1
|
Li X, Ma K, Tian T, Pang H, Liu T, Li M, Li J, Luo Z, Hu H, Hou S, Yu J, Hou Q, Song X, Zhao C, Du H, Li J, Du Z, Jin M. Methylmercury induces inflammatory response and autophagy in microglia through the activation of NLRP3 inflammasome. ENVIRONMENT INTERNATIONAL 2024; 186:108631. [PMID: 38588609 DOI: 10.1016/j.envint.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy. This study aims to further explore the exact molecular mechanism of MeHg neurotoxicity. We conducted in vitro studies using BV2 microglial cell from the central nervous system of mice. The role of inflammation and autophagy in the damage of BV2 cells induced by MeHg was determined by detecting cell viability, cell morphology and structure, reactive oxygen species (ROS), antioxidant function, inflammatory factors, autophagosomes, inflammation and autophagy-related proteins. We further investigated the relationship between the inflammatory response and autophagy induced by MeHg by inhibiting them separately. The results indicated that MeHg could invade cells, change cell structure, activate NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and autophagosome, release a large amount of inflammatory factors and trigger the inflammatory response and autophagy. It was also found that MeHg could disrupt the antioxidant function of cells. In addition, the inhibition of NLRP3 inflammasome alleviated both cellular inflammation and autophagy, while inhibition of autophagy increased cellular inflammation. Our current research suggests that MeHg might induce BV2 cytotoxicity through inflammatory response and autophagy, which may be mediated by the NLRP3 inflammasome activated by oxidative stress.
Collapse
Affiliation(s)
- Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Jiali Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Zhixuan Luo
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Huiyuan Hu
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Shanshan Hou
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Jing Yu
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Jinhua Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China.
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, PR China.
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China.
| |
Collapse
|
2
|
Rebouças BH, Kubota GT, Oliveira RAA, Pinto BD, Cardoso RM, Vasconcellos ACS, Basta PC. Long-Term Environmental Methylmercury Exposure Is Associated with Peripheral Neuropathy and Cognitive Impairment among an Amazon Indigenous Population. TOXICS 2024; 12:212. [PMID: 38535945 PMCID: PMC11154458 DOI: 10.3390/toxics12030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 06/09/2024]
Abstract
Widespread contamination of the Amazon basin with mercury has been reported to occur since at least the mid-80s due to heavy gold mining activity. Although initial studies have indicated that this may lead to deleterious neurological consequences to the indigenous populations living in the region, further research is needed to better characterize the neurological burden of such long-term exposure. With this aim, a cross-sectional exploratory study has been conducted with the Yanomami indigenous population residing in a northern Amazon region. All participants underwent a structured interview; detailed neurological examination, including assessment for cognitive, motor, coordination, and sensory functions; and laboratorial testing for serum hemoglobin, blood glucose, and methylmercury levels in hair samples. This study enrolled 154 individuals of 30.9 ± 16.8 years of age, of which 56.1% were female. Mean methylmercury levels in hair were 3.9 ± 1.7 µg/g. Methylmercury levels in hair > 6.0 µg/g were found in 10.3%. Among participants with hair methylmercury levels ≥ 6.0 μg/g, the prevalences of peripheral neuropathy and reduced cognitive performance were, respectively, 78.8% (95%CI 15-177%, p = 0.010) and 95.9% (95%CI 16-230.8%, p = 0.012) higher than those of individuals with lower levels. These results suggest that chronic mercury exposure may lead to significant and potentially irreversible neurotoxicity to Yanomami population living in the northern Amazon basin.
