1
|
Zou M, Lei C, Huang D, Liu L, Han Y. Application of plant-derived products as adjuvants for immune activation and vaccine development. Vaccine 2024; 42:126115. [PMID: 38987109 DOI: 10.1016/j.vaccine.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.
Collapse
Affiliation(s)
- Manshu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Chang Lei
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Dan Huang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Lan Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Hunan Province, Changsha 410007, China.
| |
Collapse
|
2
|
Lan J, Feng D, He X, Zhang Q, Zhang R. Basic Properties and Development Status of Aluminum Adjuvants Used for Vaccines. Vaccines (Basel) 2024; 12:1187. [PMID: 39460352 PMCID: PMC11511158 DOI: 10.3390/vaccines12101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Aluminum adjuvants, renowned for their safety and efficacy, act as excellent adsorbents and vaccine immunogen enhancers, significantly contributing to innate, endogenous, and humoral immunity. An ideal adjuvant not only boosts the immune response but also ensures optimal protective immunity. Aluminum adjuvants are the most widely used vaccine adjuvants and have played a crucial role in both the prevention of existing diseases and the development of new vaccines. With the increasing emergence of new vaccines, traditional immune adjuvants are continually being researched and upgraded. The future of vaccine development lies in the exploration and integration of novel adjuvant technologies that surpass the capabilities of traditional aluminum adjuvants. One promising direction is the incorporation of nanoparticles, which offer precise delivery and controlled release of antigens, thereby enhancing the overall immune response. CONCLUSIONS This review summarizes the types, mechanisms, manufacturers, patents, advantages, disadvantages, and future prospects of aluminum adjuvants. Although aluminum adjuvants have certain limitations, their contribution to enhancing vaccine immunity is significant and cannot be ignored. Future research should continue to explore their mechanisms of action and address potential adverse reactions to achieve improved vaccine efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 117004, China; (J.L.); (D.F.); (Q.Z.)
| |
Collapse
|
3
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Dooka BD, Ezealisiji KM, Noundou XS, Orisakwe OE. Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01747-1. [PMID: 39331240 DOI: 10.1007/s12311-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Silica nanoparticles (SiNPs) have been touted for their role in the management of non-communicable diseases. Their neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. This is a comparative evaluation of the oxido-inflammatory and neurotrophic effects of Ni, Al, and Ni/Al mixture on the cerebellum of male albino rats with or without treatment with SiNPs generated from melon seed husk. The study complied with the ARRIVE guidelines for reporting in vivo experiments. A total of 91, 7-9 week-old weight-matched male Sprague rats (to avoid sex bias) were randomly divided into 13 different dosing groups where Group 1 served as the control. Other groups received 0.2 mg/kg Ni, 1 mg/kg Al, and 0.2 mg/kg Ni + 1 mg/kg Al mixture with or without different doses of SiNP for 90 days. Rotarod performance was carried out. Oxidative stress markers, Ni, Al, Ca, Fe, Mg, neurotrophic factors, amyloid beta (Aβ-42), cyclooxygenase-2 (COX-2), and acetylcholinesterase (AChE) were determined in the cerebellum. SiNPs from melon seed husk caused a significant decrease in Aβ-42 level and activities of AChE and COX-2 and a significant increase in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mediated by Ni, Al, and Ni/Al mixture exposure in rats. Neurotoxicity of the Ni/Al mixture is via heightened neuronal lipoperoxidative damage, decreased Mg, and increased Fe, and co-administration of SiNPs from melon seed husk with the Ni/Al mixture attenuated some of these biochemical changes in the cerebellum.
Collapse
Affiliation(s)
- Chidinma P Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria.
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Kenneth M Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Box 218, 0204, Pretoria, South Africa
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
- Advanced Research Centre, European University of Lefke, Lefke, Mersin, TR-10, Northern Cyprus, Turkey.
