1
|
Sales K, Gage MJG, Vasudeva R. Experimental evolution reveals that males evolving within warmer thermal regimes improve reproductive performance under heatwave conditions in a model insect. J Evol Biol 2024; 37:1329-1344. [PMID: 39283813 DOI: 10.1093/jeb/voae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/04/2024]
Abstract
Climate change is increasing mean temperatures, and intensifying heatwaves. Natural populations may respond to stress through shorter-term acclimation via plasticity and/or longer-term inter-generational evolution. However, if the pace and/or extent of thermal change is too great, local extinctions occur; one potential cause in ectotherms is identified to be the heat-liability of male reproductive biology. Recent data from several species, including the beetle Tribolium castaneum, confirmed that male reproductive biology is vulnerable to heatwaves, which may constrain populations. However, such reproductive-damage may be overestimated, if there is potential to adapt to elevated mean temperatures associated with climate change via evolution and/or acclimation. Here, we tested this to evaluate whether pre-exposures could improve heatwave tolerance (adaptation or acclimation), by experimentally evolving Tribolium castaneum populations to divergent thermal regimes (30 °C vs. 38 °C). Findings across assays revealed that relative to 30 °C-regime males, males from the 38 °C regime, maintained constantly at 8 °C warmer for 25 generations, displayed an increase; (i) in post heatwave (42 °C) reproductive fitness by 55%, (ii) survival by 33%, and (iii) 32% larger testes volumes. Unexpectedly, in the acclimation assay, warm-adapted males' post-heatwave survival and reproduction were best if they experienced cool developmental acclimation beforehand, suggesting a cost to adapting to 38 °C. These results help progress knowledge of the potential for survival and reproduction to adapt to climate change; trait specific adaptation to divergent thermal regimes can occur over relatively few generations, but this capacity depended on the interaction of evolutionary and thermal acclimatory processes.
Collapse
Affiliation(s)
- Kris Sales
- Inventory, Forecasting and Operational Support, Forest Research, Farnham, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - M J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - R Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Cao HQ, Chen JC, Tang MQ, Chen M, Hoffmann AA, Wei SJ. Plasticity of cold and heat stress tolerance induced by hardening and acclimation in the melon thrips. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104619. [PMID: 38301801 DOI: 10.1016/j.jinsphys.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Extreme temperatures threaten species under climate change and can limit range expansions. Many species cope with changing environments through plastic changes. This study tested phenotypic changes in heat and cold tolerance under hardening and acclimation in the melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae), an agricultural pest of many vegetables. We first measured the critical thermal maximum (CTmax) of the species by the knockdown time under static temperatures and found support for an injury accumulation model of heat stress. The inferred knockdown time at 39 °C was 82.22 min. Rapid heat hardening for 1 h at 35 °C slightly increased CTmax by 1.04 min but decreased it following exposure to 31 °C by 3.46 min and 39 °C by 6.78 min. Heat acclimation for 2 and 4 days significantly increased CTmax at 35 °C by 1.83, and 6.83 min, respectively. Rapid cold hardening at 0 °C and 4 °C for 2 h, and cold acclimation at 10 °C for 3 days also significantly increased cold tolerance by 6.09, 5.82, and 2.00 min, respectively, while cold hardening at 8 °C for 2 h and acclimation at 4 °C and 10 °C for 5 days did not change cold stress tolerance. Mortality at 4 °C for 3 and 5 days reached 24.07 % and 43.22 % respectively. Our study showed plasticity for heat and cold stress tolerance in T. palmi, but the thermal and temporal space for heat stress induction is narrower than for cold stress induction.
Collapse
Affiliation(s)
- Hua-Qian Cao
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing 100083, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing 100083, China.
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
3
|
Juul-Kristensen T, Keller JG, Borg KN, Hansen NY, Foldager A, Ladegaard R, Ho YP, Loeschcke V, Knudsen BR. Topoisomerase 1 Activity Is Reduced in Response to Thermal Stress in Fruit Flies and in Human HeLa Cells. BIOSENSORS 2023; 13:950. [PMID: 37998125 PMCID: PMC10669382 DOI: 10.3390/bios13110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
In the modern world with climate changes and increasing pollution, different types of stress are becoming an increasing challenge. Hence, the identification of reliable biomarkers of stress and accessible sensors to measure such biomarkers are attracting increasing attention. In the current study, we demonstrate that the activity, but not the expression, of the ubiquitous enzyme topoisomerase 1 (TOP1), as measured in crude cell extracts by the REEAD sensor system, is markedly reduced in response to thermal stress in both fruit flies (Drosophila melanogaster) and cultivated human cells. This effect was observed in response to both mild-to-moderate long-term heat stress and more severe short-term heat stress in D. melanogaster. In cultivated HeLa cells a reduced TOP1 activity was observed in response to both cold and heat stress. The reduced TOP1 activity appeared dependent on one or more cellular pathways since the activity of purified TOP1 was unaffected by the utilized stress temperatures. We demonstrate successful quantitative measurement of TOP1 activity using an easily accessible chemiluminescence readout for REEAD pointing towards a sensor system suitable for point-of-care assessment of stress responses based on TOP1 as a biomarker.
Collapse
Affiliation(s)
- Trine Juul-Kristensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Josephine Geertsen Keller
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Kathrine Nygaard Borg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Noriko Y. Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Amalie Foldager
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Rasmus Ladegaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China;
- Centre for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | | | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| |
Collapse
|
4
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Earhart ML, Blanchard TS, Harman AA, Schulte PM. Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World? THE BIOLOGICAL BULLETIN 2022; 243:149-170. [PMID: 36548973 DOI: 10.1086/722115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractDetermining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change. There are relatively few studies investigating plasticity in response to these environmental stressors in combination; but the available data suggest that although fish have some capacity to adjust their phenotype and compensate for the negative effects of acute exposure to high temperature and hypoxia through acclimation or developmental plasticity, compensation is generally only partial. There is very little known about intergenerational and transgenerational effects, although studies on each stressor in isolation suggest that both positive and negative impacts may occur. Overall, the capacity for phenotypic plasticity in response to these two stressors is highly variable among species and extremely dependent on the specific context of the experiment, including the extent and timing of stressor exposure. This variability in the nature and extent of plasticity suggests that existing phenotypic plasticity is unlikely to adequately buffer fishes against the combined stressors of high temperature and hypoxia as our climate warms.
