1
|
Yüksel D, Başeğmez M, Kan F. The Protective Effect of Boric Acid Against High Fructose-Induced Liver and Kidney Damage in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04542-z. [PMID: 39912997 DOI: 10.1007/s12011-025-04542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
This study aimed to determine the protective role of boric acid (BA) in high fructose (HF)-induced liver and kidney toxicity in a young rat model. High-fructose consumption causes serious damage to liver and kidney tissue in healthy individuals and contributes to the emergence of various metabolic diseases. Thirty-two healthy female Wistar albino rats (250-300 g weight and 3-4 months) were randomly distributed into four equal groups (n = 8): control, high fructose % 20 (HF), boric acid 20 mg/kg (BA), and HF + BA. High fructose was freshly prepared and administered to the rats as 20 g of D-fructose dissolved in 100 mL of tap water daily for a duration of 30 days. Boric acid (20 mg/kg) was administered through gastric gavage throughout the 30-day study period. At the end of study, blood, liver, and kidney were collected from rats. The results indicated that high fructose induced increased glucose, total cholesterol, triglyceride, and urea levels in rat serum. Boric acid administration significantly decreased glucose, total cholesterol, triglyceride, and urea levels in HF + BA groups. The results indicated that high fructose-induced oxidative stress by increasing the level of MDA and by decreasing GSH levels, and CAT activity in the liver and kidney of rats. However, oral BA administration significantly decreased MDA levels and increased GSH levels, and CAT activity (p < 0.05). Furthermore, BA significantly reduced high fructose-induced histopathological and Immunohistochemistry alteration in the liver and kidney tissues. In conclusion, BA may prevent the oxidative imbalance and histopathological and immunohistochemical damage caused by high fructose in liver and kidney tissues in rats.
Collapse
Affiliation(s)
- Duygu Yüksel
- Department of Medical Services and Techniques, Vocational School of Health Services, Gümüşhane University, Pathology Program, Gümüşhane, Turkey
| | - Mehmet Başeğmez
- Department of Veterinary, Laboratory and Veterinary Health Program, Acıpayam Vocational High School, Pamukkale University, Denizli, Turkey.
| | - Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
3
|
Başeğmez M, Yüksel D. The Effect of Boric Acid on Oxidative Stress, Inflammation, and Apoptosis in Embryonic and Fetal Tissues Damage Caused by Consumption of High-Fructose Corn Syrup in Pregnant Rats. Reprod Sci 2025; 32:514-525. [PMID: 39821796 PMCID: PMC11825574 DOI: 10.1007/s43032-025-01792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Abstract
This study aimed to determine the protective role of boric acid in a pregnant rat model of high fructose corn syrup consumption. Consumption of high fructose corn syrup has been associated with adverse health outcomes in humans and animals. Twenty-eight healthy female Wistar albino rats (250-300 g weight and 16-24 weeks old) were randomly distributed into four equal groups (n = 7): Control, Boric acid (BA), High Fructose Corn Syrup (HFCS), HFCS + BA. Boric acid (20 mg/kg) was administered to pregnant rats via oral gavage every day during pregnancy. The prepared 30% HFCS (F30) solution (24% fructose, 28% dextrose) was added to the drinking water throughout pregnancy. At the end of pregnancy (day 19), blood, placenta, uterus, and fetuses were collected from rats. The results indicated that HFCS increases oxidative stress by increasing the level of MDA and decreasing GSH, SOD, and CAT activity in the blood of maternal. However, BA administration significantly decreased MDA levels and increased GSH levels, SOD, and CAT activity (p < 0.05). In addition, HFCS consumption significantly increased plasma TNF-α, IL-6, and leptin levels compared to control, BA, and HFCS + BA groups (p < 0.05). However, BA administration significantly decreased plasma TNF-α, IL-6, and leptin levels (p < 0.05). Furthermore, BA (20 mg/kg) significantly decreased HFCS-induced histopathological and immunohistochemical alterations in the placenta, uterus, and fetal tissue. In conclusion, BA may prevent HFCS toxicity in maternal and fetal tissues, as it regulates oxidative imbalance in pregnant rat and alleviates histopathological and immunohistochemical changes. The findings indicate a need for further studies to assess the potential of boron in preventing or mitigating the effects of HFCS during pregnancy.
