1
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
2
|
Bhaskara M, Anjorin O, Wang M. Mesenchymal Stem Cell-Derived Exosomal microRNAs in Cardiac Regeneration. Cells 2023; 12:2815. [PMID: 38132135 PMCID: PMC10742005 DOI: 10.3390/cells12242815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy is one of the most promising modalities for cardiac repair. Accumulated evidence suggests that the therapeutic value of MSCs is mainly attributable to exosomes. MSC-derived exosomes (MSC-Exos) replicate the beneficial effects of MSCs by regulating various cellular responses and signaling pathways implicated in cardiac regeneration and repair. miRNAs constitute an important fraction of exosome content and are key contributors to the biological function of MSC-Exo. MSC-Exo carrying specific miRNAs provides anti-apoptotic, anti-inflammatory, anti-fibrotic, and angiogenic effects within the infarcted heart. Studying exosomal miRNAs will provide an important insight into the molecular mechanisms of MSC-Exo in cardiac regeneration and repair. This significant information can help optimize cell-free treatment and overcome the challenges associated with MSC-Exo therapeutic application. In this review, we summarize the characteristics and the potential mechanisms of MSC-derived exosomal miRNAs in cardiac repair and regeneration.
Collapse
Affiliation(s)
| | | | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Scott SR, Singh K, Yu Q, Sen CK, Wang M. Sex as Biological Variable in Cardiac Mitochondrial Bioenergetic Responses to Acute Stress. Int J Mol Sci 2022; 23:9312. [PMID: 36012574 PMCID: PMC9409303 DOI: 10.3390/ijms23169312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac dysfunction/damage following trauma, shock, sepsis, and ischemia impacts clinical outcomes. Acute inflammation and oxidative stress triggered by these injuries impair mitochondria, which are critical to maintaining cardiac function. Despite sex dimorphisms in consequences of these injuries, it is unclear whether mitochondrial bioenergetic responses to inflammation/oxidative stress are sex-dependent. We hypothesized that sex disparity in mitochondrial bioenergetics following TNFα or H2O2 exposure is responsible for reported sex differences in cardiac damage/dysfunction. Methods and Results: Cardiomyocytes isolated from age-matched adult male and female mice were subjected to 1 h TNFα or H2O2 challenge, followed by detection of mitochondrial respiration capacity using the Seahorse XF96 Cell Mito Stress Test. Mitochondrial membrane potential (ΔΨm) was analyzed using JC-1 in TNFα-challenged cardiomyocytes. We found that cardiomyocytes isolated from female mice displayed a better mitochondrial bioenergetic response to TNFα or H2O2 than those isolated from male mice did. TNFα decreased ΔΨm in cardiomyocytes isolated from males but not from females. 17β-estradiol (E2) treatment improved mitochondrial metabolic function in cardiomyocytes from male mice subjected to TNFα or H2O2 treatment. Conclusions: Cardiomyocyte mitochondria from female mice were more resistant to acute stress than those from males. The female sex hormone E2 treatment protected cardiac mitochondria against acute inflammatory and oxidative stress.
Collapse
Affiliation(s)
- Susan R. Scott
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qing Yu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Wang M, Yan L, Li Q, Yang Y, Turrentine M, March K, Wang IW. Mesenchymal stem cell secretions improve donor heart function following ex vivo cold storage. J Thorac Cardiovasc Surg 2022; 163:e277-e292. [PMID: 32981709 PMCID: PMC7921217 DOI: 10.1016/j.jtcvs.2020.08.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Heart transplantation is the gold standard of treatments for end-stage heart failure, but its use is limited by extreme shortage of donor organs. The time "window" between procurement and transplantation sets the stage for myocardial ischemia/reperfusion injury, which constrains the maximal storage time and lowers use of donor organs. Given mesenchymal stem cell (MSC)-derived paracrine protection, we aimed to evaluate the efficacy of MSC-conditioned medium (CM) and extracellular vesicles (EVs) when added to ex vivo preservation solution on ameliorating ischemia/reperfusion-induced myocardial damage in donor hearts. METHODS Mouse donor hearts were stored at 0°C-4°C of <1-hour cold ischemia (<1hr-I), 6hr-I + vehicle, 6hr-I + MSC-CM, 6hr-I + MSC-EVs, and 6hr-I + MSC-CM from MSCs treated with exosome release inhibitor. The hearts were then heterotopically implanted into recipient mice. At 24 hours postsurgery, myocardial function was evaluated. Heart tissue was collected for analysis of histology, apoptotic cell death, microRNA (miR)-199a-3p expression, and myocardial cytokine production. RESULTS Six-hour cold ischemia significantly impaired myocardial function, increased cell death, and reduced miR-199a-3p in implanted hearts versus <1hr-I. MSC-CM or MSC-EVs in preservation solution reversed the detrimental effects of prolong cold ischemia on donor hearts. Exosome-depleted MSC-CM partially abolished MSC secretome-mediated cardioprotection in implanted hearts. MiR-199a-3p was highly enriched in MSC-EVs. MSC-CM and MSC-EVs increased cold ischemia-downregulated miR-199a-3p in donor hearts, whereas exosome-depletion neutralized this effect. CONCLUSIONS MSC-CM and MSC-EVs confer improved myocardial preservation in donor hearts during prolonged cold static storage and MSC-EVs can be used for intercellular transport of miRNAs in heart transplantation.