| |
Collapse
|
4
|
Zhang J, Wang K, Xu S, Chen L, Gu H, Yang Y, Zhao Q, Huo Y, Li B, Wang Y, Xie Y, Li N, Zhang J, Zhang J, Li Q. Silk Fibroin-Coated Nano-MOFs Enhance the Thermal Stability and Immunogenicity of HBsAg. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8346-8364. [PMID: 38323561 DOI: 10.1021/acsami.3c16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vaccines are widely regarded as one of the most effective weapons in the fight against infectious diseases. Currently, vaccines must be stored and transported at low temperatures as high temperatures can lead to a loss of vaccine conformation and reduced therapeutic efficacy. Metal-organic frameworks (MOFs), such as zeolitic imidazole framework-8 (ZIF-8), are a new class of hybrid materials with large specific surface areas, high loading rates, and good biocompatibility and are successful systems for vaccine delivery and protection. Silk fibroin (SF) has a good biocompatibility and thermal stability. In this study, the hepatitis B surface antigen (HBsAg) was successfully encapsulated in ZIF-8 to form HBsAg@ZIF-8 (HZ) using a one-step shake and one-pot shake method. Subsequently, the SF coating modifies HZ through hydrophobic interactions to form HBsAg/SF@ZIF-8 (HSZ), which enhanced the thermal stability and immunogenicity of HBsAg. Compared to free HBsAg, HZ and HSZ improved the thermostability of HBsAg, promoted the antigen uptake and lysosomal escape, stimulated dendritic cell maturation and cytokine secretion, formed an antigen reservoir to promote antibody production, and activated CD4+ T and CD8+ T cells to enhance memory T-cell production. Importantly, HSZ induced a strong immune response even after 14 days of storage at 25 °C. Furthermore, the nanoparticles prepared by the one-step shake method exhibited superior properties compared to those prepared by the one-pot shake method. This study highlights the importance of SF-coated ZIF-8, which holds promise for investigating thermostable vaccines and breaking the vaccine cold chain.
Collapse
Affiliation(s)
- Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Shiyao Xu
- College of Life Sciences, Tonghua Normal University, Tonghua 134002, China
| | - Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Haiquan Gu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yujie Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qi Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yurou Huo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Bo Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yufei Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jiali Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| |
Collapse
|
5
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Ezealisiji KM, Patrick-Iwuanyanwu K, Thuppil V, Orisakwe OE. Ni and Al mixture amplifies cerebellar oxido-inflammatory responses, down regulates AChE and BDNF/NGF levels in motor impairment in male albino rats. J Trace Elem Med Biol 2023; 80:127318. [PMID: 37864919 DOI: 10.1016/j.jtemb.2023.127318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Aluminum and nickel are potent neurotoxicants to which humans are constantly exposed. Previous studies have demonstrated that these two metals can affect the motor system, but their effects on the cerebellum, a central nervous system region with the highest number of neurons, have remained largely unexplored. Therefore, we conducted a study to investigate the adverse effects of Al, Ni, and Al+Ni in vivo. METHODS In our study, seven male Sprague Dawley rats per group were orally exposed to deionized water, 0.2 mg/kg of Ni, 1 mg/kg of Al, and 0.2 mg/kg of Ni + 1 mg/kg of Al (as a binary heavy metals mixture; HMM), respectively. RESULTS Ni, Al, and HMM exposed rats accumulated higher levels of Al and Ni compared to controls, and HMM treated animals had higher levels of Ca and Fe in the cerebellum (p < 0.05). Malondialdehyde (MDA) levels were significantly (p < 0.05) higher in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) activities were significantly (p < 0.05) reduced in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Ni, Al, and HMM significantly (p < 0.05) shortened the length of time of the grip in comparison to the control. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels were significantly decreased in the nickel, Al, and heavy metal mixture groups compared with the control group. Moreover, there was a significant decrease in the activity of acetylcholinesterase (AChE) and a increase in cyclooxygenase-2 (COX-2) activity in the Ni, Al, and HMM treated groups compared to the control group. CONCLUSION HMM exposed animals had significantly poorer performance in the Rotarod test (p < 0.05) than controls. Al and Ni induced impairment of cerebellar function at various levels.
Collapse
Affiliation(s)
- Chidinma P Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria.
