI induction. The frequency of Th17 cells infiltrating the kidneys of CD4xIKK2Δ or CD4xNEMOΔ mice was also significantly increased at all time points. CCL20, an important chemokine in Th17 cell recruitment, was significantly increased at early time points after the induction of IRI. IL-1β, TNF-α, and CCL2 were also significantly increased in different patterns. A specific IKK2 inhibitor, KINK-1, reduced BUN and serum creatinine compared with nontreated mice after IRI induction, but the frequency of kidney Th17 cells was also significantly increased. In conclusion, although systemic IKK2 inhibition improved kidney function, lymphocyte-specific deletion of IKK2 or NEMO aggravated kidney injury after IRI, and, in both conditions, the percentage of Th17 cells was increased. Our findings demonstrate the critical role of the NF-κB pathway in Th17 activation, which advises caution when using systemic IKK2 inhibitors in patients with kidney injury, since they might impair the T cell response and aggravate renal disease.
Collapse
Affiliation(s)
- Linlin Guo
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Heejung Lee
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Hans J Paust
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Thaiss
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Bougioukas I, Didilis V, Emigholz J, Waldmann-Beushausen R, Stojanovic T, Mühlfeld C, Schoendube FA, Danner BC. The effect of amifostine on lung ischaemia–reperfusion injury in rats. Interact Cardiovasc Thorac Surg 2016; 23:273-9. [DOI: 10.1093/icvts/ivw105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
|
45
|
Huerter ME, Sharma AK, Zhao Y, Charles EJ, Kron IL, Laubach VE. Attenuation of Pulmonary Ischemia-Reperfusion Injury by Adenosine A2B Receptor Antagonism. Ann Thorac Surg 2016; 102:385-393. [PMID: 27109193 DOI: 10.1016/j.athoracsur.2016.02.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/16/2016] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a major source of morbidity and mortality after lung transplantation. We previously demonstrated a proinflammatory role of adenosine A2B receptor (A2BR) in lung IR injury. The current study tests the hypothesis that A2BR antagonism is protective of ischemic lungs after in vivo reperfusion or ex vivo lung perfusion (EVLP). METHODS Mice underwent lung IR with or without administration of ATL802, a selective A2BR antagonist. A murine model of EVLP was also used to evaluate rehabilitation of donation after circulatory death (DCD) lungs. DCD lungs underwent ischemia, cold preservation, and EVLP with Steen solution with or without ATL802. A549 human type 2 alveolar epithelial cells were exposed to hypoxia-reoxygenation (HR) (3 hours/1 hour) with or without ATL802 treatment. Cytokines were measured in bronchoalveolar lavage (BAL) fluid and culture media by enzyme-linked immunoassay (ELISA). RESULTS After IR, ATL802 treatment significantly improved lung function (increased pulmonary compliance and reduced airway resistance and pulmonary artery pressure) and significantly attenuated proinflammatory cytokine production, neutrophil infiltration, vascular permeability, and edema. ATL802 also significantly improved the function of DCD lungs after EVLP (increased compliance and reduced pulmonary artery pressure). After HR, A549 cells exhibited robust production of interleukin (IL)-8, a potent neutrophil chemokine, which was significantly attenuated by ATL802. CONCLUSIONS These results demonstrate that A2BR antagonism attenuates lung IRI and augments reconditioning of DCD lungs by EVLP. The protective effects of ATL802 may involve targeting A2BRs on alveolar epithelial cells to prevent IL-8 production. A2BR may be a novel therapeutic target for mitigating IRI to increase the success of lung transplantation.