Collapse
|
6
|
Huang Y, Cai P, Su X, Zheng M, Chi W, Lin S, Huang Z, Qin S, Zeng S. Hsian-Tsao ( Mesona chinensis Benth.) Extract Improves the Thermal Tolerance of Drosophila melanogaster. Front Nutr 2022; 9:819319. [PMID: 35614980 PMCID: PMC9124935 DOI: 10.3389/fnut.2022.819319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Global warming has prompted scientific communities to consider how to alleviate thermal stress in humans and animals. The present study assessed the supplementation of hsian-tsao extract (HTE) on thermal stress in Drosophila melanogaster and preliminarily explicated its possible physiological and molecular mechanisms. Our results indicated that the lethal time for 50% of female flies fed on HTE was significantly longer than that of male flies at the same heat stress temperature. Under thermal stress, the survival time of females was remarkably increased in the HTE addition groups compared to the non-addition group. Thermal hardening by acute exposure to 36°C for 30 min (9:00 to 9:30 a.m.) every day could significantly prolong the longevity of females. Without thermal hardening, HTE increased the antioxidant capacity of females under heat stress, accompanied by an increment of catalase (CAT) activity, and the inhibition for hydroxyl radicals (OH⋅) and superoxide anions (⋅O2 -). Superoxide dismutase (SOD) activity and the inhibition for ⋅O2 - was significantly affected by thermal hardening in the non-HTE addition groups, and significant differences were shown in CAT and SOD activities, and the inhibition for ⋅O2 - among groups with thermal hardening. After heat exposure, heat shock protein 70 (Hsp70) was only up-regulated in the group with high levels of added HTE compared with the group without and this was similar in the thermal hardening group. It was concluded that the heat stress-relieving ability of HTE might be partly due to the enhancement of enzymatic activities of SOD and CAT, and the inhibition for OH⋅ and ⋅O2 -. However, the expression levels of Hsp70 were not well related to thermal tolerance or heat survival.
Collapse
Affiliation(s)
- Yan Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pumo Cai
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Xinxin Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjing Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Wenwen Chi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Stress Resistance Traits under Different Thermal Conditions in Drosophila subobscura from Two Altitudes. INSECTS 2022; 13:insects13020138. [PMID: 35206712 PMCID: PMC8875991 DOI: 10.3390/insects13020138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The global warming and rapid climate change that we are witnessing is generally influencing all of the living world, so all species must necessarily cope with these changes in order to survive. The ability to withstand environmental stress, especially during the last two decades, has been of great importance for any species’ long-term survival. For that purpose, we studied these abilities in the Drosophila subobscura species, which is known to be a good model organism for studying adaptations to environmental changes such as in temperature. We chose to investigate thermal stress responses in D. subobscura populations from two different altitudes, through four traits linked to stress tolerance: desiccation resistance, heat knock-down resistance, starvation resistance, and chill coma recovery time. Correlations between the populations’ origin and these traits were found, as well as the significant influence of the laboratory thermal conditions and sex on these traits showing that males and cold-adapted populations are expected to fare much worse in a fast-changing warming environment. Abstract Global warming and climate change are affecting many insect species in numerous ways. These species can develop diverse mechanisms as a response to variable environmental conditions. The rise in mean and extreme temperatures due to global warming and the importance of the population’s ability to adapt to temperature stress will further increase. In this study, we investigated thermal stress response, which is considered to be one of the crucial elements of population fitness and survival in fast-changing environments. The dynamics and variation of thermal stress resistance traits in D. subobscura flies originating from two natural populations sampled from different altitudes were analysed. Three different temperature regimes (25 °C, 19 °C, and 16 °C) were used for the F1 progeny from both localities to establish six experimental groups and investigate stress resistance traits: desiccation resistance, heat knock-down resistance, starvation resistance, and chill-coma recovery time. We detected that laboratory thermal conditions and population origin may have an effect on the analysed traits, and that sex also significantly influences stress resistance. Individuals from the lower altitude reared at higher temperatures show inferior resistance to thermal shock.
Collapse
|
8
|
Klepsatel P, Gáliková M. Developmental temperature affects thermal dependence of locomotor activity in Drosophila. J Therm Biol 2022; 103:103153. [PMID: 35027204 DOI: 10.1016/j.jtherbio.2021.103153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022]
Abstract
In their natural environments, animals have to cope with fluctuations in numerous abiotic and biotic factors, and phenotypic plasticity can facilitate survival under such variable conditions. However, organisms may differ substantially in the ability to adjust their phenotypes in response to external factors. Here, we investigated how developmental temperature affects the thermal performance curve for locomotor activity in adult fruit flies (Drosophila melanogaster). We examined the thermal dependence of spontaneous activity in individuals originating from two natural populations (from tropical (India) and temperate climate zone (Slovakia)) that developed at three different temperatures (19 °C, 25 °C, and 29 °C). Firstly, we found that developmental temperature has a significant impact on overall activity - flies that developed at high temperature (29 °C) were, on average, less active than individuals that developed at lower temperatures. Secondly, developmental acclimation had a population-specific effect on the thermal optimum for activity. Whereas the optimal temperature was not affected by thermal conditions experienced during development in flies from India, developmental temperature shifted thermal optimum in flies from Slovakia. Thirdly, high developmental temperature broadened performance breadth in flies from the Indian population but narrowed it in individuals from the Slovak population. Finally, we did not detect a consistent effect of acclimation temperature on circadian rhythms of spontaneous activity. Altogether, our results demonstrate that developmental temperature can alter different parameters (maximum performance, thermal optimum, performance breadth) of the thermal performance curve for spontaneous activity. Since adult fruit flies are highly vagile, this sensitivity of locomotion to developmental conditions may be an important factor affecting fitness in changing environments.
Collapse
Affiliation(s)
- Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia.
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| |
Collapse
|
9
|
Escribano-Álvarez P, Pertierra LR, Martínez B, Chown SL, Olalla-Tárraga MÁ. Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100023. [PMID: 36003273 PMCID: PMC9387465 DOI: 10.1016/j.cris.2021.100023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Metrics used in thermal tolerance studies in Collembola have diversified over time Cold tolerance has been assessed more often than heat tolerance Fewer data exist for tropical regions, especially for euedaphic and epedaphic organisms Thermal tolerances in Neanuridae are not as well-studied as in the other families
Global changes in soil surface temperatures are altering the abundances and distribution ranges of invertebrate species worldwide, including effects on soil microarthropods such as springtails (Collembola), which are vital for maintaining soil health and providing ecosystem services. Studies of thermal tolerance limits in soil invertebrates have the potential to provide information on demographic responses to climate change and guide assessments of possible impacts on the structure and functioning of ecosystems. Here, we review the state of knowledge of thermal tolerance limits in Collembola. Thermal tolerance metrics have diversified over time, which should be taken into account when conducting large-scale comparative studies. A temporal trend shows that the estimation of ‘Critical Thermal Limits’ (CTL) is becoming more common than investigations of ‘Supercooling Point’ (SCP), despite the latter being the most widely used metric. Indeed, most studies (66%) in Collembola have focused on cold tolerance; fewer have assessed heat tolerance. The majority of thermal tolerance data are from temperate and polar regions, with fewer assessments from tropical and subtropical latitudes. While the hemiedaphic life form represents the majority of records at low latitudes, euedaphic and epedaphic groups remain largely unsampled in these regions compared to the situation in temperate and high latitude regions, where sampling records show a more balanced distribution among the different life forms. Most CTL data are obtained during the warmest period of the year, whereas SCP and ‘Lethal Temperature’ (LT) show more variation in terms of the season when the data were collected. We conclude that more attention should be given to understudied zoogeographical regions across the tropics, as well as certain less-studied clades such as the family Neanuridae, to identify the role of thermal tolerance limits in the redistribution of species under changing climates.