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Kenneth M Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Kingsley Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | | | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria.
| |
Collapse
|
6
|
Robles-Gil MC, Toro-Román V, Maynar-Mariño M, Siquier-Coll J, Bartolomé I, Grijota FJ. Aluminum Concentrations in Male and Female Football Players during the Season. TOXICS 2023; 11:920. [PMID: 37999572 PMCID: PMC10674899 DOI: 10.3390/toxics11110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Aluminum (Al) is one of the most abundant trace mineral elements in the earth's crust. Al is considered a potent neurotoxicant. Physical exercise could cause modifications in some trace mineral elements. On the other hand, there could be sex differences in the exposure and deposits of toxic mineral elements. The aim of the present study was to compare sex and seasonal differences in extracellular and intracellular Al concentrations in football players. The study involved 22 male and 24 female football players from the fifth and second national category, respectively. Three assessments were carried out during the season (beginning, middle and end). Al concentrations in plasma, urine, erythrocytes and platelets were determined. Male football players ingested more Al (p < 0.05). Higher plasma Al concentrations were reported in male football players (p < 0.01). On the other hand, in both groups, increases and decreases in Al in the plasma and urine were observed in the second and third assessment, respectively (p < 0.01). There were sex differences in platelet Al concentrations (p < 0.05). Plasma and platelet Al concentrations may be different between the sexes. Al concentrations may change over the course of a season in football players.
Collapse
Affiliation(s)
- María C. Robles-Gil
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (M.M.-M.)
| | - Víctor Toro-Román
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (M.M.-M.)
| | - Marcos Maynar-Mariño
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (M.M.-M.)
| | - Jesús Siquier-Coll
- Department of Communication and Education, University of Loyola Andalucía, 41704 Sevilla, Spain;
| | - Ignacio Bartolomé
- Faculty of Health Sciences, Isabel I University, 09003 Burgos, Spain;
- Faculty of Education, Pontifical University of Salamanca, 37007 Salamanca, Spain
| | - Francisco J. Grijota
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (M.M.-M.)
- Faculty of Health Sciences, Isabel I University, 09003 Burgos, Spain;
| |
Collapse
|
7
|
Cirovic A, Cirovic A, Orisakwe OE, Lima RR. Local and Systemic Hypoxia as Inductors of Increased Aluminum and Iron Brain Accumulation Promoting the Onset of Alzheimer's Disease. Biol Trace Elem Res 2023; 201:5134-5142. [PMID: 36757557 DOI: 10.1007/s12011-023-03599-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Human environment is highly contaminated with aluminum, and aluminum is toxic to majority of tissues, particularly to neurons. In previous decades, aluminum exposure was frequently linked with the onset of Alzheimer's disease (AD), and increased levels of Al were detected in the brains of individuals with AD. People who live in a certain area are exposed to aluminum in a similar way (they eat the same vegetable and other foodstuffs, use similar cosmetics, and buy medications from the same manufacturer), nevertheless not all of them develop Alzheimer's disease. Majority of known risk factors for AD promote atherosclerosis and consequently reduce brain blood supply. In this review, we highlighted the significance of local (carotid disease and atherosclerosis of intracranial blood vessels) and systemic hypoxia (chronic obstructive pulmonary disease and anemia) in the development of AD. Nerve tissue is very sophisticated and sensitive to hypoxia and aluminum toxicity. As a side effect of compensatory mechanisms in case of hypoxia, neurons start to uptake aluminum and iron to a greater extent. This makes perfect a background for the gradual onset and development of AD.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000, Belgrade, Serbia.
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba, Nigeria
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Street, n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
8
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
9
|
Zhang L, Li Y, Tao D, Yang L, Zhang Y, Zhang H, Xie C. The miR-34b-5p-negative target Gnai2 aggravates fluorine combined with aluminum-induced apoptosis of rat offspring hippocampal neurons and NG108-15 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66822-66839. [PMID: 37186186 DOI: 10.1007/s11356-023-27135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