Collapse
Affiliation(s)
- Mary E Huerter
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
46
|
Ex Vivo Perfusion With Adenosine A2A Receptor Agonist Enhances Rehabilitation of Murine Donor Lungs After Circulatory Death. Transplantation 2016; 99:2494-503. [PMID: 26262504 DOI: 10.1097/tp.0000000000000830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) enables assessment and rehabilitation of marginal donor lungs before transplantation. We previously demonstrated that adenosine A2A receptor (A2AR) agonism attenuates lung ischemia-reperfusion injury. The current study utilizes a novel murine EVLP model to test the hypothesis that A2AR agonist enhances EVLP-mediated rehabilitation of donation after circulatory death (DCD) lungs. METHODS Mice underwent euthanasia and 60 minutes warm ischemia, and lungs were flushed with Perfadex and underwent cold static preservation (CSP, 60 minutes). Three groups were studied: no EVLP (CSP), EVLP with Steen solution for 60 minutes (EVLP), and EVLP with Steen solution supplemented with ATL1223, a selective A2AR agonist (EVLP + ATL1223). Lung function, wet/dry weight, cytokines and neutrophil numbers were measured. Microarrays were performed using the Affymetrix GeneChip Mouse Genome 430A 2.0 Array. RESULTS Ex vivo lung perfusion significantly improved lung function versus CSP, which was further, significantly improved by EVLP + ATL1223. Lung edema, cytokines, and neutrophil counts were reduced after EVLP and further, significantly reduced after EVLP + ATL1223. Gene array analysis revealed differential expression of 1594 genes after EVLP, which comprise canonical pathways involved in inflammation and innate immunity including IL-1, IL-8, IL-6, and IL-17 signaling. Several pathways were uniquely regulated by EVLP + ATL1223 including the downregulation of genes involved in IL-1 signaling, such as ADCY9, ECSIT, IRAK1, MAPK12, and TOLLIP. CONCLUSIONS Ex vivo lung perfusion modulates proinflammatory genes and reduces pulmonary dysfunction, edema, and inflammation in DCD lungs, which are further reduced by A2AR agonism. This murine EVLP model provides a novel platform to study rehabilitative mechanisms of DCD lungs.
Collapse
|
47
|
Lan CC, Peng CK, Huang SF, Huang KL, Wu CP. Activated protein C attenuates ischemia-reperfusion-induced acute lung injury. Exp Lung Res 2016; 41:241-50. [PMID: 26052825 DOI: 10.3109/01902148.2013.850125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ischemia-reperfusion (IR)-induced acute lung injury (ALI) is implicated in several clinical conditions, such as lung transplantation, acute pulmonary embolism after thrombolytic therapy, re-expansion of collapsed lung from pneumothorax, or pleural effusion, cardiopulmonary bypass, etc. Because mortality remains high despite advanced medical care, prevention and treatment are important clinical issues. Activated protein C (APC) manifests multiple activities with antithrombotic, profibrinolytic, and anti-inflammatory effects. We therefore conducted this study to determine the beneficial effects of APC in IR-induced ALI. IR-induced ALI was conducted in a rat model of isolated-perfused lung in situ. The animals were divided into the control group, IR group, and IR+APC group. There were six adult male Sprague-Dawley rats in each group. The IR caused significant pulmonary microvascular hyperpermeability, pulmonary edema and dysfuction, increased cytokines (tumor necrosis factor (TNF)-α, IL-17, CXCL-1), and neutrophils infiltration in lung tissues. Administration of APC significantly attenuated IR-induced ALI with improving microvascular permeability, pulmonary edema, pulmonary dysfunction, and suppression inflammatory response. The current study demonstrates the beneficial effects of APC in IR-induced ALI. This protective effect is possibly associated with the inhibition of TNF-α, IL-17A, CXCL1, and neutrophils infiltration in lung tissues. However, the current results were obtained in an animal model and it is still necessary to confirm these findings in human subjects. If we can demonstrate the benefits of APC to protect IR lung injury, we can postulate that APC is a potential therapeutic drug for lung preservation.