Collapse
Affiliation(s)
- Bruno H. Rebouças
- Department of Neurology, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil
| | - Gabriel T. Kubota
- Department of Neurology, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil
- Pain Treatment Center, São Paulo State Cancer Institute, Sao Paulo 01246-000, Brazil
| | - Rogério A. A. Oliveira
- Department of Neurology, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil
| | - Bruna D. Pinto
- Department of Neurology, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil
| | - Roberta M. Cardoso
- Department of Neurology, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil
| | - Ana C. S. Vasconcellos
- Laboratory of Professional Education in Health Surveillance, Polytechnic School of Health Joaquim Venacio (EPSJV), Oswald Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Paulo C. Basta
- Program of Post-Graduation in Public Health and Environment, National School of Public Health (ENSP), Oswald Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
- Department of Endemic Diseases Samuel Pessoa, Escola Nacional de Saúde Pública Sergio Arouca, Oswald Cruz Foundation (Fiocruz), Rio de Janeiro 21041-210, Brazil
| |
Collapse
|
3
|
Lin H, Wei Y, Li S, Mao X, Qin J, Su S, He T. Changes in transcriptome regulations of a marine rotifer Brachionus plicatilis under methylmercury stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101177. [PMID: 38104474 DOI: 10.1016/j.cbd.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg), a heavy metal pollutant worldwide, can be transformed into methylmercury (MeHg) by various aquatic microorganisms in water, thus accumulating along the aquatic food chain and posing a particular challenge to human health. Zooplankton plays a crucial role in aquatic ecosystems and serves as a major component of the food chain. To evaluate the effects of MeHg on the rotifer Brachionus plicatilis and reveal the underlying mechanism of these effects, we exposed B. plicatilis to MeHg by either direct immersion or by feeding with MeHg-poisoned Chlorella pyrenoidesa, respectively, and conducted a transcriptomic analysis. The results showed that B. plicatilis directly exposed to MeHg by immersion showed significant enrichment of the glutathione metabolism pathway for detoxification of MeHg. In addition, the exposure to MeHg by feeding induced a significant enrichment of lysosome and notch signaling pathways of rotifers, supporting the hypothesis that MeHg can induce autophagy dysfunction in cells and disturb the nervous system of rotifers. In two different routes of MeHg exposure, the pathway of cytochrome P450 in rotifers showed significant enrichment for resisting MeHg toxicity. Our results suggest further studies on the potential mechanism and biological responses of MeHg toxicity in other links of the aquatic food chain.
Collapse
Affiliation(s)
- Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Yanlin Wei
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Songzhang Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| | - Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| |
Collapse
|
4
|
Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Inhibition of p38 Mitogen-Activated Protein Kinases Attenuates Methylmercury Toxicity in SH-SY5Y Neuroblastoma Cells. Biol Pharm Bull 2023; 46:1203-1210. [PMID: 37661399 DOI: 10.1248/bpb.b23-00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is a toxic metal that causes irreversible damage to the nervous system, making it a risk factor for neuronal degeneration and diseases. MeHg activates various cell signaling pathways, particularly the mitogen-activated protein kinase (MAPK) cascades, which are believed to be important determinants of stress-induced cell fate. However, little is known about the signaling pathways that mitigate the neurotoxic effects of MeHg. Herein, we showed that pretreatment with a p38 MAPK-specific inhibitor, SB203580, attenuates MeHg toxicity in human neuroblastoma SH-SY5Y cells, whereas pretreatment with the extracellular signaling-regulated kinase inhibitor U0126 and the c-Jun N-terminal kinase inhibitor SP600125 does not. Specifically, we quantified the levels of intracellular mercury (Hg) and found that pretreatment with SB203580 reduced Hg levels compared to MeHg treatment alone. Further analysis showed that pretreatment with SB203580 increased multidrug resistance-associated protein 2 (MRP2) mRNA levels after MeHg treatment. These results indicate that detoxification of MeHg by p38 MAPK inhibitors may involve an efflux function of MeHg by inducing MRP2 expression.