Collapse
Affiliation(s)
- Meijing Wang
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind.
| | - Liangliang Yan
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Qianzhen Li
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fujian, China; Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, Ind
| | - Yang Yang
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind
| | - Mark Turrentine
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind
| | - Keith March
- Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, Ind; Division of Cardiovascular Medicine, Center for Regenerative Medicine, University of Florida, Gainesville, Fla
| | - I-Wen Wang
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind; Methodist Hospital, IU Health, IU School of Medicine, Indianapolis, Ind.
| |
Collapse
|
5
|
Pérez-Gómez J, Rytter N, Mandrup C, Egelund J, Stallknecht B, Nyberg M, Hellsten Y. Menopausal transition does not influence skeletal muscle capillary growth in response to cycle training in women. J Appl Physiol (1985) 2021; 131:369-375. [PMID: 34080923 DOI: 10.1152/japplphysiol.00122.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The influence of the menopausal transition, with a consequent loss of estrogen, on capillary growth in response to exercise training remains unknown. In the present study, we evaluated the effect of a period of intense endurance training on skeletal muscle angiogenesis in late premenopausal and recent postmenopausal women with an age difference of <4 yr. Skeletal muscle biopsies were obtained from the thigh muscle before and after 12 wk of intense aerobic cycle training and analyzed for capillarization, fiber-type distribution, and content of vascular endothelial growth factor (VEGF). At baseline, there was no difference in capillary per fiber ratio (C:F; 1.41 ± 0.22 vs. 1.40 ± 0.30), capillary density (CD; 305 ± 61 vs. 336 ± 52 mm2), muscle fiber area (MFA; 4,889 ± 1,868 vs. 4,195 ± 749), or distribution of muscle fiber type I (47.3% ± 10.1% vs. 49.3% ± 15.1%), between the pre- and postmenopausal women, respectively. There was a main effect of training on the C:F ratio (+9.2% and +12.1%, for the pre- and postmenopausal women, respectively) and the CD (+6.9% and +8.9%, for the pre- and postmenopausal women, respectively). MFA and fiber-type distribution were unaltered by training. Skeletal muscle VEGF protein content was similar between groups at baseline, and there was a main effect of training (+21.1% and +27.2%, for the pre- and postmenopausal women, respectively). In conclusion, the loss of estrogen per se at menopause does not influence the capillary growth response to intense aerobic exercise training.NEW & NOTEWORTHY We evaluated the effect of 12 wk of intense aerobic exercise training on skeletal muscle angiogenesis in late pre- and recent postmenopausal women, with <4 yr of age difference. There was a main effect of training on capillary per fiber ratio, capillary density, and muscle VEGF protein content, with no difference between groups. It is concluded that the loss of estrogen per se at menopause does not influence the capillary growth response to intense aerobic training.
Collapse
Affiliation(s)
- Jorge Pérez-Gómez
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,HEME Research Group, Faculty of Sport Science, University of Extremadura, Cáceres, Spain
| | - Nicolai Rytter
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Mandrup
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Integrative Physiology Section, Cardiovascular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
McCoy SS, Giri J, Das R, Paul PK, Pennati A, Parker M, Liang Y, Galipeau J. Minor salivary gland mesenchymal stromal cells derived from patients with Sjӧgren's syndrome deploy intact immune plasticity. Cytotherapy 2020; 23:301-310. [PMID: 33262072 DOI: 10.1016/j.jcyt.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) provide minor salivary glands (MSGs) with support and niche cells for epithelial glandular tissue. Little is known about resident MSG-derived MSCs (MSG-MSCs) in primary Sjӧgren's syndrome (PSS). The authors' objective is to define the immunobiology of endogenous PSS MSG-MSCs. METHODS Using culture-adapted MSG-MSCs isolated from consenting PSS subjects (n = 13), the authors performed in vitro interrogation of PSS MSG-MSC immunobiology and global gene expression compared with controls. To this end, the authors performed phenotypic and immune functional analysis of indoleamine 2,3-dioxygenase (IDO), programmed death ligand 1 (PD-L1) and intercellular adhesion marker 1 (ICAM-1) before and after interferon γ (IFNγ) licensing as well as the effect of MSG-MSCs on T-cell proliferation. Considering the female predominance of PSS, the authors also addressed the influence of 17-β-estradiol on estrogen receptor α-positive-related MSC function. RESULTS The authors found that MSG-MSCs deployed normal immune regulatory functionality after IFNγ stimulation, as demonstrated by increased protein-level expression of IDO, PD-L1 and ICAM-1. The authors also found that MSG-MSCs suppressed T-cell proliferation in a dose-dependent manner independent of 17-β-estradiol exposure. Gene ontology and pathway analysis highlighted extracellular matrix deposition as a possible difference between PSS and control MSG-MSCs. MSG-MSCs demonstrated increased α-smooth muscle actin expression in PSS, indicating a partial myofibroblast-like adaptation. CONCLUSIONS These findings establish similar immune regulatory function of MSG-MSCs in both PSS and control patients, precluding intrinsic MSC immune regulatory defects in PSS. PSS MSG-MSCs show a partial imprinted myofibroblast-like phenotype that may arise in the setting of chronic inflammation, providing a plausible etiology for PSS-related glandular fibrosis.