Collapse
Affiliation(s)
- Pablo Escribano-Álvarez
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
- Corresponding author.
| | - Luis R. Pertierra
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| | - Brezo Martínez
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Miguel Á. Olalla-Tárraga
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| |
Collapse
|
10
|
Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila. Sci Rep 2020; 10:21681. [PMID: 33303846 PMCID: PMC7729904 DOI: 10.1038/s41598-020-78726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Organisms have evolved various physiological mechanisms to cope with unfavourable environmental conditions. The ability to tolerate non-optimal thermal conditions can be substantially improved by acclimation. In this study, we examined how an early-life acclimation to different temperatures (19 °C, 25 °C and 29 °C) influences thermal reaction norms for energy stores in Drosophila adults. Our results show that acclimation temperature has a significant effect on the amount of stored fat and glycogen (and their relative changes) and the optimal temperature for their accumulation. Individuals acclimated to 19 °C had, on average, more energy reserves than flies that were initially maintained at 25 °C or 29 °C. In addition, acclimation caused a shift in optimal temperature for energy stores towards acclimation temperature. We also detected significant population differences in this response. The effect of acclimation on the optimal temperature for energy stores was more pronounced in flies from the temperate climate zone (Slovakia) than in individuals from the tropical zone (India). Overall, we found that the acclimation effect was stronger after acclimation to low (19 °C) than to high (29 °C) temperature. The observed sensitivity of thermal reaction norms for energy reserves to acclimation temperature can have important consequences for surviving periods of food scarcity, especially at suboptimal temperatures.
Collapse
|
11
|
Pinek L, Mansour I, Lakovic M, Ryo M, Rillig MC. Rate of environmental change across scales in ecology. Biol Rev Camb Philos Soc 2020; 95:1798-1811. [PMID: 32761787 DOI: 10.1111/brv.12639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
The rate of change (RoC) of environmental drivers matters: biotic and abiotic components respond differently when faced with a fast or slow change in their environment. This phenomenon occurs across spatial scales and thus levels of ecological organization. We investigated the RoC of environmental drivers in the ecological literature and examined publication trends across ecological levels, including prevalent types of evidence and drivers. Research interest in environmental driver RoC has increased over time (particularly in the last decade), however, the amount of research and type of studies were not equally distributed across levels of organization and different subfields of ecology use temporal terminology (e.g. 'abrupt' and 'gradual') differently, making it difficult to compare studies. At the level of individual organisms, evidence indicates that responses and underlying mechanisms are different when environmental driver treatments are applied at different rates, thus we propose including a time dimension into reaction norms. There is much less experimental evidence at higher levels of ecological organization (i.e. population, community, ecosystem), although theoretical work at the population level indicates the importance of RoC for evolutionary responses. We identified very few studies at the community and ecosystem levels, although existing evidence indicates that driver RoC is important at these scales and potentially could be particularly important for some processes, such as community stability and cascade effects. We recommend shifting from a categorical (e.g. abrupt versus gradual) to a quantitative and continuous (e.g. °C/h) RoC framework and explicit reporting of RoC parameters, including magnitude, duration and start and end points to ease cross-scale synthesis and alleviate ambiguity. Understanding how driver RoC affects individuals, populations, communities and ecosystems, and furthermore how these effects can feed back between levels is critical to making improved predictions about ecological responses to global change drivers. The application of a unified quantitative RoC framework for ecological studies investigating environmental driver RoC will both allow cross-scale synthesis to be accomplished more easily and has the potential for the generation of novel hypotheses.
Collapse
Affiliation(s)
- Liliana Pinek
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - India Mansour
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Milica Lakovic
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Masahiro Ryo
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
12
|
Burton T, Lakka HK, Einum S. Acclimation capacity and rate change through life in the zooplankton Daphnia. Proc Biol Sci 2020; 287:20200189. [PMID: 32228409 PMCID: PMC7209067 DOI: 10.1098/rspb.2020.0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
When a change in the environment occurs, organisms can maintain an optimal phenotypic state via plastic, reversible changes to their phenotypes. These adjustments, when occurring within a generation, are described as the process of acclimation. While acclimation has been studied for more than half a century, global environmental change has stimulated renewed interest in quantifying variation in the rate and capacity with which this process occurs, particularly among ectothermic organisms. Yet, despite the likely ecological importance of acclimation capacity and rate, how these traits change throughout life among members of the same species is largely unstudied. Here we investigate these relationships by measuring the acute heat tolerance of the clonally reproducing zooplankter Daphnia magna of different size/age and acclimation status. The heat tolerance of individuals completely acclimated to relatively warm (28°C) or cool (17°C) temperatures diverged during development, indicating that older, larger individuals had a greater capacity to increase heat tolerance. However, when cool acclimated individuals were briefly exposed to the warm temperature (i.e. were 'heat-hardened'), it was younger, smaller animals with less capacity to acclimate that were able to do so more rapidly because they obtained or came closer to obtaining complete acclimation of heat tolerance. Our results illustrate that within a species, individuals can differ substantially in how rapidly and by how much they can respond to environmental change. We urge greater investigation of the intraspecific relationship between acclimation and development along with further consideration of the factors that might contribute to these enigmatic patterns of phenotypic variation.
Collapse
Affiliation(s)
- Tim Burton
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Hanna-Kaisa Lakka
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| |
Collapse
|
13
|
Affiliation(s)
- Tim Burton
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Hanna‐Kaisa Lakka
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Sigurd Einum
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
14
|
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. ACTA ACUST UNITED AC 2020; 223:223/3/jeb203448. [PMID: 32051174 DOI: 10.1242/jeb.203448] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we summarize the current state of knowledge of this important phenotype and provide new directions for research. As one of the fastest adaptive responses to temperature known, RCH allows ectotherms to cope with sudden cold snaps and to optimize their performance during diurnal cooling cycles. RCH and similar phenotypes have been observed across a diversity of ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against nonlethal cold injury by preserving essential functions following cold stress, such as locomotion, reproduction, and energy balance. The capacity for RCH varies across species and across genotypes of the same species, indicating that RCH can be shaped by selection and is likely favored in thermally variable environments. Mechanistically, RCH is distinct from other rapid stress responses in that it typically does not involve synthesis of new gene products; rather, the existing cellular machinery regulates RCH through post-translational signaling mechanisms. However, the protective mechanisms that enhance cold hardiness are largely unknown. We provide evidence that RCH can be induced by multiple triggers in addition to low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of environmental stressors may be a general feature of stress responses that requires further investigation.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - J D Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| |
Collapse
|
15
|
Critical Thermal Limits Do Not Vary between Wild-caught and Captive-bred Tadpoles of Agalychnis spurrelli (Anura: Hylidae). DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Captive-bred organisms are widely used in ecology, evolution and conservation research, especially in scenarios where natural populations are scarce or at risk of extinction. Yet, it is still unclear whether captivity may alter thermal tolerances, crucial traits to predict species resilience to global warming. Here, we study whether captive-bred tadpoles of the gliding treefrog (Agalychnis spurrelli) show different thermal tolerances than wild-caught individuals. Our results show that there are no differences between critical thermal limits (CTmax and CTmin) of captive-bred and wild-caught tadpoles exposed to three-day acclimatization at 20 °C. Therefore, we suggest that the use of captive-bred amphibians is valid and may be appropriate in experimental comparisons to thermal physiological studies of wild populations.