Collapse
Affiliation(s)
| | - Kazuma Sakai
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University
| |
Collapse
|
5
|
Villarreal-Lucio DS, Vargas-Berrones KX, Díaz de León-Martínez L, Flores-Ramíez R. Molecularly imprinted polymers for environmental adsorption applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89923-89942. [PMID: 36370309 DOI: 10.1007/s11356-022-24025-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Molecular imprinting polymers (MIPs) are synthetic materials with pores or cavities to specifically retain a molecule of interest or analyte. Their synthesis consists of the generation of three-dimensional polymers with specific shapes, arrangements, orientations, and bonds to selectively retain a particular molecule called target. After target removal from the binding sites, it leaves empty cavities to be re-occupied by the analyte or a highly related compound. MIPs have been used in areas that require high selectivity (e.g., chromatographic methods, sensors, and contaminant removal). However, the most widely used application is their use as a highly selective extraction material because of its low cost, easy preparation, reversible adsorption and desorption, and thermal, mechanical, and chemical stability. Emerging pollutants are traces of substances recently found in wastewater, river waters, and drinking water samples that represent a special concern for human and ecological health. The low concentration in which these pollutants is found in the environment, and the complexity of their chemical structures makes the current wastewater treatment not efficient for complete degradation. Moreover, these substances are not yet regulated or controlled for their discharge into the environment. According to the literature, MIPs, as a highly selective adsorbent material, are a promising approach for the quantification and monitoring of emerging pollutants in complex matrices. Therefore, the main objective of this work was to give an overview of the actual state-of-art of applications of MIPs in the recovery and concentration of emerging pollutants.
Collapse
Affiliation(s)
- Diana Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, S.L.P, México
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Rogelio Flores-Ramíez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México.
| |
Collapse
|
6
|
Sousa LAD, Zaitune MPDA. Uma revisão de escopo de revisões sistemáticas sobre exposição humana ao mercúrio. REVISTA BRASILEIRA DE SAÚDE OCUPACIONAL 2022. [DOI: 10.1590/2317-6369/38120pt2022v47e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Resumo: Introdução: a promulgação da Convenção de Minamata no Brasil em 2018 incentivou o cumprimento dos seus objetivos em reduzir o uso e a poluição por mercúrio. Objetivo: caracterizar a produção científica sobre exposição humana ao mercúrio e identificar lacunas de conhecimento a fim de subsidiar a tomada de decisão em saúde. Métodos: revisão de escopo de revisões sistemáticas e metanálises, sem restrição de idioma ou data de publicação, utilizando as bases PubMed, BVS e Cochrane Library. Resultados: 71 estudos atenderam aos critérios de elegibilidade, com 40 revisões sistemáticas, 30 metanálises e 1 overview. Amálgama dentário e contaminação alimentar e ambiental por atividades que utilizam mercúrio foram as fontes de exposição mais mencionadas. Os temas mais estudados contaram com transtornos mentais e comportamentais, assim como uso de biomarcadores e testes neurocomportamentais relacionados à exposição ao mercúrio. Discussão: lacunas como a exposição ocupacional ao mercúrio, uso em práticas tradicionais e em cosméticos apontam para a necessidade de mais estudos. As revisões identificadas podem oferecer subsídios para sínteses de evidências e protocolos de atenção à saúde de populações expostas, assim como para a elaboração de políticas públicas que visem o controle do uso e da exposição ao mercúrio.
Collapse
|
7
|
de Oliveira RAA, Pinto BD, Rebouças BH, Ciampi de Andrade D, de Vasconcellos ACS, Basta PC. Neurological Impacts of Chronic Methylmercury Exposure in Munduruku Indigenous Adults: Somatosensory, Motor, and Cognitive Abnormalities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910270. [PMID: 34639574 PMCID: PMC8507861 DOI: 10.3390/ijerph181910270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
There has been increasing evidence about mercury (Hg) contamination in traditional populations from the Amazon Basin due to illegal gold mining. The most concerning health impact is neurotoxicity caused by Hg in its organic form: methylmercury (MeHg). However, the severity and extent of the neurotoxic effects resulting from chronic environmental exposure to MeHg are still unclear. We conducted a clinical-epidemiological study to evaluate the neurological impacts of chronic MeHg exposure in Munduruku indigenous people, focusing on somatosensory, motor, and cognitive abnormalities. All participants were subjected to a systemized neurological exam protocol, including Brief Cognitive Screening Battery (BCSB), verbal fluency test, and Stick Design Test. After the examination, hair samples were collected to determine MeHg levels. Data collection took place between 29 October and 9 November 2019, in three villages (Sawré Muybu, Poxo Muybu, and Sawré Aboy) from Sawré Muybu Indigenous Land, Southwest of Pará state. One hundred and ten individuals >12 years old were included, 58 of which were men (52.7%), with an average age of 27.6 years (range from 12 to 72). Participants’ median MeHg level was 7.4 µg/g (average: 8.7; S.D: 4.5; range: 2.0–22.8). In Sawré Aboy village, the median MeHg level was higher (12.5 µg/g) than in the others, showing a significant statistical exposure gradient (Kruskal–Wallis test with p-value < 0.001). Cerebellar ataxia was observed in two participants with MeHg levels of 11.68 and 15.68 µg/g. Individuals with MeHg exposure level ≥10 µg/g presented around two-fold higher chances of cognitive deficits (RP: 2.2; CI 95%: 1.13–4.26) in BCSB, and in the verbal fluency test (RP: 2.0; CI 95%: 1.18–3.35). Furthermore, adolescents of 12 to 19 years presented three-fold higher chances of verbal development deficits, according to the fluency test (RP: 3.2; CI 95%: 1.06–9.42), than individuals of 20 to 24 years. The worsened motor and cognitive functions are suggestive of neurotoxicity due to chronic MeHg exposure. In conclusion, we believe monitoring and follow-up measures are necessary for chronic mercury exposed vulnerable people, and a basic care protocol should be established for contaminated people in the Brazilian Unified Health System.