Collapse
Affiliation(s)
- Sara S McCoy
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | - Jayeeta Giri
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Rahul Das
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Pradyut K Paul
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Maxwell Parker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yun Liang
- Department of Medical Biology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Wang M, Smith K, Yu Q, Miller C, Singh K, Sen CK. Mitochondrial connexin 43 in sex-dependent myocardial responses and estrogen-mediated cardiac protection following acute ischemia/reperfusion injury. Basic Res Cardiol 2019; 115:1. [PMID: 31741053 DOI: 10.1007/s00395-019-0759-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
Preserving mitochondrial activity is crucial in rescuing cardiac function following acute myocardial ischemia/reperfusion (I/R). The sex difference in myocardial functional recovery has been observed after I/R. Given the key role of mitochondrial connexin43 (Cx43) in cardiac protection initiated by ischemic preconditioning, we aimed to determine the implication of mitochondrial Cx43 in sex-related myocardial responses and to examine the effect of estrogen (17β-estradiol, E2) on Cx43, particularly mitochondrial Cx43-involved cardiac protection following I/R. Mouse primary cardiomyocytes and isolated mouse hearts (from males, females, ovariectomized females, and doxycycline-inducible Tnnt2-controlled Cx43 knockout without or with acute post-ischemic E2 treatment) were subjected to simulated I/R in culture or Langendorff I/R (25-min warm ischemia/40-min reperfusion), respectively. Mitochondrial membrane potential and mitochondrial superoxide production were measured in cardiomyocytes. Myocardial function and infarct size were determined. Cx43 and its isoform, Gja1-20k, were assessed in mitochondria. Immunoelectron microscopy and co-immunoprecipitation were also used to examine mitochondrial Cx43 and its interaction with estrogen receptor-α by E2 in mitochondria, respectively. There were sex disparities in stress-induced cardiomyocyte mitochondrial function. E2 partially restored mitochondrial activity in cardiomyocytes following acute injury. Post-ischemia infusion of E2 improved functional recovery and reduced infarct size with increased Cx43 content and phosphorylation in mitochondria. Ablation of cardiac Cx43 aggravated mitochondrial damage and abolished E2-mediated cardiac protection during I/R. Female mice were more resistant to myocardial I/R than age-matched males with greater protective role of mitochondrial Cx43 in female hearts. Post-ischemic E2 usage augmented mitochondrial Cx43 content and phosphorylation, increased mitochondrial Gja1-20k, and showed cardiac protection.
Collapse
Affiliation(s)
- Meijing Wang
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.
| | - Kwynlyn Smith
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Qing Yu
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Caroline Miller
- Electron Microscopy Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Zhang GW, Gu TX, Sun XJ, Wang C, Qi X, Wang XB, Li-Ling J. Edaravone promotes activation of resident cardiac stem cells by transplanted mesenchymal stem cells in a rat myocardial infarction model. J Thorac Cardiovasc Surg 2016; 152:570-82. [PMID: 27056755 DOI: 10.1016/j.jtcvs.2016.02.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To explore the effect of edaravone on bone marrow mesenchymal stem cells (BMSCs) transplanted to treat acute myocardial infarction (AMI) and the underlying mechanism. METHODS After pretreatment or treatment with edaravone under conditions of deep hypoxia and serum deprivation, the rat BMSCs were evaluated for reactive oxygen species (ROS), Akt pathway, apoptosis, migration, and paracrine function mediating cardiac stem cell (CSC) activation. Edaravone-pretreated BMSCs, control-released edaravone, and BMSCs were respectively transplanted into a rat AMI model. Apoptosis and paracrine functions of the BMSCs, resident CSC activation, and myocardial regeneration and function were measured at various time points. RESULTS Compared with the control and edaravone pretreatment, edaravone treatment showed significantly increased apoptosis inhibition, migration, and cytokine secretion of BMSCs under an in vitro deep hypoxia and serum deprivation condition (P < .05), via inhibiting intracellular accumulation of ROS and prolonging the Akt pathway activation. At 24 hours postoperatively, up-regulated expression of cytokines within the transplanted area, and decreased apoptotic BMSCs, were detected in the BMSC + edaravone group, compared with the BMSCs and edaravone pretreatment BMSC groups (n = 10 for each group, P < .05). Four weeks later, the BMSCs + edaravone group showed more CSCs, CSC-derived cardiomyocytes, new vessels, and myocardial density within the ischemic area, and improved ejection fraction, compared with the other groups (n = 10 in each group, P < .05). CONCLUSIONS Edaravone can protect the BMSCs against hypoxia and activate their potential to activate CSCs via the Akt pathway. The combined treatment can promote angiogenesis, resident CSC-mediated myocardial regeneration, and cardiac function after AMI, providing a new strategy for cell therapy.
Collapse
Affiliation(s)
- Guang-Wei Zhang
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Tian-Xiang Gu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xue-Jun Sun
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China; Department of Anesthesiology of the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunyue Wang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xun Qi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiao-Bing Wang
- Department of Echocardiography, The First Hospital of China Medical University, Shenyang, China
| | - Jesse Li-Ling
- Institute of Genetic Medicine, School of Life Science, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016; 21:252-68. [PMID: 26687129 PMCID: PMC5200890 DOI: 10.1007/s10495-015-1203-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL, 60611, USA.