Collapse
Affiliation(s)
- Chou-Chin Lan
- 1Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Taipei, Taiwan , Republic of China
| | | | | | | | | |
Collapse
|
48
|
Lu W, Si YI, Ding J, Chen X, Zhang X, Dong Z, Fu W. Mesenchymal stem cells attenuate acute ischemia-reperfusion injury in a rat model. Exp Ther Med 2015; 10:2131-2137. [PMID: 26668605 PMCID: PMC4665152 DOI: 10.3892/etm.2015.2806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/01/2015] [Indexed: 01/06/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) following lung transplantation is associated with increased pulmonary inflammatory responses during reperfusion. Mesenchymal stem cells (MSCs) may be able to modulate inflammatory responses in IRI. The aim of the present study was to evaluate the beneficial effects of an intravenous infusion of bone marrow-derived MSCs (BMSCs) in a rat model of pulmonary IRI. IRI was induced in male Lewis rats by 1-h ischemia followed by 2-h reperfusion. The rats received phosphate-buffered saline (PBS) or BMSC infusion at the onset of reperfusion. Pulmonary injury was determined based on the mean blood oxygenation, lung edema and vascular permeability, and performing histopathological examination. Pulmonary inflammation was also evaluated through the examination of the levels of inflammatory cytokines. Compared with the PBS infusion, the BMSC infusion significantly preserved lung function, reduced lung edema and pulmonary microvascular permeability, and decreased the total injury score in rats with IRI. The mRNA levels of the pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were significantly reduced, while the expression of anti-inflammatory cytokine IL-10 was increased in the rats receiving BMSC infusion. The levels of cytokine-induced neutrophil chemoattractant-1, IL-1β, and TNF-α in bronchoalveolar lavage fluid were also markedly reduced following BMCS infusion. In conclusion, the present results suggested that BMSC infusion exerts protective effects against pulmonary IRI by alleviating IRI-induced inflammation. These findings provide experimental evidence for the treatment of pulmonary IRI using BMSC cell therapy.
Collapse
Affiliation(s)
- Weifeng Lu
- Department of Vascular Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Y I Si
- Department of Cardiovascular Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200032, P.R. China
| | - Jianyong Ding
- Department of Thoracic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, P.R. China
| | - Xiaoli Chen
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Xiangman Zhang
- Institute of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, P.R. China
| | - Zhihui Dong
- Institute of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, P.R. China
| | - Weiguo Fu
- Institute of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
49
|
Porteous MK, Diamond JM, Christie JD. Primary graft dysfunction: lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Transplant 2015; 20:506-14. [PMID: 26262465 PMCID: PMC4624097 DOI: 10.1097/mot.0000000000000232] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In 2005, the International Society for Heart and Lung Transplantation published a standardized definition of primary graft dysfunction (PGD), facilitating new knowledge on this form of acute lung injury that occurs within 72 h of lung transplantation. PGD continues to be associated with significant morbidity and mortality. This article will summarize the current literature on the epidemiology of PGD, pathogenesis, risk factors, and preventive and treatment strategies. RECENT FINDINGS Since 2011, several manuscripts have been published that provide insight into the clinical risk factors and pathogenesis of PGD. In addition, several transplant centers have explored preventive and treatment strategies for PGD, including the use of extracorporeal strategies. More recently, results from several trials assessing the role of extracorporeal lung perfusion may allow for much-needed expansion of the donor pool, without raising PGD rates. SUMMARY This article will highlight the current state of the science regarding PGD, focusing on recent advances, and set a framework for future preventive and treatment strategies.
Collapse
Affiliation(s)
- Mary K Porteous
- aDepartment of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA bCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
50
|
Kawamura T, Momozane T, Sanosaka M, Sugimura K, Iida O, Fuchino H, Funaki S, Shintani Y, Inoue M, Minami M, Kawahara N, Takemori H, Okumura M. Carnosol Is a Potent Lung Protective Agent: Experimental Study on Mice. Transplant Proc 2015; 47:1657-61. [DOI: 10.1016/j.transproceed.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/15/2022]
|