Collapse
Affiliation(s)
- Rogério Adas Ayres de Oliveira
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Bruna Duarte Pinto
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Bruno Hojo Rebouças
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Daniel Ciampi de Andrade
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Ana Claudia Santiago de Vasconcellos
- Laboratório de Educação Profissional em Vigilância em Saúde, Escola Politécnica de Saúde Joaquim Venâncio, Fundação Oswaldo Cruz (EPSJV/Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Paulo Cesar Basta
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, Brazil
- Correspondence: ; Tel.: +55-21-2598-2503
| |
Collapse
|
8
|
Eiró LG, Ferreira MKM, Frazão DR, Aragão WAB, Souza-Rodrigues RD, Fagundes NCF, Maia LC, Lima RR. Lead exposure and its association with neurological damage: systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37001-37015. [PMID: 34046839 DOI: 10.1007/s11356-021-13536-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is one of the most toxic and abundant elements in the earth's crust, which is pointed out that the intoxication caused by it may damage biological systems. This systematic review with meta-analysis aimed to evaluate the association between Pb exposure and neurological damage. This work was executed according to PRISMA guidelines, and seven online databases were consulted. Based on the PECO strategy, studies presenting humans as participants (populations) exposed to Pb (exposure) compared to non-exposed to Pb (control) evaluating the neurological impairment (outcome) were included. The quality and risk of bias were verified by Fowkes and Fulton checklist. Two meta-analyses were conducted considering Digit Symbol and Profile Mood tests. The certainty of the evidence was evaluated with the GRADE tool. This review identified 2019 studies, of which 12 were eligible according to the inclusion criteria. Eight were considered with a low risk of bias. All the studies elected showed that exposure to Pb is associated with neurological damage, but the meta-analysis did not show any difference for the evaluated tests, and the certainty of the evidence was considered very low. Nevertheless, the included studies showed that Pb occupational exposure is associated with neurological damage, and the main parameters evaluated for possible neurological damage were related to mnemonic aspects, reaction time, intelligence, attention disorders, and mood changes. Thus, our results revealed that a definitive demonstration of an association of Pb and neurological changes in humans is still a pending issue. Future studies should take into consideration more confident methods to answer this question.