| | - Audrone Kalvelyte
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Aurimas Stulpinas
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Paraná, 80250-200, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Paraná, 80215-901, Brazil
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
10
|
Nechemia-Arbely Y, Khamaisi M, Rosenberger C, Koesters R, Shina A, Geva C, Shriki A, Klaus S, Rosen S, Rose-John S, Galun E, Axelrod JH, Heyman SN. In vivo evidence suggesting reciprocal renal hypoxia-inducible factor-1 upregulation and signal transducer and activator of transcription 3 activation in response to hypoxic and non-hypoxic stimuli. Clin Exp Pharmacol Physiol 2015; 40:262-72. [PMID: 23384058 DOI: 10.1111/1440-1681.12064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/31/2013] [Indexed: 01/05/2023]
Abstract
In vitro studies suggest that combined activation of hypoxia-inducible factor (HIF) and signal transducer and activator of transcription 3 (STAT3) promotes the hypoxia response. However, their interrelationship in vivo remains poorly defined. The present study investigated the possible relationship between HIF-1 upregulation and STAT3 activation in the rodent kidney in vivo. Activation of HIF-1 and STAT3 was analysed by immunohistochemical staining and western blot analysis in: (i) models of hypoxia-associated kidney injury induced by radiocontrast media or rhabdomyolysis; (ii) following activation of STAT3 by the interleukin (IL)-6-soluble IL-6 receptor complex; or (iii) following HIF-1α stabilization using hypoxic and non-hypoxic stimuli (mimosine, FG-4497, CO, CoCl(2)) and in targeted von Hippel-Lindau-knockout mice. Western blot analysis and immunostaining revealed marked induction of both transcription factors under all conditions tested, suggesting that in vivo STAT3 can trigger HIF and vice versa. Colocalization of HIF-1α and phosphorylated STAT3 was detected in some, but not all, renal cell types, suggesting that in some cells a paracrine mechanism may be responsible for the reciprocal activation of the two transcription factors. Nevertheless, in several cell types spatial concordance was observed under the majority of conditions tested, suggesting that HIF-1 and STAT3 may act as cotranscription factors. These in vivo studies suggest that, in response to renal hypoxic-stress, upregulation of HIF-1 and activation of STAT3 may be both reciprocal and cell type dependent.
Collapse
Affiliation(s)
- Yael Nechemia-Arbely
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Activation of the AT1R/HIF-1 α /ACE axis mediates angiotensin II-induced VEGF synthesis in mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:627380. [PMID: 25401104 PMCID: PMC4221905 DOI: 10.1155/2014/627380] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/16/2014] [Accepted: 08/17/2014] [Indexed: 12/25/2022]
Abstract
A local renin-angiotensin system (RAS) is expressed in mesenchymal stem cells (MSCs) and regulates stem cell function. The local RAS influences the survival and tissue repairing ability of transplanted stem cells. We have previously reported that angiotensin II (Ang II) pretreatment can significantly increase vascular endothelial growth factor (VEGF) synthesis in MSCs through the ERK1/2 and Akt pathways via the Ang II receptor type 1 (AT1R). However, the role of angiotensin-converting enzyme (ACE) has not been clarified. Furthermore, whether Ang II pretreatment activates hypoxia-inducible factor-1α (HIF-1α) in MSCs has not been elucidated. Our data show that both ACE and HIF-1α are involved in promoting VEGF expression in MSCs, and that both are upregulated by Ang II stimulation. The upregulation of ACE appeared after the rapid degradation of exogenous Ang II, and led to the formation of endogenous Ang II. On the other hand, the ACE inhibitor, captopril, attenuated Ang II-enhanced HIF-1α upregulation, while HIF-1α suppression markedly attenuated ACE expression. This interesting finding suggests an interaction between ACE and HIF-1α. We conclude that Ang II pretreatment, as a trigger, activated the AT1R/HIF-1α/ACE axis that then mediated Ang II-induced VEGF synthesis in MSCs.
Collapse
|
12
|
Li YX, Zhang N, Tao L, Yang L, Zhao J, Zhang WJ. Clinicopathological and prognostic significance of overexpression of VEGF and VEGFR2 in gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:4406-4414. [DOI: 10.11569/wcjd.v22.i29.4406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differential expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in gastric cancer to understand possible roles that VEGF and VEGFR2 receptor play in the carcinogenesis, progression and prognosis of gastric cancer.
METHODS: The expression of VEGF and VEGFR2 was examined using immunohistochemistry on paraffin embedded tissue chips derived from 73 patients with gastric cancer (GC) and 63 adjacent normal tissues (ANT) from the same patients. Expression data were analyzed against patients' clinicopathological features and follow-up information.
RESULTS: The level of VEGFR2 in GC tissues was significantly higher than that in ANT (P = 0.025), but no significant difference was detected in the level of VEGF between GC and ANT (P = 0.275). In GC tissues, a positive correlation was found between expression levels of VEGF and VEGFR2 (r = 0.455). High expression of VEGF was significantly associated with lymph node metastasis (P = 0.004), distant metastasis (P = 0.019) and advanced clinical stage (P = 0.003). High expression of VEGFR2 was associated with sex (P = 0.049), lymph node metastasis (P < 0.001), distant metastasis (P = 0.007) and advanced clinical stage (P < 0.001). High levels of both VEGF and VEGFR2 were linked to poor prognosis in GC patients (P = 0.043 and P = 0.016, respectively). Cox multi-factor regression analyses demonstrated that clinical stage was an independent factor predicting overall survival of GC patients (P = 0.001).
CONCLUSION: Overexpression of VEGF and VEGFR2 may suggest late stage, metastasis, and poor prognosis in gastric cancer patients. VEGFR2 may play a role more important than VEGF in the regulation of angiogenesis in gastric cancer.