Collapse
Affiliation(s)
- Mehmet Başeğmez
- Department of Veterinary, Laboratory and Veterinary Health Program, Acıpayam Vocational High School, Pamukkale University, Denizli, Turkey.
| | - Duygu Yüksel
- Department of Medical Services and Techniques, Pathology Program, Vocational School of Health Services, Gümüşhane University, Gümüşhane, Turkey
| |
Collapse
|
4
|
Aykal MB, Gecin MN, Sogut I, Kar F, Taskin AC. Effects of Boric acid as Maternal Feed Additives on the Development and Sex Ratio of Mouse pups. Biol Trace Elem Res 2024; 202:5572-5579. [PMID: 38342845 PMCID: PMC11502565 DOI: 10.1007/s12011-024-04099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Boron is primarily used in industrial applications, with recent interest revolving around its effects on metabolism. In this study, we administered boric acid (BA), which has positive effects on reproduction, in conjunction with feed supplementation to serve as a model for experimental animal development and breeding. The pregnancy performance, offspring development, and biochemical effects of mice given feed supplemented with BA at concentrations of 0 (control group), 250, and 500 ppm (BA groups) were investigated. A total of 18 female Balb-C mice were utilized for pregnancy. The mice were given the BA-supplemented feed during a period encompassing three weeks of pregnancy and three weeks of lactation. The numbers and weights of offspring born in cages on days 19-21 were determined. Blood and tissue samples were collected from the offspring during the third week postnatal, and the malondialdehyde (MDA) and total antioxidant and oxidant status (TAS, TOS, and OSI) levels were determined. A significant increase in female offspring was observed in the groups born to mice fed with BA compared to the control group. Positive development in organ weights was observed in the 250-ppm BA group. The 250-ppm group exhibited a significant increase in TAS compared to the control group, while TOS and MDA levels showed a decrease. Also, the levels of BA groups were found to decrease in both the OSI index serum and organ samples compared to the control group. Thus, the use of 250-ppm BA demonstrated positive effects on female offspring production, organ development, and antioxidant levels.
Collapse
Affiliation(s)
- M B Aykal
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - M N Gecin
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - I Sogut
- Faculty of Medicine, Department of Biochemistry, Demiroglu Bilim University, Istanbul, Türkiye
| | - F Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Türkiye
| | - A C Taskin
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
5
|
Taskin AC, Kocabay A, Gul S, Sahin GN, Karahuseyinoglu S, Kavakli IH, Sogut I. Boric acid supplementation promotes the development of in vitro-produced mouse embryos by related pluripotent and antioxidant genes. ZYGOTE 2024; 32:348-353. [PMID: 39431373 DOI: 10.1017/s0967199424000261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Boric acid (BA) is an important mineral for plants, animals and humans that assists metabolic function and has both positive and negative effects on biological systems. The present study aimed to investigate the effects of different concentrations of BA added to the culture media, the quality and in vitro development potential of mouse embryos. Superovulated C57Bl6/6j female mice were sacrificed ∼18 hours after human chorionic gonadotropin (hCG) injection. Single-cell-stage embryos were collected from the oviduct, divided into experiment groups and cultured in embryo medium with supplemented BA+ in 5% CO2 at 37 °C until 96 hours at the blastocyst stage. The blastocyst development rates of 0, 1.62 × 10-1, 1.62 × 10-2, 1.62 × 10-3 and 1.62 × 10-4 µM BA were 51.52%, 73.47%, 77.36% and 81.13%, respectively. The in vitro development rates were significantly higher in the 1.62 × 10-3 (p < 0.05) and 1.62 × 10-4 µM BA groups than in the control group (p < 0.001). These results indicated that low BA doses influenced embryo development by positively affecting in vitro development rates, embryo cell numbers, biochemical parameters and development at the molecular level by pluripotent and antioxidant genes. Therefore, BA seems to play an important role on in vitro embryo development.
Collapse
Affiliation(s)
- Ali Cihan Taskin
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Kocabay
- Animal Research Facility, Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Seref Gul
- Life Sciences and Biotechnology Institute, Department Of Biotechnology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Gizem Nur Sahin
- Translational Medicine Research Center and School of Medicine, Koç University, Istanbul, Turkey
| | - Sercin Karahuseyinoglu
- Translational Medicine Research Center and School of Medicine, Koç University, Istanbul, Turkey
| | - I Halil Kavakli
- Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Ibrahim Sogut
- Department of Biochemistry, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| |
Collapse
|
6
|
Kocabay A, Taskin AC. Boric Acid Improved Cryopreserved Mouse Embryo Development. Biol Trace Elem Res 2024; 202:4101-4105. [PMID: 38049706 DOI: 10.1007/s12011-023-03990-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Boric acid (BA) is an essential trace element that is required to support the metabolic pathways in plants, humans, and animals. The present study investigates the in vitro development and quality of single-cell mouse embryos in a BA-added culture medium after cryopreservation using the solid-surface vitrification method. For this purpose, the pronuclear-stage embryos derived from superovulated C57Bl/6j mouse strains and the one-cell embryos were then cryopreserved using the solid-surface vitrification (SSV) method. After thawing, the embryos were cultured in a BA-added medium at 37 °C in a 5% CO2 environment until the blastocyst stage. The resulting in vitro development rates of the embryos in the control group, SSV group, and SSV + 1.62 × 10-4 μM BA group were 68.11% (36/59), 40.16% (16/48), and 64.92% (28/48) respectively, indicating that the BA supported the in vitro development of the embryos cryopreserved using the SSV method. Our results suggest that the addition of boric acid to the culture media increased the development rate of the embryos that were vitrified using the SSV method.