It is known that fluorine and aluminum are commonly found in the environment and that long-term overexposure can adversely affect the organism's nervous system, damaging the structure and function of brain tissue. Our previous study showed that fluorine combined with aluminum (FA) could trigger apoptosis in vitro and cause spatial learning and memory impairment and differentially expressed miRNAs (including miR-34b-5p) in the hippocampi in vivo. However, the detailed mechanism is unclear. Learning memory damage is implicated in excessive hippocampal neuron apoptosis, and miR-34b-5p participates in regulating the hippocampal neuron apoptosis. Thus, in the current research, Sprague-Dawley (SD) rats were subjected to FA, and NG108-15 control cells and NG108-15 cells pretransfected with miR-34b-5p agomir or antagomir were exposed to FA. We found that FA triggered apoptosis of rat hippocampal neurons and NG108-15 cells, increased miR-34b-5p expression, and decreased Gnai2, PKA, ERK and CREB expression. Inhibition of miR-34b-5p alleviated FA-induced NG108-15 cell apoptosis and further increased Gnai2, PKA, ERK, and CREB expression, and vice versa. Furthermore, miR-34b-5p modulated the level of Gnai2 by directly targeting its 3'-untranslated region (UTR), as verified through the dual Luciferase reporter assay. These outcomes suggested that miR-34b-5p participated in FA-induced neuronal apoptosis by targeting Gnai2 negatively, thereby inhibiting the PKA/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Luwen Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yang Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Dan Tao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Liu Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yue Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Hua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Liu J, Guo S, Jin Z, Zhao K. Adjuvanted quaternized chitosan composite aluminum nanoparticles-based vaccine formulation promotes immune responses in chickens. Vaccine 2023; 41:2982-2989. [PMID: 37032226 DOI: 10.1016/j.vaccine.2023.03.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Aluminum adjuvant is a typical adjuvant that can promote humoral immune response, but it lacks the ability to effectively induce cellular immune response. The water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan nanoparticles (N-2-HACC NPs) can enhance humoral and cellular immune responses of vaccines. To enable aluminum adjuvant to induce cellular immunity, the composite nano adjuvant N-2-HACC-Al NPs were synthesized by the N-2-HACC and aluminum sulfate (Al2(SO4)3). The particle size and zeta potential of the N-2-HACC-Al NPs were 300.70 ± 24.90 nm and 32.28 ± 0.52 mV, respectively. The N-2-HACC-Al NPs have good thermal stability and biodegradability and lower cytotoxicity. In addition, to investigate the immunogenicity of the composite nano adjuvant, the combined inactivated vaccine against Newcastle disease (ND) and H9N2 avian influenza (AI) was prepared with the N-2-HACC-Al NPs as a vaccine adjuvant. The immune effect of the vaccine (N-2-HACC-Al/NDV-AIV) was evaluated by chicken in vivo immunization. The vaccine induced higher levels of serum IgG, IL-4, and IFN-γ than those of the commercial combined inactivated vaccine against ND and H9N2 AI. The levels of IFN-γ were more than twice those of the commercial vaccine at 7 days post the immunization. The N-2-HACC-Al NPs could be used as an efficient nano adjuvant to enhance the effectiveness of vaccine and have immense application potential.
Collapse
Affiliation(s)
- Jiali Liu
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Sihan Guo
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Zheng Jin
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China; Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| | - Kai Zhao
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China; Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
11
|
A new quercetin@ZIF-8composite as turn-on fluorescent sensor for selective and sensitive detection of Al3+ ions. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
12
|
Eiró-Quirino L, Lima WFD, Aragão WAB, Bittencourt LO, Mendes PFS, Fernandes RM, Rodrigues CA, Dionízio A, Buzalaf MAR, Monteiro MC, Cirovic A, Cirovic A, Puty B, Lima RR. Exposure to tolerable concentrations of aluminum triggers systemic and local oxidative stress and global proteomic modulation in the spinal cord of rats. CHEMOSPHERE 2023; 313:137296. [PMID: 36410523 DOI: 10.1016/j.chemosphere.2022.137296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The tolerable aluminum (Al) intake levels for humans are constantly under review by regulatory agencies due to novel pre-clinical evidence on the neurotoxicity of prolonged Al exposure; however, little is known about the effects of Al on the spinal cord. This study aimed to investigate potential adverse effects on both spinal cord and systemic biochemical balance after prolonged exposure to a low dose of Al. Twenty adult rats were distributed in the control (distilled water) and exposed group (8.3 mg of AlCl3/kg/day). After 60 days, both blood and spinal cord samples were collected for oxidative stress and proteomic analyses. In plasma and erythrocytes, glutathione level was not different between groups; however, exposure to AlCl3 significantly decreased glutathione level in the spinal cord. Thiobarbituric acid reactive substances levels in the plasma and spinal cord of animals from the control group were significantly lower than those animals exposed to AlCl3. Exposure to AlCl3 significantly modulated the expression of proteins associated with the cell cycle, stimulus-response, cytoskeleton, nervous system regulation, protein activity, and synaptic signaling. Therefore, prolonged exposure to a low dose of Al triggered oxidative stress and proteomic changes that may affect spinal cord homeostasis.