Collapse
|
13
|
Hu X, Wu R, Jiang Z, Wang L, Chen P, Zhang L, Yang L, Wu Y, Chen H, Chen H, Xu Y, Zhou Y, Huang X, Webster KA, Yu H, Wang J. Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning. Stem Cells 2014; 32:2702-13. [PMID: 24989835 PMCID: PMC5096299 DOI: 10.1002/stem.1784] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/27/2014] [Accepted: 05/10/2014] [Indexed: 12/22/2022]
Abstract
Hypoxia preconditioning enhances the therapeutic effect of mesenchymal stem cells (MSCs). However, the mechanism underlying hypoxia-induced augmentation of the protective effect of MSCs on myocardial infarction (MI) is poorly understood. We show that hypoxia-enhanced survival, mobility, and protection of cocultured cardiomyocytes were paralleled by increased expression of leptin and cell surface receptor CXCR4. The enhanced activities were abolished by either knockdown of leptin with a selective shRNA or by genetic deficiency of leptin or its receptor in MSCs derived, respectively, from ob/ob or db/db mice. To characterize the role of leptin in the regulation of MSC functions by hypoxia and its possible contribution to enhanced therapeutic efficacy, cell therapy using MSCs derived from wild-type, ob/ob, or db/db mice was implemented in mouse models of acute MI. Augmented protection by hypoxia pretreatment was only seen with MSCs from wild-type mice. Parameters that were differentially affected by hypoxia pretreatment included MSC engraftment, c-Kit(+) cell recruitment to the infarct, vascular density, infarct size, and long-term contractile function. These data show that leptin signaling is an early and essential step for the enhanced survival, chemotaxis, and therapeutic properties of MSCs conferred by preculture under hypoxia. Leptin may play a physiological role in priming MSCs resident in the bone marrow endosteum for optimal response to systemic signaling molecules and subsequent tissue repair.
Collapse
Affiliation(s)
- Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zhi Jiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Lihan Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Panpan Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Ling Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Lu Yang
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yan Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Han Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Huiqiang Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yu Zhou
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Xin Huang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Keith A. Webster
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
He S, Lu G, Hou H, Zhao Z, Zhu Z, Lu X, Chen J, Wang Z. Saikosaponin‑d suppresses the expression of cyclooxygenase‑2 through the phospho‑signal transducer and activator of transcription 3/hypoxia‑inducible factor‑1α pathway in hepatocellular carcinoma cells. Mol Med Rep 2014; 10:2556-62. [PMID: 25231214 DOI: 10.3892/mmr.2014.2574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and accounts for ~6% of all types of human cancer worldwide, particularly in Asia. The incidence and mortality rates in the USA have also rapidly increased. Saikosaponin‑d (SSD), a saponin derivative extracted from several species of Bupleurum (Umbelliferae), possesses unique biological activities, including anti‑inflammatory, antihepatitic and immunomodulatory effects. Our previous studies have demonstrated that SSD inhibits the proliferation and induces the apoptosis of HCC SMMC‑7721 cells by downregulating the expression of cyclooxygenase (COX)‑2 and decreasing the production of prostaglandin E2. However, the specific mechanism underlying how SSD controls the expression of COX‑2 remains to be elucidated. In the present study, it was demonstrated that hypoxia inducible factor‑1α (HIF‑1α) was responsible for the expression of COX‑2 under hypoxic conditions in HCC cells, and the activation of signal transducer and activator of transcription 3 (STAT3) was required for the expression of HIF‑1α. SSD treatment inhibited STAT3 activation [phosphorylation of STAT3 (p‑STAT3)], reduced the protein level of HIF‑1α and decreased the expression of COX‑2. These results suggested that SSD may target HCC cells by suppressing the expression of COX‑2 through the p‑STAT3/HIF‑1α pathway.
Collapse
Affiliation(s)
- Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Helei Hou
- Department of Oncology, Qindao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Zhenjun Zhao
- The School of Optometry and Vision Science, University of New South Wales, Sydney NSW 2052, Australia
| | - Zhanfang Zhu
- Department of Public Health, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinghong Chen
- Department of Public Health, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Zhilun Wang
- Department of Public Health, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
15
|
Wang L, Gu H, Turrentine M, Wang M. Estradiol treatment promotes cardiac stem cell (CSC)-derived growth factors, thus improving CSC-mediated cardioprotection after acute ischemia/reperfusion. Surgery 2014; 156:243-52. [PMID: 24957669 DOI: 10.1016/j.surg.2014.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/02/2014] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Studies from our group and others have indicated that paracrine function is one of major mechanisms underlying stem cell-mediated cardioprotection. To improve therapeutic efficacy of cardiac stem cells (CSCs), modification of CSCs to enhance their paracrine actions is of great interest. We have shown previously that stem cells from female sex produced greater levels of protective growth factors compared with male stem cells. In addition, 17β-estradiol (E2)-treated mesenchymal stem cells provided better protection in the ischemia/reperfusion (I/R)-injured myocardium compared with untreated cells. In this study, therefore, we hypothesized that (1) treatment with E2 would improve CSC-mediated acute protection of cardiac function after global I/R; and (2) this greater protection in E2-treated CSCs would be attributable to the beneficial effect of E2 on paracrine actions of CSCs. METHOD CSCs were harvested from C57BL mouse hearts. Myocardial I/R was performed in isolated mouse hearts via a Langendorff model. A total of 0.1 × 10(6)/mL of untreated CSCs or E2-treated CSCs was infused into mouse hearts before ischemia or during the initiation of reperfusion. Heart tissue was used for analysis of activation of caspase-3 and STAT3. Secretion of vascular endothelial growth factor and stromal cell-derived factor 1α by CSCs and E2-treated CSCs was determined. In addition, the conditioned medium from the cultivation of CSCs and E2-modified CSCs was used to treat cardiomyocytes during hypoxia. RESULTS E2-treated CSCs produced greater levels of vascular endothelial growth factor and stromal cell-derived factor 1α compared with untreated CSCs. Preischemic infusion of CSCs and E2-treated CSCs improved myocardial function, increased activation of myocardial STAT3 (a prosurvival signaling), and reduced active caspase-3 after acute I/R compared with the vehicle group. The greater protection was observed in E2-treated CSC group than in CSC group. Additionally, infusion of E2-treated CSCs, but not untreated CSCs, during the initiation of reperfusion protected cardiac function after I/R, further indicating the beneficial effect of E2 on CSC protective function. CONCLUSION Treatment with E2 enhanced CSC-derived protective factor production and improved CSC-mediated protection of cardiac function and myocyte survival after acute I/R, suggesting that in vitro modification of CSCs may improve their therapeutic outcome.