Collapse
|
16
|
Hildebrandt JP, Wiesenthal AA, Müller C. Phenotypic Plasticity in Animals Exposed to Osmotic Stress - Is it Always Adaptive? Bioessays 2018; 40:e1800069. [PMID: 30160800 DOI: 10.1002/bies.201800069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/03/2018] [Indexed: 01/03/2023]
Abstract
Hyperplasia and hypertrophy are elements of phenotypic plasticity adjusting organ size and function. Because they are costly, we assume that they are beneficial. In this review, the authors discuss examples of tissue and organ systems that respond with plastic changes to osmotic stress to raise awareness that we do not always have sufficient experimental evidence to conclude that such processes provide fitness advantages. Changes in hydranth architecture in the hydroid Cordylophora caspia or variations in size in the anal papillae of insect larvae upon changes in medium salinity may be adaptive or not. The restructuring of salt glands in ducklings upon salt-loading is an example of phenotypic plasticity which indeed seems beneficial. As the genomes of model species are recently sequenced and the animals are easy to rear, these species are suitable study objects to investigate the biological significance of phenotypic plasticity and to study potential epigenetic and other mechanisms underlying phenotypic changes.
Collapse
Affiliation(s)
- Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Amanda A Wiesenthal
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| |
Collapse
|
17
|
Everman ER, Freda PJ, Brown M, Schieferecke AJ, Ragland GJ, Morgan TJ. Ovary Development and Cold Tolerance of the Invasive Pest Drosophila suzukii (Matsumura) in the Central Plains of Kansas, United States. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1013-1023. [PMID: 29846535 DOI: 10.1093/ee/nvy074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 05/27/2023]
Abstract
Environmental challenges presented by temperature variation can be overcome through phenotypic plasticity in small invasive ectotherms. We tested the effect of thermal exposure to 21, 18, and 11°C throughout the whole life cycle of individuals, thermal exposure of adults reared at 25°C to 15 and 11°C for a 21-d period, and long (14:10 hr) and short (10:14 hr) photoperiod on ovary size and development in Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) cultured from a recently established population in Topeka, Kansas (United States). Examination of the response to temperature and photoperiod variation in this central plains population provides insight into the role of phenotypic plasticity in a climate that is warmer than regions in North America where D. suzukii was initially established. We found both low temperature and short photoperiod resulted in reduced ovary size and level of development. In particular, reduced ovary development was observed following exposure to 15°C, indicating that ovary development in females from the central plains population is more sensitive to lower temperature compared with populations examined from the northern United States and southern Canada. We also provide evidence that D. suzukii reared at 25°C are capable of short-term hardening when exposed to -6°C following 4°C acclimation, contrary to previous reports indicating flies reared at warm temperatures do not rapidly-cold harden. Our study highlights the central role of phenotypic plasticity in response to winter-like laboratory conditions and provides an important geographic comparison to previously published assessments of ovary development and short-term hardening survival response for D. suzukii collected in cooler climates.
Collapse
Affiliation(s)
- E R Everman
- Division of Biology, Kansas State University, Manhattan, KS
| | - P J Freda
- Department of Entomology, Kansas State University, Manhattan, KS
| | - M Brown
- Division of Biology, Kansas State University, Manhattan, KS
| | | | - G J Ragland
- Department of Integrative Biology, University of Colorado, Denver, CO
| | - T J Morgan
- Division of Biology, Kansas State University, Manhattan, KS
| |
Collapse
|
18
|
Kingsolver JG, Umbanhowar J. The analysis and interpretation of critical temperatures. ACTA ACUST UNITED AC 2018; 221:jeb.167858. [PMID: 29724777 DOI: 10.1242/jeb.167858] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
Critical temperatures are widely used to quantify the upper and lower thermal limits of organisms. But measured critical temperatures often vary with methodological details, leading to spirited discussions about the potential consequences of stress and acclimation during the experiments. We review a model based on the simple assumption that failure rate increases with increasing temperature, independent of previous temperature exposure, water loss or metabolism during the experiment. The model predicts that mean critical thermal maximal temperature (CTmax) increases non-linearly with starting temperature and ramping rate, a pattern frequently observed in empirical studies. We then develop a statistical model that estimates a failure rate function (the relationship between failure rate and current temperature) using maximum likelihood; the best model accounts for 58% of the variation in CTmax in an exemplary dataset for tsetse flies. We then extend the model to incorporate potential effects of stress and acclimation on the failure rate function; the results show how stress accumulation at low ramping rate may increase the failure rate and reduce observed values of CTmax We also applied the model to an acclimation experiment with hornworm larvae that used a single starting temperature and ramping rate; the analyses show that increasing acclimation temperature significantly reduced the slope of the failure rate function, increasing the temperature at which failure occurred. The model directly applies to critical thermal minima, and can utilize data from both ramping and constant-temperature assays. Our model provides a new approach to analyzing and interpreting critical temperatures.
Collapse
Affiliation(s)
- Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James Umbanhowar
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Noh S, Everman ER, Berger CM, Morgan TJ. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long- and short-term phenotypic plasticity. Ecol Evol 2017; 7:5248-5257. [PMID: 28770063 PMCID: PMC5528237 DOI: 10.1002/ece3.3112] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 01/18/2023] Open
Abstract
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short-term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill-coma recovery and cold stress survival) and their responses to developmental and short-term acclimation. Chill-coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short-term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade-off between basal cold tolerance and short-term acclimation during warmer months. For the longer-term developmental acclimation, a trade-off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | | | | | | |
Collapse
|
20
|
Vo P, Gridi-Papp M. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog ( Engystomops pustulosus ). J Therm Biol 2017; 66:49-55. [DOI: 10.1016/j.jtherbio.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 03/04/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
|
21
|
Schou MF, Mouridsen MB, Sørensen JG, Loeschcke V. Linear reaction norms of thermal limits in
Drosophila
: predictable plasticity in cold but not in heat tolerance. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12782] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mads Fristrup Schou
- Department of Bioscience Aarhus University Ny Munkegade 116 8000 Aarhus C Denmark
| | | | | | - Volker Loeschcke
- Department of Bioscience Aarhus University Ny Munkegade 116 8000 Aarhus C Denmark
| |
Collapse
|
22
|
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. Sci Rep 2016; 6:30975. [PMID: 27487917 PMCID: PMC4973280 DOI: 10.1038/srep30975] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023] Open
Abstract
Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates.