Collapse
Affiliation(s)
- Luciana Eiró-Quirino
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Weslley Ferreira de Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Caroline Azulay Rodrigues
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Aline Dionízio
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, Brazil
| | | | - Marta Chagas Monteiro
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
13
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
14
|
Bittencourt LO, Damasceno-Silva RD, Aragão WAB, Eiró-Quirino L, Oliveira ACA, Fernandes RM, Freire MAM, Cartágenes SC, Dionizio A, Buzalaf MAR, Cassoli JS, Cirovic A, Cirovic A, Maia CDSF, Lima RR. Global Proteomic Profile of Aluminum-Induced Hippocampal Impairments in Rats: Are Low Doses of Aluminum Really Safe? Int J Mol Sci 2022; 23:ijms232012523. [PMID: 36293377 PMCID: PMC9603961 DOI: 10.3390/ijms232012523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus.
Collapse
Affiliation(s)
- Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Rakhel Dayanne Damasceno-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Luciana Eiró-Quirino
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Ana Carolina Alves Oliveira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Marco Aurelio M. Freire
- Graduate Program in Health and Society, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoro 59610210, Brazil
| | - Sabrina Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 05508060, Brazil
| | | | - Juliana Silva Cassoli
- Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, 11000 Belgrade, Serbia
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém 66075110, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075110, Brazil
- Correspondence:
| |
Collapse
|
15
|
Harini K, Girigoswami K, Anand AV, Pallavi P, Gowtham P, Elboughdiri N, Girigoswami A. Nano-mediated Strategies for Metal Ion–Induced Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. CURRENT PHARMACOLOGY REPORTS 2022; 8:450-463. [DOI: 10.1007/s40495-022-00307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/29/2023]
|
16
|
Cirovic A, Cirovic A. Aluminum bone toxicity in infants may be promoted by iron deficiency. J Trace Elem Med Biol 2022; 71:126941. [PMID: 35123368 DOI: 10.1016/j.jtemb.2022.126941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Aluminum has adverse effects on human health. Aluminum is poorly transported from the gastrointestinal tract, but if the load is high, a significant level of aluminum may be absorbed. There are two main sources of aluminum in infants - adapted formulas (when an infant is predominantly fed with it), and vaccines. After aluminum enters the circulation, it binds to transferrin and remains mainly in the skeleton for a longer period of time. Transferrin receptor 1 (TfR1) is highly expressed on osteoblast-like cells whereas the number of TfR1 may additionally rise in case of iron deficiency. Since iron deficiency can induce the additional expression of TfR1, a larger quantities of aluminum may be uptaken by osteoblasts and consequently aluminum may decrease the number of osteoblasts and lead peak bone mass (PBM) closer to the osteoporotic threshold. Iron deficiency may potentiate aluminum-induced toxicity to bones. Aluminum burden in infants has always been considered as harmless whereas a potential increased toxicity of aluminum in high-sensitive infants caused by iron deficiency has not been evaluated.
Collapse
Affiliation(s)
- Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Dr Subotica 4/2, Belgrade 11000, Serbia.
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Dr Subotica 4/2, Belgrade 11000, Serbia.
| |
Collapse
|
17
|
Proximate Analysis of Poultry-Mix Formed Feed Using Maize Bran as a Base. Int J Anal Chem 2021; 2021:8894567. [PMID: 34594382 PMCID: PMC8478600 DOI: 10.1155/2021/8894567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this research was to demonstrate the proximate analysis of poultry-mix made using maize bran as a basis. Red beans, soya beans, and benny beans were the three samples utilised in this study. This work investigates the appropriate poultry mix for birds breed for meat and egg. Thirty grammes of proteinous feedstock were weighed and homogeneously combined with 70 grammes of maize bran. The following was revealed in a proximate analysis of the feeds: moisture ranged from 1.18% to 1.54%, unrefined lipids 0.99–3.08%, total carbohydrate 57% to 72%, ash content 38.48% to 38.92%, unrefined protein 18.38% to 22.53% and unrefined fiber 2.0% to 4.65% respectively for broilers and layers. In terms of nutritional concentrations, all feed samples showed a substantial variation. Based on the findings of the study, it can be stated that Soya bean-maize bran is an excellent poultry-mix formulation that has deep well-disposed benefits and meets nearly all nutritional needs for meat and egg-producing birds.
Collapse
|