Collapse
Affiliation(s)
- Lina Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Hongmei Gu
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Mark Turrentine
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
16
|
Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) 2013; 92:387-97. [PMID: 24337504 DOI: 10.1007/s00109-013-1110-5] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 01/09/2023]
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) have been increasingly tested experimentally and clinically for cardiac repair. However, the underlying mechanisms remain controversial due to the poor viability and considerable death of the engrafted cells in the infracted myocardium. Recent reports have suggested that extracellular vesicles (EVs) released by MSCs have angiogenesis-promoting activity; however, the therapeutic effect of MSC-EVs on an ischemic heart is unclear. In the present study, we reported that MSCs could release a large quantity of EVs around 100 nm in diameter upon hypoxia stimulation though the majority of the cells had not experienced apoptosis. MSC-EVs could be promptly uptaken by human umbilical vein endothelial cells, and the internalization resulted in dose-dependent enhancement of in vitro proliferation, migration, and tube formation of endothelial cells. Using an acute myocardial infarction rat model, we found that intramyocardial injection of MSC-EVs markedly enhanced blood flow recovery, in accordance with reduced infarct size and preserved cardiac systolic and diastolic performance compared to those treated with PBS. These data suggest that like MSCs, MSC-EVs could also protect cardiac tissue from ischemic injury at least by means of promoting blood vessel formation, though further detailed investigations should be performed to define the functionality of MSC-EVs. KEY MESSAGES MSCs released extracellular vesicles (EVs) upon hypoxia stimulation. MSC-EVs were a mixture of microvesicles and exosomes. MSC-EVs could be promptly uptaken by human umbilical vein endothelial cells. MSC-EVs promoted neoangiogenesis in vitro and in vivo. MSC-EVs preserved cardiac performance in an AMI model.
Collapse
|
17
|
Sakata H, Narasimhan P, Niizuma K, Maier CM, Wakai T, Chan PH. Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. ACTA ACUST UNITED AC 2013; 135:3298-310. [PMID: 23169920 DOI: 10.1093/brain/aws259] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transplantation of neural stem cells provides a promising therapy for stroke. Its efficacy, however, might be limited because of massive grafted-cell death after transplantation, and its insufficient capability for tissue repair. Interleukin 6 is a pro-inflammatory cytokine involved in the pathogenesis of various neurological disorders. Paradoxically, interleukin 6 promotes a pro-survival signalling pathway through activation of signal transducer and activator of transcription 3. In this study, we investigated whether cellular reprogramming of neural stem cells with interleukin 6 facilitates the effectiveness of cell transplantation therapy in ischaemic stroke. Neural stem cells harvested from the subventricular zone of foetal mice were preconditioned with interleukin 6 in vitro and transplanted into mouse brains 6 h or 7 days after transient middle cerebral artery occlusion. Interleukin 6 preconditioning protected the grafted neural stem cells from ischaemic reperfusion injury through signal transducer and activator of transcription 3-mediated upregulation of manganese superoxide dismutase, a primary mitochondrial antioxidant enzyme. In addition, interleukin 6 preconditioning induced secretion of vascular endothelial growth factor from the neural stem cells through activation of signal transducer and activator of transcription 3, resulting in promotion of angiogenesis in the ischaemic brain. Furthermore, transplantation of interleukin 6-preconditioned neural stem cells significantly attenuated infarct size and improved neurological performance compared with non-preconditioned neural stem cells. This interleukin 6-induced amelioration of ischaemic insults was abolished by transfecting the neural stem cells with signal transducer and activator of transcription 3 small interfering RNA before transplantation. These results indicate that preconditioning with interleukin 6, which reprograms neural stem cells to tolerate oxidative stress after ischaemic reperfusion injury and to induce angiogenesis through activation of signal transducer and activator of transcription 3, is a simple and beneficial approach for enhancing the effectiveness of cell transplantation therapy in ischaemic stroke.