Collapse
Affiliation(s)
- A Kocabay
- Animal Research Facility, Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
| | - A C Taskin
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
7
|
Boyuk G, Dolu N, Aksoy B. Effect of Boron on Sympathetic Skin Response in Rats. Indian J Dermatol 2023; 68:723. [PMID: 38371583 PMCID: PMC10868984 DOI: 10.4103/ijd.ijd_7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Background Boron effects on reproduction and growth have been extensively studied in animals. Electrodermal activity (EDA) reflects the activity of eccrine sweat glands stimulated by the release of acetylcholine from sympathetic nerves. Aim In the presen study, it was aimed to examine the effect of boron, which was turned into cream, on sweat glands. Methods A cream form mixed with thyme oil was prepared for EDA recording. Our groups were formed as EDA recording gel (Group 1), cream with thyme oil (Group 2), cream containing 10% boron (Group 3) and cream containing 30% boron (Group 4). In each group, 3 months old, 10 male rats were used, and creams were applied to the soles of the hind extremities of the rats, EDA was recorded from this region after half an hour, and skin conductivity levels (SCL) were recorded as tonic (at rest) and phasic (with auditory sound stimulation). Results EDA results recorded in the morning were analysed with tonic and phasic recordings. In the morning SCL measurements, tonic SCL value of Group 4 was higher than the other groups (P < 0.001). Although the phasic SCL value was measured, it was significantly higher in Group 4 than in all groups (P < 0.0s). Conclusion EDA measurements showed that boron increased sweat gland activity by increasing sympathetic nerve activity.
Collapse
Affiliation(s)
- Gulbahar Boyuk
- From the Department of Physiology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Nazan Dolu
- Department of Physiology, Faculty of Medicine, İstanbul Nisantasi University, İstanbul, Turkey
| | - Busra Aksoy
- Department of Physiology, Faculty of Medicine, Baskent University, Ankara, Turkey
| |
Collapse
|
8
|
Hayal TB, Doğan A, Şenkal S, Bulut E, Şişli HB, Şahin F. Evaluation of the effect of boron derivatives on cardiac differentiation of mouse pluripotent stem cells. J Trace Elem Med Biol 2023; 79:127258. [PMID: 37451093 DOI: 10.1016/j.jtemb.2023.127258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The heart is one of the first organs to form during embryonic development and has a very important place. So much that the formation of a functional heart is completed on the 55th day of human development and the 15th day of mouse development. Myocardial, endocardial and epicardial cells, which are derived from the mesoderm layer, are the cells that form the basis of the heart. Cardiac development, like other embryonic developments, is tightly controlled and regulated by various signaling pathways. The WNT signaling pathway is the most studied of these signaling pathways and the one with the clearest relationship with heart development. It is known that boron compounds and the Wnt/β-catenin pathway are highly correlated. Therefore, this study aimed to investigate the role of boron compounds in heart development as well as its effect on pluripotency of mouse embryonic stem cells for the first time in the literature. METHODS Toxicity of boron compounds was evaluated by using MTS analysis and obtained results were supported by morphological pictures, Trypan Blue staining and Annexin V staining. Additionally, the possible boron-related change in pluripotency of embryonic stem cells were analyzed with alkaline phosphatase activity and immunocytochemical staining of Oct4 protein as well as gene expression levels of pluripotency related OCT4, SOX2 and KLF4 genes. The alterations in the embryonic body formation capacity of mouse embryonic stem cells due to the application boron derivatives were also evaluated. Three linage differentiation was conducted to clarify the real impact of boron compounds on embryonic development. Lastly, cardiac differentiation of mESCs was investigated by using morphological pictures, cytosolic calcium measurement, gene expression and immunocytochemical analysis of cardiac differentiation related genes and in the presence of boron compounds. RESULTS Obtained results show that boron treatment maintains the pluripotency of embryonic stem cells at non-toxic concentrations. Additionally, endodermal, and mesodermal fate was found to be triggered after boron treatment. Also, initiation of cardiomyocyte differentiation by boron derivative treatments caused an increased gene expression levels of cardiac differentiation related TNNT2, Nkx2.5 and ISL-1 gene expression levels. CONCLUSION This study indicates that boron application, which is responsible for maintaining pluripotency of mESCs, can be used for increased cardiomyocyte differentiation of mESCs.