Collapse
Affiliation(s)
- Luciana Guimarães Eiró
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belém, PA, 66075-110, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belém, PA, 66075-110, Brazil
| | - Déborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belém, PA, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belém, PA, 66075-110, Brazil
| | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belém, PA, 66075-110, Brazil
| | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
9
|
de Souza-Rodrigues RD, Puty B, Bonfim L, Nogueira LS, Nascimento PC, Bittencourt LO, Couto RSD, Barboza CAG, de Oliveira EHC, Marques MM, Lima RR. Methylmercury-induced cytotoxicity and oxidative biochemistry impairment in dental pulp stem cells: the first toxicological findings. PeerJ 2021; 9:e11114. [PMID: 34178433 PMCID: PMC8199917 DOI: 10.7717/peerj.11114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Methylmercury (MeHg) is a potent toxicant able to harm human health, and its main route of contamination is associated with the consumption of contaminated fish and other seafood. Moreover, dental amalgams are also associated with mercury release on human saliva and may contribute to the accumulation of systemic mercury. In this way, the oral cavity seems to be the primary location of exposure during MeHg contaminated food ingestion and dental procedures but there is a lack of literature about its effects on dental tissues and the impact of this toxicity on human health. In this way, this study aimed to analyze the effects of different doses of MeHg on human dental pulp stem cells after short-term exposure. METHODS Dental pulp stem cells from human exfoliated deciduous teeth (SHED) were treated with 0.1, 2.5 and 5 µM of MeHg during 24 h. The MeHg effects were assessed by evaluating cell viability with Trypan blue exclusion assay. The metabolic viability was indirectly assessed by MTT reduction assay. In order to evaluate an indicative of antioxidant defense impairment, cells exposed to 0.1 and 5 µM MeHg were tested by measuring glutathione (GSH) level. RESULTS It was observed that cell viability decreased significantly after exposure to 2.5 and 5 µM of MeHg, but the metabolic viability only decreased significantly at 5 µM MeHg exposure, accompanied by a significant decrease in GSH levels. These results suggest that an acute exposure of MeHg in concentrations higher than 2.5 µM has cytotoxic effects and reduction of antioxidant capacity on dental pulp stem cells.
Collapse
Affiliation(s)
- Renata Duarte de Souza-Rodrigues
- Institute of Arts Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Laís Bonfim
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Lygia Sega Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| | | | | | | | - Marcia Martins Marques
- Graduation Program, School of Dentistry, Ibirapuera University (UNIb), São Paulo, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| |
Collapse
|
10
|
Santos-Sacramento L, Arrifano GP, Lopes-Araújo A, Augusto-Oliveira M, Albuquerque-Santos R, Takeda PY, Souza-Monteiro JR, Macchi BM, do Nascimento JLM, Lima RR, Crespo-Lopez ME. Human neurotoxicity of mercury in the Amazon: A scoping review with insights and critical considerations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111686. [PMID: 33396018 DOI: 10.1016/j.ecoenv.2020.111686] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Human exposure to mercury is a major public health concern, causing neurological outcomes such as motor and visual impairment and learning disabilities. Currently, human exposure in the Amazon is among the highest in the world. A recent systematic review (doi:10.1016/j.jtemb.2018.12.001), however, highlighted the lack of high-quality studies on mercury-associated neurotoxicity. There is, therefore, a need to improve research and much to still learn about how exposure correlates with disease. In this review, we discuss studies evaluating the associations between neurological disturbances and mercury body burden in Amazonian populations, to generate recommendations for future studies. A systematic search was performed during July 2020, in Pubmed/Medline, SCOPUS and SCIELO databases with the terms (mercury*) and (Amazon*). Four inclusion criteria were used: original article (1), with Amazonian populations (2), quantifying exposure (mercury levels) (3), and evaluating neurological outcomes (4). The extracted data included characteristics (as year or origin of authorship) and details of the research (as locations and type of participants or mercury levels and neurological assessments). Thirty-four studies, most concentrated within three main river basins (Tapajós, Tocantins, and Madeira) and related to environmental exposure, were found. Mercury body burden was two to ten times higher than recommended and main neurological findings were cognitive, vision, motor, somatosensory and emotional deficits. Important insights are described that support novel approaches to researching mercury exposure and intoxication, as well as prevention and intervention strategies. As a signatory country to the Minamata Convention, Brazil has the opportunity to play a central role in improving human health and leading the research on mercury intoxication.
Collapse
Affiliation(s)
- Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Raquel Albuquerque-Santos
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Priscila Y Takeda
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | | | - Barbarella M Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - José Luiz M do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), 68903-419 Macapá, AP, Brazil.
| | - Rafael R Lima
- Laboratório de Biologia Estrutural e Funcional, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| |
Collapse
|
11
|
Methylmercury, oxidative stress, and neurodegeneration. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|