Collapse
Affiliation(s)
- Hiroyuki Sakata
- Neurosurgical Laboratories, Stanford University, Stanford, CA 94305-5487, USA
| | | | | | | | | | | |
Collapse
|
18
|
Zheng J, Zhang P, Li X, Lei S, Li W, He X, Zhang J, Wang N, Qi C, Chen X, Lu H, Liu Y. Post-stroke estradiol treatment enhances neurogenesis in the subventricular zone of rats after permanent focal cerebral ischemia. Neuroscience 2013; 231:82-90. [DOI: 10.1016/j.neuroscience.2012.11.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
19
|
Zhang HC, Liu XB, Huang S, Bi XY, Wang HX, Xie LX, Wang YQ, Cao XF, Lv J, Xiao FJ, Yang Y, Guo ZK. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 2012; 21:3289-97. [PMID: 22839741 DOI: 10.1089/scd.2012.0095] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although mesenchymal stem cells (MSCs) have been increasingly trialed to treat a variety of diseases, the underlying mechanisms remain still elusive. In this study, human umbilical cord (UC)-derived MSCs were stimulated by hypoxia, and the membrane microvesicles (MVs) in the supernatants were collected by ultracentrifugation, observed under an electron microscope, and the origin was identified with the flow cytometric technique. The results showed that upon hypoxic stimulus, MSCs released a large quantity of MVs of ~100 nm in diameter. The MVs were phenotypically similar to the parent MSCs, except that the majority of them were negative for the receptor of platelet-derived growth factor. DiI-labeling assay revealed that MSC-MVs could be internalized into human UC endothelial cells (UC-ECs) within 8 h after they were added into the culture medium. Carboxyfluorescein succinimidyl ester-labeling technique and MTT test showed that MSC-MVs promoted the proliferation of UC-ECs in a dose-dependent manner. Further, MVs could enhance in vitro capillary network formation of UC-ECs in a Matrigel matrix. In a rat hindlimb ischemia model, both MSCs and MSC-MVs were shown to improve significantly the blood flow recovery compared with the control medium (P<0.0001), as assessed by laser Doppler imaging analysis. These data indicate that MV releasing is one of the major mechanisms underlying the effectiveness of MSC therapy by promoting angiogenesis.
Collapse
Affiliation(s)
- Hong-Chao Zhang
- Department of Cardiology Surgery, General Hospital of Air Force, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tian Y, Guo B, Jia H, Ji K, Sun Y, Li Y, Zhao T, Gao L, Meng Y, Kalvakolanu DV, Kopecko DJ, Zhao X, Zhang L, Xu D. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC. Cancer Gene Ther 2012; 19:393-401. [PMID: 22555509 DOI: 10.1038/cgt.2012.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of RNA interference-based cancer gene therapies has been delayed due to the lack of effective tumor-targeting delivery systems. Attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) has a natural tropism for solid tumors. We report here the use of attenuated S. Typhimurium as a vector to deliver shRNA directly into tumor cells. Constitutively activated signal transducer and activator of transcription 3 (Stat3) is a key transcription factor involved in both hepatocellular carcinoma (HCC) growth and metastasis. In this study, attenuated S. Typhimurium was capable of delivering shRNA-expressing vectors to the targeted cancer cells and inducing RNA interference in vivo. More importantly, a single oral dose of attenuated S. Typhimurium carrying shRNA-expressing vectors targeting Stat3 induced remarkably delayed and reduced HCC (in 70% of mice). Cancer in these cured mice did not recur over 2 years following treatment. These data demonstrated that RNA interference combined with Salmonella as a delivery system may offer a novel clinical approach for cancer gene therapy.
Collapse
Affiliation(s)
- Y Tian
- Prostate Diseases Prevention and Treatment Research Centre and Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Poynter JA, Herrmann JL, Manukyan MC, Wang Y, Abarbanell AM, Weil BR, Brewster BD, Meldrum DR. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg 2011; 213:253-60. [PMID: 21546276 DOI: 10.1016/j.jamcollsurg.2011.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) regulates myocardial apoptosis, cellular proliferation, and the immune response after ischemia/reperfusion (I/R). STAT3 is also necessary for the production of vascular endothelial growth factor (VEGF) by mesenchymal stem cells (MSCs), which are known to reduce myocardial injury after I/R. However, it remains unknown whether STAT3 is an important mediator of MSC-based cardioprotection. We hypothesized that knockout of stem cell STAT3 would reduce MSC-derived myocardial functional recovery and increase myocardial inflammatory and apoptotic signaling. STUDY DESIGN With a Langendorff apparatus, male rat hearts were subjected to 15 minutes of equilibration and 25 minutes of ischemia, followed by 40 minutes of reperfusion. Immediately before ischemia, hearts received intracoronary infusions of vehicle, wild-type MSCs (WT MSCs) or STAT3 knockout MSCs (STAT3KO MSCs). Heart function was measured continuously. Myocardial homogenates were analyzed for production of interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α). Additionally, MSC production of hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) were measured in vitro. RESULTS Hearts treated with WT MSCs exhibited the greatest functional recovery, and those treated with STAT3KO MSCs had equivalent recovery to vehicle. The highest proinflammatory cytokine levels were seen in vehicle-treated hearts, and the lowest in the WT MSC group. STAT3KO MSCs produced less IGF-1, but more HGF than WT MSCs. Finally, hearts treated with STAT3KO MSCs or vehicle had significantly higher caspase-3 levels than those treated with WT MSCs. CONCLUSIONS Intracoronary infusions of MSCs improve postischemic left ventricular function and reduce proapoptotic and proinflammatory signaling via a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Jeffrey A Poynter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hypoxia effects on proangiogenic factors in human umbilical vein endothelial cells: functional role of the peptide somatostatin. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:593-612. [DOI: 10.1007/s00210-011-0625-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/23/2011] [Indexed: 12/15/2022]
|
23
|
Lenfant F, Trémollières F, Gourdy P, Arnal JF. Timing of the vascular actions of estrogens in experimental and human studies: why protective early, and not when delayed? Maturitas 2010; 68:165-73. [PMID: 21167666 DOI: 10.1016/j.maturitas.2010.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 01/27/2023]
Abstract
Estrogens, and in particular 17β-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes including the cardiovascular system. Although epidemiological studies and Nurses' Health Study suggested, and all animal models of early atheroma clearly demonstrated a vasculoprotective action of both endogenous and exogenous estrogens, the Women's Health Initiative did not confirm the preventive action of estrogens against coronary heart disease (CHD). However, women who initiated hormone therapy closer to menopause tended to have reduced CHD risk compared with increased CHD risk among women more distant from menopause. Thus, it is now mandatory to try to understand the mechanisms that could have influenced the actions of estrogens at various stages of atherosclerosis and/or of life. In this current review, we will summarize our understanding of the potential cellular targets and mechanisms of the vasculoprotective actions of estrogens, as well as of the lack of action of estrogens when administered after a period of hormonal deprivation. The mechanisms of the aggravating role of progestogens such as medroxyprogesterone acetate will be considered. Finally, we will analyze the possibilities to uncouple some beneficial from other undesirable actions following the partial/selective activation of estrogen receptors.