Collapse
|
23
|
Identification, genomic organization and expression profiles of four heat shock protein genes in the western flower thrips, Frankliniella occidentalis. J Therm Biol 2016; 57:110-8. [PMID: 27033046 DOI: 10.1016/j.jtherbio.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 11/21/2022]
Abstract
The western flower thrips, Frankliniella occidentalis, is an important invasive pest with a strong tolerance for extreme temperatures; however, the molecular mechanisms that regulate thermotolerance in this insect remain unclear. In this study, four heat shock protein genes were cloned from F. occidentalis and named Fohsp90, Fohsc701, Fohsc702 and Fohsp60. These four Hsps exhibited typical characteristics of heat shock proteins. Subcellular localization signals and phylogenetic analysis indicated that FoHsp90 and FoHsc701 localize to the cytosol, whereas FoHsc702 and FoHsp60 were located in the endoplasmic reticulum and mitochondria, respectively. Analysis of genomic sequences revealed the presence of introns in the four genes (three, four, seven, and five introns for Fohsp90, Fohsc701, Fohsc702 and Fohsp60, respectively). Both the number and position of introns in these four genes were quite different from analogous genes in other species. qRT-PCR indicated that the four Fohsps were detected in second-stage larvae, one-day-old pupae, and one-day-old adults, and mRNA expression levels were lowest in larvae and highest in pupae. Fohsc701 and Fohsc702 possessed similar expression patterns and were not induced by cold or heat stress. Expression of Fohsp60 was significantly elevated by heat, and Fohsp90 was rapidly up-regulated after exposure to both cold and heat stress. Exposure to -8°C had no effect on expression of the four Fohsps; however, expression of Fohsp90 and Fohsp60 was highest after a 2-h incubation at 39°C. Furthermore, cold and heat hardening led to significant up-regulation of the four Fohsps compared to their respective controls. Collectively, our results indicate that the four FoHsps contribute to insect development and also function in rapid cold or heat hardening; furthermore, FoHsp90 and FoHsp60 contribute to thermotolerance in F. occidentalis.
Collapse
|
24
|
Haap T, Schwarz S, Köhler HR. Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:112-119. [PMID: 26655655 DOI: 10.1016/j.aquatox.2015.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 05/29/2023]
Abstract
The association between the insensitivity of adapted ecotypes of invertebrates to environmental stress, such as heavy metal pollution, and overall low Hsp levels characterizing these organisms has been attracting attention in various studies. The present study seeks to induce and examine this phenomenon in Daphnia magna by multigenerational acclimation to cadmium in a controlled laboratory setting. In this experiment, interclonal variation was examined: two clones of D. magna that have previously been characterized to diverge regarding their cadmium resistance and levels of the stress protein Hsp70, were continuously exposed to a sublethal concentration of Cd over four generations to study the effects of acclimation on Hsp70, metallothionein (MT), reproduction and cross-tolerance to heat stress. The two clones differed in all the measured parameters in a characteristic way, clone T displaying Cd and heat resistance, lower Hsp70 levels and offspring numbers on the one hand and higher MT expression on the other hand, clone S the opposite for all these parameters. We observed only slight acclimation-induced changes in constitutive Hsp70 levels and reproductive output. The differences in MT expression between clones as well as between acclimated organisms and controls give evidence for MT accounting for the higher Cd tolerance of clone T. Overall high Hsp70 levels of clone S did not confer cross tolerance to heat stress, contrary to common expectations. Our results suggest a trade-off between the efforts to limit the proteotoxic symptoms of Cd toxicity by Hsp70 induction and those to sequester and detoxify Cd by means of MT.
Collapse
Affiliation(s)
- Timo Haap
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany.
| | - Simon Schwarz
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| |
Collapse
|
25
|
Kim HG, Margolies D, Park Y. The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle, Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:47-55. [PMID: 25813190 DOI: 10.1016/j.jinsphys.2015.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
To survive in variable or fluctuating temperature, organisms should show appropriate behavioral and physiological responses which must be mediated through properly attuned thermal sensory mechanisms. Transient receptor potential channels (TRPs) are a family of cation channels a number of which, called thermo-TRPs, are known to function as thermosensors. We investigated the potential role of thermo-TPRs that have been previously identified in the fruit fly, Drosophila melanogaster, in thermotaxis and thermal acclimation in the red flour beetle, Tribolium castaneum. Phylogenetic analysis of the trp genes showed generally one-to-one orthology between those in D. melanogaster and in T. castaneum, although there are putative gene-losses in two TRP subfamilies of D. melanogaster. With RNA interference (RNAi) of T. castaneum thermo-TRP candidates painless, pyrexia and trpA1, we measured thermal avoidance behavior. RNAi of trpA1 resulted in reduced avoidance of high temperatures, 39 and 42 °C. We also measured the effects of RNAi on heat-induced knockout and death under a short exposure to high temperature (1min at 52 °C) either with or without a 10-min acclimation period at 42 °C. Relatively short exposure to high temperature was enough to induce high temperature thermal acclimation. RNAi of trpA1 led to faster knockout at 52 °C. RNAi of painless showed lower recovery rates from heat-induced knockout after thermal acclimation, and RNAi of pyrexia showed lower long-term survivorship without thermal acclimation. Therefore, we concluded that trpA1 is important in high temperature sensing and also in enhanced tolerance to high-temperature induced knockout; painless plays a role in rapid acclimation to high temperature; and pyrexia functions in protecting beetles from acute heat stress without acclimation.
Collapse
Affiliation(s)
- Hong Geun Kim
- 123 Waters Hall, Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - David Margolies
- 123 Waters Hall, Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| | - Yoonseong Park
- 123 Waters Hall, Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
26
|
Colinet H, Overgaard J, Com E, Sørensen JG. Proteomic profiling of thermal acclimation in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:352-365. [PMID: 23416132 DOI: 10.1016/j.ibmb.2013.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/11/2013] [Accepted: 01/31/2013] [Indexed: 06/01/2023]
Abstract
Thermal acclimation drastically alters thermotolerance of ectotherms, but the mechanisms determining this plastic response are not fully understood. The present study investigates the proteomic response (2D-DIGE) of adult Drosophila melanogaster acclimated at 11, 25 or 31 °C. As expected 11 °C-acclimation improved cold tolerance and 31 °C-acclimation improved heat tolerance. We hypothesized that the marked organismal responses to acclimation could be detected at the proteomic level assuming that changes in the abundance of specific proteins are linked to the physiological changes underlying the phenotypic response. The 31 °C-acclimated flies displayed a particular divergent proteomic profile where molecular chaperones made up a large number of the proteins that were modulated during heat acclimation. Many other proteins showed significant modulation during acclimation including proteins involved in iron ion and cell redox homeostasis, carbohydrate and energy metabolism, chromatin remodeling and translation, and contractile machinery. Interestingly the changes in protein abundance were often unrelated to transcriptional activity of the genes coding for the proteins, except for the most strongly expressed proteins (e.g. Hsp70). The 11 °C-acclimation evoked weak proteomic response despite the marked effect on the organismal phenotype. Thus the acquired cold tolerance observed here may involve regulatory process such as posttranslational regulation rather than de novo protein synthesis.
