1
|
Ghimire BK, Kim SH, Yu CY, Chung IM. Biochemical and Physiological Changes during Early Adventitious Root Formation in Chrysanthemum indicum Linné Cuttings. PLANTS 2022; 11:plants11111440. [PMID: 35684213 PMCID: PMC9183066 DOI: 10.3390/plants11111440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Chrysanthemum indicum is an important ornamental and medicinal plant that is often difficult to propagate commercially because of its poor germination and low seed viability. This plant is mostly propagated by cutting, but the rooting is slow and non-uniform. The present investigation evaluated the regeneration capacity of stem cutting by examining the influence of auxins, growth medium, temperature, and explant type on adventitious root formation in C. indicum. The auxin-treated cuttings were planted in different growth substrates under greenhouse conditions. Among the different auxins tested, indole-3-butyric acid (IBA) more effectively induced roots. The cutting position of stock plants influenced rooting capacity. Cutting the stock plants from the apical region enhanced root number and length in the explants. Among the different explant types, apical stem cuts with 2000 ppm IBA produced a significantly higher number of adventitious roots when grown in vermiculite and perlite (V + P) at a ratio of 1:1 at 25 °C. High-performance liquid chromatography (HPLC) analysis revealed that protocatechuic acid, gentisic acid, chlorogenic acid, biochanin A, salicylic acid, caffeic acid, glycitein, and luteolin were the most dominant phenolic compounds present in C. indicum. These results indicate that IBA treatment promoted the synthesis and accumulation of phenolic compounds in C. indicum stem cuttings at the time of root formation. The present results demonstrate that applying auxins is essential for early root initiation and higher rooting success and thus may be beneficial for vegetative C. indicum propagation.
Collapse
Affiliation(s)
- Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.K.G.); (S.-H.K.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.K.G.); (S.-H.K.)
| | - Chang-Yeon Yu
- Bioherb Research Institute, Kangwon National University, Chuncheon 24341, Korea;
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.K.G.); (S.-H.K.)
- Correspondence: ; Tel.: +82-010-547-08301
| |
Collapse
|
2
|
Joshi M, Ginzberg I. Adventitious root formation in crops-Potato as an example. PHYSIOLOGIA PLANTARUM 2021; 172:124-133. [PMID: 33305392 DOI: 10.1111/ppl.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The root system of potato is made up of adventitious roots (AR) that form at the base of a sprout once it emerges from the mother tuber. By definition, AR originate from dormant preformed meristems, or from cells neighboring vascular tissues in stems or leaves. This may occur as part of the developmental program of the plant (e.g., potato), or when replacing the embryonic primary roots in response to stress conditions, such as flooding, nutrient deprivation, or wounding. AR formation is studied mainly in cereals and model plants, and less is known about its developmental program in root and tuber crops. In this review, we summarize the recent data on AR development in potato and relate this knowledge to what is known from model plants. For example, AR formation following stem cutting in potato follows a pattern of initiation, expression, and emergence phases that are known for other plants and involves auxin, the master regulator of AR induction and development. Molecular regulation of AR formation and the effect of environmental stresses are discussed. Understanding the origin and nature of AR systems in important crops will contribute to increased production and improve global food security.
Collapse
Affiliation(s)
- Mukul Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
3
|
Mishra P, Roggen A, Ljung K, Albani MC. Natural Variation in Adventitious Rooting in the Alpine Perennial Arabis alpina. PLANTS 2020; 9:plants9020184. [PMID: 32028613 PMCID: PMC7076489 DOI: 10.3390/plants9020184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Arctic alpine species follow a mixed clonal-sexual reproductive strategy based on the environmental conditions at flowering. Here, we explored the natural variation for adventitious root formation among genotypes of the alpine perennial Arabis alpina that show differences in flowering habit. We scored the presence of adventitious roots on the hypocotyl, main stem and axillary branches on plants growing in a long-day greenhouse. We also assessed natural variation for adventitious rooting in response to foliar auxin spray. In both experimental approaches, we did not detect a correlation between adventitious rooting and flowering habit. In the greenhouse, and without the application of synthetic auxin, the accession Wca showed higher propensity to produce adventitious roots on the main stem compared to the other accessions. The transcript accumulation of the A. alpina homologue of the auxin inducible GH3.3 gene (AaGH3.3) on stems correlated with the adventitious rooting phenotype of Wca. Synthetic auxin, 1-Naphthaleneacetic acid (1-NAA), enhanced the number of plants with adventitious roots on the main stem and axillary branches. A. alpina plants showed an age-, dosage- and genotype-dependent response to 1-NAA. Among the genotypes tested, the accession Dor was insensitive to auxin and Wca responded to auxin on axillary branches.
Collapse
Affiliation(s)
- Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47B, 50674 Cologne, Germany (A.R.)
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences “From Complex Traits towards Synthetic Modules”, 40225 Düsseldorf, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47B, 50674 Cologne, Germany (A.R.)
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden;
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47B, 50674 Cologne, Germany (A.R.)