Collapse
Affiliation(s)
- Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Current affiliation: Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Bulut
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
9
|
Turna Demir F, Demir E. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model. J Appl Toxicol 2022; 42:1854-1867. [PMID: 35837816 DOI: 10.1002/jat.4363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Boron trioxide nanoparticles (B2 O3 NPs) have recently been widely used in a range of applications including electronic device technologies, acousto-optic apparatus fields and as nanopowder for the production of special glasses. We propose Drosophila melanogaster as a useful in vivo model system to study the genotoxic risks associated with NP exposure. In this study we have conducted a genotoxic evaluation of B2 O3 NPs (size average 55.52 ± 1.41 nm) and its ionic form in D. melanogaster. B2 O3 NPs were supplied to third instar larvae at concentrations ranging from 0.1-10 mM. Toxicity, intracellular oxidative stress (reactive oxygen species, ROS), phenotypic alterations, genotoxic effect (via the wing somatic mutation and recombination test (SMART), and DNA damage (via Comet assay) were the end-points evaluated. B2 O3 NPs did not cause any mutagenic/recombinogenic effects in all tested non-toxic concentrations in Drosophila SMART. Negative data were also obtained with the ionic form. Exposure to B2 O3 NPs and its ionic form (at two highest concentrations, 2.5 and 5 mM) was found to induce DNA damage in Comet assay. Additionally, ROS induction in hemocytes and phenotypic alterations were determined in the mouths and legs of Drosophila. This study is the first study reporting genotoxicity data in the somatic cells of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects in a concentration dependent manner caused by B2 O3 NPs and its ionic form. The obtained in vivo results contribute to improvement the genotoxicity database on the B2 O3 NPs.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
10
|
Ince S, Kucukkurt I, Demirel HH, Arslan-Acaroz D, Varol N. Boron, a Trace Mineral, Alleviates Gentamicin-Induced Nephrotoxicity in Rats. Biol Trace Elem Res 2020; 195:515-524. [PMID: 31446563 DOI: 10.1007/s12011-019-01875-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 01/05/2023]
Abstract
The present study was considered to assess the protective effects of boron (B) on gentamicin-induced oxidative stress, proinflammatory cytokines, and histopathological changes in rat kidneys. Rats were split into eight equal groups which were as follows: control (fed with low-boron diet); gentamicin group (100 mg/kg, i.p.); B5, B10, and B20 (5, 10, and 20 mg/kg B, i.p.) groups; gentamicin (100 mg/kg, i.p.) plus B5, B10, and B20 (5, 10, and 20 mg/kg B, i.p.) groups. B was given to rats 4 days before the gentamicin treatment and B administration was completed on the 14th day. Gentamicin administration was started on the 4th day and finished on the 12th day. Gentamicin increased malondialdehyde levels, while reduced glutathione levels in the blood and kidney. Furthermore, superoxide dismutase and catalase activities of erythrocyte were decreased. Besides, serum and kidney nitric oxide and 8-dihydroxyguanidine levels were increased by gentamicin. Additionally, serum levels and kidney mRNA expressions of TNF-α, NFκB, IL-1β, and IFN-γ were found to be the highest in the gentamicin group. Histopathologically, interstitial hemorrhage and tubular necrosis were detected in the kidneys of the gentamicin group. Nonetheless, B administration reversed gentamicin-induced lipid peroxidation, antioxidant status, and inflammation. In conclusion, B has a preventive effect against gentamicin-induced nephrotoxicity and ameliorates kidney tissues of the rat.
Collapse
Affiliation(s)
- Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, TR-03200, Afyonkarahisar, Turkey.
| | - Ismail Kucukkurt
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, TR-03200, Afyonkarahisar, Turkey
| | - Hasan Huseyin Demirel
- Bayat Vocational School, Department of Laboratory and Veterinary Health, Afyon Kocatepe University, TR-03780, Afyonkarahisar, Turkey
| | - Damla Arslan-Acaroz
- Bayat Vocational School, Department of Laboratory and Veterinary Health, Afyon Kocatepe University, TR-03780, Afyonkarahisar, Turkey
| | - Nuray Varol
- Faculty of Medicine, Department of Medical Genetics, Afyonkarahisar Health Science University, TR-03100, Afyonkarahisar, Turkey
| |
Collapse
|