Collapse
Affiliation(s)
- Hervé Colinet
- Earth and Life Institute ELI, Biodiversity Research Centre BDIV, Catholic University of Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
27
|
Arias LN, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density. J Exp Biol 2012; 215:2220-5. [DOI: 10.1242/jeb.069831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E–16F6; 30A3–34C2; 49C–50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.
Collapse
Affiliation(s)
- Leticia N. Arias
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Pablo Sambucetti
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Alejandra C. Scannapieco
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Building 1540, DK-8000 Aarhus C, Denmark
| | - Fabian M. Norry
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| |
Collapse
|
28
|
Allen JL, Clusella-Trullas S, Chown SL. The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:669-678. [PMID: 22342317 DOI: 10.1016/j.jinsphys.2012.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
Critical thermal limits provide an indication of the range of temperatures across which organisms may survive, and the extent of the lability of these limits offers insights into the likely impacts of changing thermal environments on such survival. However, investigations of these limits may be affected by the circumstances under which trials are undertaken. Only a few studies have examined these effects, and typically not for beetles. This group has also not been considered in the context of the time courses of acclimation and its reversal, both of which are important for estimating the responses of species to transient temperature changes. Here we therefore examine the effects of rate of temperature change on critical thermal maxima (CT(max)) and minima (CT(min)), as well as the time course of the acclimation response and its reversal in two beetle species, Tenebrio molitor and Cyrtobagous salviniae. Increasing rates of temperature change had opposite effects on T. molitor and C. salviniae. In T. molitor, faster rates of change reduced both CT(max) (c. 2°C) and CT(min) (c. 3°C), while in C. salviniae faster rates of change increased both CT(max) (c. 6°C) and CT(min) (c. 4°C). CT(max) in T. molitor showed little response to acclimation, while the response to acclimation of CT(min) was most pronounced following exposure to 35°C (from 25°C) and was complete within 24 h. The time course of acclimation of CT(max) in C. salviniae was 2 days when exposed to 36°C (from c. 26°C), while that of CT(min) was less than 3 days when exposed to 18°C. In T. molitor, the time course of reacclimation to 25°C after treatments at 15°C and 35°C at 75% RH was longer than the time course of acclimation, and varied from 3-6 days for CT(max) and 6 days for CT(min). In C. salviniae, little change in CT(max) and CT(min) (<0.5°C) took place in all treatments suggesting that reacclimation may only occur after the 7 day period used in this study. These results indicate that both T. molitor and C. salviniae may be restricted in their ability to respond to transient temperature changes at short-time scales, and instead may have to rely on behavioral adjustments to avoid deleterious effects at high temperatures.
Collapse
Affiliation(s)
- Jessica L Allen
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | | |
Collapse
|
29
|
Weldon CW, Terblanche JS, Chown SL. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL. Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 2011; 214:3713-25. [DOI: 10.1242/jeb.061283] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The acute thermal tolerance of ectotherms has been measured in a variety of ways; these include assays where organisms are shifted abruptly to stressful temperatures and assays where organisms experience temperatures that are ramped more slowly to stressful levels. Ramping assays are thought to be more relevant to natural conditions where sudden abrupt shifts are unlikely to occur often, but it has been argued that thermal limits established under ramping conditions are underestimates of true thermal limits because stresses due to starvation and/or desiccation can arise under ramping. These confounding effects might also impact the variance and heritability of thermal tolerance. We argue here that ramping assays are useful in capturing aspects of ecological relevance even though there is potential for confounding effects of other stresses that can also influence thermal limits in nature. Moreover, we show that the levels of desiccation and starvation experienced by ectotherms in ramping assays will often be minor unless the assays involve small animals and last for many hours. Empirical data illustrate that the combined effects of food and humidity on thermal limits under ramping and sudden shifts to stressful conditions are unpredictable; in Drosophila melanogaster the presence of food decreased rather than increased thermal limits, whereas in Ceratitis capitata they had little impact. The literature provides examples where thermal limits are increased under ramping presumably because of the potential for physiological changes leading to acclimation. It is unclear whether heritabilities and population differentiation will necessarily be lower under ramping because of confounding effects. Although it is important to clearly define experimental methods, particularly when undertaking comparative assessments, and to understand potential confounding effects, thermotolerance assays based on ramping remain an important tool for understanding and predicting species responses to environmental change. An important area for further development is to identify the impact of rates of temperature change under field and laboratory conditions.
Collapse
Affiliation(s)
- John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Ary A. Hoffmann
- The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Katherine A. Mitchell
- The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Lea Rako
- The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Peter C. le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Steven L. Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
31
|
Thermal tolerance of Frankliniella occidentalis: Effects of temperature, exposure time, and gender. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Colinet H, Hoffmann AA. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses inDrosophila melanogaster. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01898.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Chidawanyika F, Terblanche JS. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). JOURNAL OF INSECT PHYSIOLOGY 2011; 57:108-117. [PMID: 20933517 DOI: 10.1016/j.jinsphys.2010.09.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 05/30/2023]
Abstract
In order to preserve key activities or improve survival, insects facing variable and unfavourable thermal environments may employ physiological adjustments on a daily basis. Here, we investigate the survival of laboratory-reared adult Cydia pomonella at high or low temperatures and their responses to pre-treatments at sub-lethal temperatures over short time-scales. We also determined critical thermal limits (CTLs) of activity of C. pomonella and the effect of different rates of cooling or heating on CTLs to complement the survival assays. Temperature and duration of exposure significantly affected adult C. pomonella survival with more extreme temperatures and/or longer durations proving to be more lethal. Lethal temperatures, explored between -20 °C to -5 °C and 32 °C to 47 °C over 0.5, 1, 2, 3 and 4h exposures, for 50% of the population of adult C. pomonella were -12 °C for 2h and 44 °C for 2h. Investigation of rapid thermal responses (i.e. hardening) found limited low temperature responses but more pronounced high temperature responses. For example, C. pomonella pre-treated for 2h at 5 °C improved survival at -9 °C for 2h from 50% to 90% (p<0.001). At high temperatures, pre-treatment at 37 °C for 1h markedly improved survival at 43°C for 2h from 20% to 90% (p<0.0001). We also examined cross-tolerance of thermal stressors. Here, low temperature pre-treatments did not improve high temperature survival, while high temperature pre-treatment (37°C for 1h) significantly improved low temperature survival (-9 °C for 2h). Inducible cross-tolerance implicates a heat shock protein response. Critical thermal minima (CT min) were not significantly affected by cooling at rates of 0.06, 0.12 and 0.25 °C min(-1) (CT min range: 0.3-1.3 °C). By contrast, critical thermal maxima (CTmax) were significantly affected by heating at these rates and ranged from 42.5 to 44.9 °C. In sum, these results suggest pronounced plasticity of acute high temperature tolerance in adult C. pomonella, but limited acute low temperature responses. We discuss these results in the context of local agroecosystem microclimate recordings. These responses are significant to pest control programmes presently underway and have implications for understanding the evolution of thermal tolerance in these and other insects.