Collapse
Affiliation(s)
- Françoise Lenfant
- INSERM U1048-I2MC, Faculté de Médecine, Université de Toulouse III et CHU de Toulouse, Toulouse, France.
| | | | | | | |
Collapse
|
24
|
Wang Y, Abarbanell AM, Herrmann JL, Weil BR, Manukyan MC, Poynter JA, Meldrum DR. TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS One 2010; 5:e14206. [PMID: 21151968 PMCID: PMC2997048 DOI: 10.1371/journal.pone.0014206] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/15/2010] [Indexed: 01/14/2023] Open
Abstract
Background Bone marrow-derived mesenchymal stem cells (MSC) improve myocardial recovery after ischemia/reperfusion (I/R) injury. These effects are mediated in part by the paracrine secretion of angiogenic and tissue growth-promoting factors. Toll-like receptor 4 (TLR4) is expressed by MSC and induces apoptosis and inhibits proliferation in neuronal progenitors as well as many other cell types. It is unknown whether knock-out (KO) of TLR4 will change the paracrine properties of MSC and in turn improve MSC-associated myocardial protection. Methodology/Principal Findings This study explored the effect of MSC TLR4 on the secretion of angiogenic factors and chemokines in vitro by using ELISA and cytokine array assays and investigated the role of TLR4 on MSC-mediated myocardial recovery after I/R injury in an isolated rat heart model. We observed that MSC isolated from TLR4 KO mice exhibited a greater degree of cardioprotection in a rat model of myocardial I/R injury. This enhanced protection was associated with increased angiogenic factor production, proliferation and differentiation. TLR4-dificiency was also associated with decreased phosphorylation of PI-3K and AKT, but increased activation of STAT3. siRNA targeting of STAT3 resulted in attenuation of the enhanced cardioprotection of TLR4-deficient MSC. Conclusions/Significance This study indicates that TLR4 exerts deleterious effects on MSC-derived cardioprotection following I/R by a STAT3 inhibitory mechanism.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aaron M. Abarbanell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jeremy L. Herrmann
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Brent R. Weil
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mariuxi C. Manukyan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jeffrey A. Poynter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Daniel R. Meldrum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Effects of coumestrol administration to pregnant and lactating mice on intestinal alkaline phosphatase activity. Phytother Res 2010; 25:654-8. [DOI: 10.1002/ptr.3317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/07/2022]
|
26
|
Abstract
Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.
Collapse
|
27
|
Patel S, King C, Lim P, Habiba U, Dave M, Porecha R, Rameshwar P. Personalizing Stem Cell Research and Therapy: The Arduous Road Ahead or Missed Opportunity? CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2010; 8:25-36. [PMID: 20563265 PMCID: PMC2886988 DOI: 10.2174/1875692111008010025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The euphoria of stem cell therapy has diminished, allowing scientists, clinicians and the general public to seriously re-examine how and what types of stem cells would effectively repair damaged tissue, prevent further tissue damage and/or replace lost cells. Importantly, there is a growing recognition that there are substantial person-to-person differences in the outcome of stem cell therapy. Even though the small molecule pharmaceuticals have long remained a primary focus of the personalized medicine research, individualized or targeted use of stem cells to suit a particular individual could help forecast potential failures of the therapy or identify, early on, the individuals who might benefit from stem cell interventions. This would however demand collaboration among several specialties such as pharmacology, immunology, genomics and transplantation medicine. Such transdisciplinary work could also inform how best to achieve efficient and predictable stem cell migration to sites of tissue damage, thereby facilitating tissue repair. This paper discusses the possibility of polarizing immune responses to rationalize and individualize therapy with stem cell interventions, since generalized "one-size-fits-all" therapy is difficult to achieve in the face of the diverse complexities posed by stem cell biology. We also present the challenges to stem cell delivery in the context of the host related factors. Although we focus on the mesenchymal stem cells in this paper, the overarching rationale can be extrapolated to other types of stem cells as well. Hence, the broader purpose of this paper is to initiate a dialogue within the personalized medicine community by expanding the scope of inquiry in the field from pharmaceuticals to stem cells and related cell-based health interventions.
Collapse
Affiliation(s)
- S.A. Patel
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
- Department of Medicine, Division of Hematology and Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - C.C. King
- Department of Medicine, Division of Hematology and Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - P.K. Lim
- Department of Medicine, Division of Hematology and Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - U. Habiba
- Department of Medicine, Division of Hematology and Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - M. Dave
- Department of Medicine, Division of Hematology and Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - R. Porecha
- Department of Medicine, Division of Hematology and Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - P. Rameshwar
- Department of Medicine, Division of Hematology and Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| |
Collapse
|