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences “From Complex Traits towards Synthetic Modules”, 40225 Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
4
|
Cheng L, Liu H, Jiang R, Li S. A proteomics analysis of adventitious root formation after leaf removal in lotus (Nelumbo nucifera Gaertn.). Z NATURFORSCH C 2018; 73:375-389. [PMID: 29794259 DOI: 10.1515/znc-2018-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
Abstract
The formation of adventitious roots (ARs) is an important process for lotus (Nelumbo nucifera), which does not have a well-formed main root. In lotus, the removal of leaves above the waterline significantly promoted AR formation, while the removal of leaves below the waterline inhibited AR formation. Proteins were identified using isobaric tags for relative and absolute quantization technique. The number of proteins decreased with increasing sequencing coverage, and most of the identified proteins had fewer than 10 peptides. In the A1/A0 and A2/A1 stages, 661 and 154 proteins showed increased abundance, respectively, and 498 and 111 proteins showed decreased abundance, respectively. In the B1/B0 and B2/B1 stages, 498 and 436 proteins showed increased abundance, respectively, and 358 and 348 proteins showed decreased abundance, respectively. Among the proteins showing large differences in abundance, 17 were identified as being related to AR formation. Proteins involved in the glycolytic pathway and the citrate cycle showed differences in abundance between the two types of leaf removal. The transcriptional levels of nine genes encoding relevant proteins were assessed by quantitative polymerase chain reaction. The results of this study illustrate the changes in metabolism after different types of leaf removal during AR formation in lotus.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu 225009, P.R. China
| | - Huiying Liu
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Runzhi Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Shuyan Li
- College of Guangling, Yangzhou University, Jiangsu 225009, P.R. China
| |
Collapse
|
5
|
Cheng L, Jiang R, Yang J, Xu X, Zeng H, Li S. Transcriptome profiling reveals an IAA-regulated response to adventitious root formation in lotus seedling. Z NATURFORSCH C 2018; 73:229-240. [PMID: 29432208 DOI: 10.1515/znc-2017-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/20/2018] [Indexed: 11/15/2022]
Abstract
Adventitious roots (ARs) of lotus (Nelumbonucifera Gaertn.) play a critical role in water and nutrient uptake. We found that exogenously applied 10-μM indole-3-acetic acid (IAA) promoted the formation of ARs, while 150-μM IAA significantly inhibited the emergence of ARs. However, little is known about these different responses to various concentrations of IAA at the molecular level. This study, therefore, examined the gene expression profiling in four libraries treated with 10- and 150-μM IAA based on the high-throughout tag sequencing technique. Approximately 2.4×107 clean tags were obtained after the removal of low-quality tags from each library respectively, among which about 10% clean tags were unambiguous tag-mapped genes to the reference genes. We found that some genes involved in auxin metabolism showed a similar tendency for expression in the A/CK and C/CK libraries, while three genes were enhanced their expression only in the A/CK libraries. Two transcription factors including B3 domain-containing protein At2g36080-like and trihelix transcription factor were up-regulated for transcriptional level in the A/C libraries. The expressions of six important genes related to AR formation were significantly different in the A/CK and C/CK libraries. In summary, this study provides a comprehensive understanding of gene expression regulated by IAA involved in AR formation in lotus.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Runzhi Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Jianjun Yang
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Xiaoyong Xu
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Haitao Zeng
- College of Life Sciences and Technology, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Shuyan Li
- College of Guangling, Yangzhou University, Jiangsu, P.R. China
| |
Collapse
|
6
|
|
7
|
Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis. Methods Mol Biol 2013; 959:159-75. [PMID: 23299674 DOI: 10.1007/978-1-62703-221-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adventitious root formation, the development of roots on non-root tissue (e.g. leaves, hypocotyls and stems) is a critical step during micropropagation. Although root induction treatments are routinely used for a large number of species micropropagated in vitro as well as for in vivo cuttings, the mechanisms controlling adventitious rooting are still poorly understood. Researchers attempt to gain better insight into the molecular aspects by studying adventitious rooting in Arabidopsis thaliana. The existing assay involves etiolation of seedlings and measurements of de novo formed roots on the elongated hypocotyl. The etiolated hypocotyls express a novel auxin-controlled signal transduction pathway in which auxin response factors (ARFs), microRNAs and environmental conditions that drive adventitious rooting are integrated. An alternative assay makes use of so-called thin cell layers (TCL), excised strips of cells from the inflorescence stem of Arabidopsis thaliana. However, both the etiolated seedling system and the TCL assay are only distantly related to industrial rooting processes in which roots are induced on adult stem tissue. Here, we describe an adventitious root induction system that uses segments of the inflorescence stems of Arabidopsis thaliana, which have a histological structure similar to cuttings or in vitro micropropagated shoots. The system allows multiple treatments with chemicals as well as the evaluation of different environmental conditions on a large number of explants. It is therefore suitable for high throughput chemical screenings and experiments that require numerous data points for statistical analysis. Using this assay, the adventitious root induction capacity of classical auxins was evaluated and a differential response to the different auxins could be demonstrated. NAA, IBA and IAA stimulated adventitious rooting on the stem segment, whereas 2,4-D and picloram did not. Light conditions profoundly influenced the root induction capacity of the auxins. Additionally to the environmental control of adventitious root formation, we also investigated the spatial and temporal aspects of stem-based adventitious root organogenesis. To determine the cells involved in de novo root initiation on the adult stems, we adopted scanning electron microscopy, which allows the visualization of the auxin responsive stem tissue. Using this technique, direct (without callus interface) and indirect (with intermediate callus phase) organogenesis was readily distinguished. The described micro-stem segment system is also suitable for other non-woody species and it is a valuable tool to perform fast evaluations of different treatments to study adventitious root induction.
Collapse
|
8
|
Correa LDR, Troleis J, Mastroberti AA, Mariath JEA, Fett-Neto AG. Distinct modes of adventitious rooting in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:100-9. [PMID: 21974782 DOI: 10.1111/j.1438-8677.2011.00468.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.
Collapse
Affiliation(s)
- L da Rocha Correa
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|