Collapse
Affiliation(s)
- Frank Chidawanyika
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | |
Collapse
|
34
|
Svetec N, Werzner A, Wilches R, Pavlidis P, Alvarez-Castro JM, Broman KW, Metzler D, Stephan W. Identification of X-linked quantitative trait loci affecting cold tolerance in Drosophila melanogaster and fine mapping by selective sweep analysis. Mol Ecol 2010; 20:530-44. [PMID: 21199023 DOI: 10.1111/j.1365-294x.2010.04951.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5-14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified.
Collapse
Affiliation(s)
- Nicolas Svetec
- Section of Evolutionary Biology, Biocenter, University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fischer K, Dierks A, Franke K, Geister TL, Liszka M, Winter S, Pflicke C. Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS One 2010; 5:e15284. [PMID: 21187968 PMCID: PMC3004918 DOI: 10.1371/journal.pone.0015284] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022] Open
Abstract
Background The ability to withstand thermal stress is considered to be of crucial importance for individual fitness and species' survival. Thus, organisms need to employ effective mechanisms to ensure survival under stressful thermal conditions, among which phenotypic plasticity is considered a particularly quick and effective one. Methodology/Principal Findings In a series of experiments we here investigate phenotypic adjustment in temperature stress resistance following environmental manipulations in the butterfly Bicyclus anynana. Cooler compared to warmer acclimation temperatures generally increased cold but decreased heat stress resistance and vice versa. In contrast, short-time hardening responses revealed more complex patterns, with, e.g., cold stress resistance being highest at intermediate hardening temperatures. Adult food stress had a negative effect on heat but not on cold stress resistance. Additionally, larval feeding treatment showed interactive effects with adult feeding for heat but not for cold stress resistance, indicating that nitrogenous larval resources may set an upper limit to performance under heat stress. In contrast to expectations, cold resistance slightly increased during the first eight days of adult life. Light cycle had marginal effects on temperature stress resistance only, with cold resistance tending to be higher during daytime and thus active periods. Conclusions/Significance Our results highlight that temperature-induced plasticity provides an effective tool to quickly and strongly modulate temperature stress resistance, and that such responses are readily reversible. However, resistance traits are not only affected by ambient temperature, but also by, e.g., food availability and age, making their measurement challenging. The latter effects are largely underexplored and deserve more future attention. Owing to their magnitude, plastic responses in thermal tolerance should be incorporated into models trying to forecast effects of global change on extant biodiversity.
Collapse
Affiliation(s)
- Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Muir T, Costanzo J, Lee R. Brief Chilling to Subzero Temperature Increases Cold Hardiness in the Hatchling Painted Turtle (Chrysemys picta). Physiol Biochem Zool 2010; 83:174-81. [DOI: 10.1086/605416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Manjunatha HB, Rajesh RK, Aparna HS. Silkworm thermal biology: a review of heat shock response, heat shock proteins and heat acclimation in the domesticated silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:204. [PMID: 21265618 PMCID: PMC3029153 DOI: 10.1673/031.010.20401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/09/2010] [Indexed: 05/30/2023]
Abstract
Heat shock proteins (HSPs) are known to play ecological and evolutionary roles in this postgenomic era. Recent research suggests that HSPs are implicated in cardiovascular biology and disease development, proliferation and regulation of cancer cells, cell death via apoptosis, and several other key cellular functions. These activities have generated great interest amongst cell and molecular biologists, and these biologists are keen to unravel other hitherto unknown potential functions of this group of proteins. Consequently, the biological significance of HSPs has led to cloning and characterization of genes encoding HSPs in many organisms including the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). However, most of the past investigations in B. mori were confined to expression of HSPs in tissues and cell lines, whereas information on their specific functional roles in biological, physiological, and molecular processes is scarce. Naturally occurring or domesticated polyvoltines (known to be the tropical race) are more resistant to high temperatures and diseases than bi- or univoltines (temperate races). The mechanism of ecological or evolutionary modification of HSPs during the course of domestication of B. mori - particularly in relation to thermotolerance in geographically distinct races/strains - is still unclear. In addition, the heat shock response, thermal acclimation, and hardening have not been studied extensively in B. mori compared to other organisms. Towards this, recent investigations on differential expression of HSPs at various stages of development, considering the concept of the whole organism, open ample scope to evaluate their biological and commercial importance in B. mori which has not been addressed in any of the representative organisms studied so far. Comparatively, heat shock response among different silkworm races/strains of poly-, bi-, and univoltines varies significantly and thermotolerance increases as the larval development proceeds. Hence, this being the first review in this area, an attempt has been made to collate all available information on the heat shock response, HSPs expression, associated genes, amino acid sequences, and acquired/unacquired thermotolerance. The aim is to present this as a valuable resource for addressing the gap in knowledge and understanding evolutionary significance of HSPs between domesticated (B. mori) and non-domesticated insects. It is believed that the information presented here will also help researchers/breeders to design appropriate strategies for developing novel strains for the tropics.
Collapse
Affiliation(s)
- H B Manjunatha
- Department of Sericulture University of Mysore, Mysore, Karnataka, India.
| | | | | |
Collapse
|
38
|
Bahrndorff S, Mariën J, Loeschcke V, Ellers J. Dynamics of heat-induced thermal stress resistance and hsp70 expression in the springtail,Orchesella cincta. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01541.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
MacMillan HA, Guglielmo CG, Sinclair BJ. Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:243-249. [PMID: 19111745 DOI: 10.1016/j.jinsphys.2008.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 05/27/2023]
Abstract
Insect cold tolerance varies at both the population and species levels. Carbohydrate cryoprotectants and membrane remodeling are two main mechanisms hypothesised to increase chilling tolerance in Drosophila melanogaster, as part of both long-term (i.e., evolutionary) change and rapid cold-hardening (RCH). We used cold-selected lines of D. melanogaster with and without a pre-exposure that induces RCH to test three hypotheses: (1) that increased cold tolerance would be associated with increased free glucose; (2) that increased cold tolerance would be associated with desaturation of membrane phospholipid fatty acids; and (3) that increased cold tolerance would be associated with a change in phospholipid head group composition. We used colourimetric assays to measure free glucose and a combination of thin layer chromatography-flame ionization detection and gas chromatography to measure membrane composition. We observed a consistent decrease in free glucose with RCH, and no relationship between free glucose and basal cold tolerance. Also, phospholipid head group ratios and fatty acid composition showed no change following an RCH treatment. Thus, we conclude that changes in free glucose and membrane composition are unlikely to be significant determinants of variation in cold tolerance of D. melanogaster.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON N6A 5B7, Canada.
| | | | | |
Collapse
|
40
|
Bowler K, Terblanche JS. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev Camb Philos Soc 2008; 83:339-55. [PMID: 18979595 DOI: 10.1111/j.1469-185x.2008.00046.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.
Collapse
Affiliation(s)
- Ken Bowler
- Department of Biological and Biomedical Sciences, University of Durham, Durham City, DH1 3LE, UK
| | | |
Collapse
|
41
|
Chown SL, Sørensen JG, Sinclair BJ. Physiological variation and phenotypic plasticity: a response to`Plasticity in arthropod cryotypes' by Hawes and Bale. J Exp Biol 2008; 211:3353-7. [DOI: 10.1242/jeb.019349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In a recent publication, Hawes and Bale provide an extended discussion of phenotypic plasticity in the context of low temperature responses of animals. They argue that phenotypic plasticity may be partitioned phylogenetically at several levels and go on to explore these levels, and cold hardiness strategies that they term cryotypes, which in their view constitute cryotypic plasticity. Here we argue that this attempt to partition plasticity is misleading, that the term `genotypic plasticity' is potentially highly confusing and a misnomer for physiological variance, and that the term`superplasticity' should not be used. We also show that a definition of strategies as cryotypes is not useful and that the hypothesis about the relationship between evolutionary derivation and extent of plasticity in freeze-avoiding vs freeze-tolerant species is not supported by current evidence.
Collapse
Affiliation(s)
- S. L. Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - J. G. Sørensen
- Aarhus Centre for Environmental Stress Research, Ecology and Genetics,Department of Biological Sciences, University of Aarhus, Ny Munkegade,Building 1540, 8000 Aarhus C, Denmark
| | - B. J. Sinclair
- Department of Biology, The University of Western Ontario, London, ON, Canada,N6A 5B7
| |
Collapse
|
42
|
Larsen PF, Nielsen EE, Koed A, Thomsen DS, Olsvik PA, Loeschcke V. Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.). BMC Genet 2008; 9:12. [PMID: 18230136 PMCID: PMC2254441 DOI: 10.1186/1471-2156-9-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 01/29/2008] [Indexed: 11/24/2022] Open
Abstract
Background Winter migration of immature brown trout (Salmo trutta) into freshwater rivers has been hypothesized to result from physiologically stressful combinations of high salinity and low temperature in the sea. Results We sampled brown trout from two Danish populations entering different saline conditions and quantified expression of the hsp70 and Na/K-ATPases α 1b genes following acclimation to freshwater and full-strength seawater at 2°C and 10°C. An interaction effect of low temperature and high salinity on expression of both hsp70 and Na/K-ATPase α 1b was found in trout from the river entering high saline conditions, while a temperature independent up-regulation of both genes in full-strength seawater was found for trout entering marine conditions with lower salinities. Conclusion Overall our results support the hypothesis that physiologically stressful conditions in the sea drive sea-run brown trout into freshwater rivers in winter. However, our results also demonstrate intra-specific differences in expression of important stress and osmoregulative genes most likely reflecting adaptive differences between trout populations on a regional scale, thus strongly suggesting local adaptations driven by the local marine environment.
Collapse
Affiliation(s)
- Peter F Larsen
- Technical University of Denmark, Danish Institute for Fisheries Research, Department of Inland Fisheries, DK-8600 Silkeborg, Denmark.
| | | | | | | | | | | |
Collapse
|
43
|
GVOŽDÍK LUMÍR, PUKY MIKLÓS, ŠUGERKOVÁ MONIKA. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2006.00752.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Pappas C, Hyde D, Bowler K, Loeschcke V, Sørensen JG. Post-eclosion decline in 'knock-down' thermal resistance and reduced effect of heat hardening in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:355-9. [PMID: 17208027 DOI: 10.1016/j.cbpa.2006.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/14/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
The dependency of knock-down resistance on age, from 0 to 12 days post eclosion, was studied in two lines of Drosophila melanogaster, one selected for knock-down resistance and one unselected control. Additionally, the inducible Hsp70 expression level was assessed at maintenance temperature and after a heat hardening treatment (1 h at 35 degrees C) at the same ages. Knock-down resistance decreased roughly linearly with age in both control and knock-down selected lines and in both sexes regardless of maintenance temperature. Hsp70 expression, however, fell only from day 0 to day 3 and was thereafter changed little. Acclimation did not result in detectable difference between lines. The effect of hardening was only significant for control flies. This suggests that the increased knock-down resistance of the selected line was reached at the expense of hardening ability.
Collapse
Affiliation(s)
- Cassandra Pappas
- Department of Biological and Biomedical Sciences, University of Durham, Durham City, DH1 3LE, UK
| | | | | | | | | |
Collapse
|
45
|
Malmendal A, Overgaard J, Bundy JG, Sørensen JG, Nielsen NC, Loeschcke V, Holmstrup M. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. Am J Physiol Regul Integr Comp Physiol 2006; 291:R205-12. [PMID: 16469831 DOI: 10.1152/ajpregu.00867.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frequent exposure of terrestrial insects to temperature variation has led to the evolution of protective biochemical and physiological mechanisms, such as the heat shock response, which markedly increases the tolerance to heat stress. Insight into such mechanisms has, so far, mainly relied on selective studies of specific compounds or characteristics or studies at the genomic or proteomic levels. In the present study, we have used untargeted NMR metabolomic profiling to examine the biological response to heat stress in Drosophila melanogaster. The metabolite profile was analyzed during recovery after exposure to different thermal stress treatments and compared with untreated controls. Both moderate and severe heat stress gave clear effects on the metabolite profiles. The profiles clearly demonstrated that hardening by moderate heat stress led to a faster reestablishment of metabolite homeostasis after subsequent heat stress. Several metabolites were identified as responsive to heat stress and could be related to known physiological and biochemical responses. The time course of the recovery of metabolite homeostasis mirrored general changes in gene expression, showing that recovery follows the same temporal pattern at these two biological levels. Finally, our data show that heat hardening permits a quicker return to homeostasis, rather than a reduction of the acute metabolic perturbation and that the reestablishment of homeostasis is important for obtaining maximal heat-hardening effect. The results display the power of NMR metabolomic profiling for characterization of the instantaneous physiological condition, enabling direct visualization of the perturbation of and return to homeostasis.
Collapse
Affiliation(s)
- Anders Malmendal
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center, and Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Chown SL, Terblanche JS. Physiological Diversity in Insects: Ecological and Evolutionary Contexts. ADVANCES IN INSECT PHYSIOLOGY 2006; 33:50-152. [PMID: 19212462 PMCID: PMC2638997 DOI: 10.1016/s0065-2806(06)33002-0] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | | |
Collapse
|
48
|
|