1
|
Jia T, Zhang W, Cao L, Zhu W, Fan L. Comparative analysis of energy homeostasis regulation at different altitudes in Hengduan Mountain of red-backed vole, Eothenomys miletus, during high-fat diet acclimation: examining gut microbial and physiological interactions. Front Microbiol 2024; 15:1434346. [PMID: 39050639 PMCID: PMC11266106 DOI: 10.3389/fmicb.2024.1434346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The study aimed to explore the similarities and differences in gut microorganisms and their functions in regulating body mass in Eothenomys miletus across different altitudes in the Hengduan Mountains when exposed to a high-fat diet. Eothenomys miletus specimens were gathered from Dali (DL) and Xianggelila (XGLL) in Yunnan Province, China, and categorized into control, high-fat (1 week of high-fat diet), and re-feeding groups (1 week of high-fat diet followed by 2 weeks of standard food). The analysis utilized 16S rRNA sequencing to assess the diversity and structure of intestinal microbial communities in E. miletus. The investigation focused on the impact of high-fat diet consumption and different altitudes on gut microbial diversity, structure, and physiological markers. Results revealed that a high-fat diet influenced the beta diversity of gut microorganisms in E. miletus, leading to variations in microbial community structure between the two regions with different altitudes. High-fat food significantly affected body mass, white adipose tissue mass, triglycerides, and leptin levels, but not food intake. Specific intestinal microorganisms were observed in the high-fat groups, aiding in food digestion and being enriched in particular flora. In particular, microbial genera like Lactobacillus and Hylemonella were enriched in the high-fat group of DL. The enriched microbiota in the control group was associated with plant polysaccharide and cellulose decomposition. Following a high-fat diet, gut microbiota adapted to support lipid metabolism and energy supply, while upon re-feeding, the focus shifted back to cellulose digestion. These findings suggested that alterations in gut microbial composition, alongside physiological markers, play a vital role in adaptation of E. miletus to the diverse habitats of the Hengduan Mountains at varying altitudes.
Collapse
Affiliation(s)
- Ting Jia
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals–Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wei Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals–Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Lijuan Cao
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals–Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals–Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Yunnan Normal University, Kunming, China
| | - Lixian Fan
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals–Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
2
|
Zhang W, Jia T, Zhang H, Zhu W. Effects of high-fiber food on gut microbiology and energy metabolism in Eothenomys miletus at different altitudes. Front Microbiol 2023; 14:1264109. [PMID: 37727288 PMCID: PMC10505965 DOI: 10.3389/fmicb.2023.1264109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Intestinal microorganisms assist the host in digesting complex and difficultly decomposed foods; expand the host's dietary ecological niche. In order to investigate the effect of high-fiber food on intestinal microorganisms of Eothenomys miletus at different altitudes, exploring the regional differences of intestinal microorganisms and their roles in body mass regulation, we collected E. miletus from Dali (DL) and Xianggelila (XGLL), which were divided into control group, high-fiber group fed with high-fiber diet for 7 days, and refeeding group fed with standard diet for 14 days after high-fiber diet. Using 16S rRNA gene sequencing technology combined with physiological methods, we analyzed the gut microbial diversity, abundance, community structure and related physiological indicators of each group, and explored the effects of high-fiber foods and regions on the diversity, structure of gut microorganisms and physiological indicators. The results showed that high-fiber food affected the food intake and metabolic rate of E. miletus, which also showed regional differences. The intestinal microorganisms of E. miletus obtained energy through the enrichment of fiber degrading bacteria under the condition of high-fiber food, while producing short-chain fatty acids, which participated in processes such as energy metabolism or immune regulation. Moreover, it also affected the colonization of intestinal microorganisms. High-fiber food promoted the enrichment of probiotics in the intestinal microbiota of E. miletus, but pathogenic bacteria also appeared. Therefore, the changes in the composition and diversity of gut microbiota in E. miletus provided important guarantees for their adaptation to high fiber food environments in winter.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
3
|
Chen HB, Jia T, Wang ZK, Zhu WL. Effects of exogenous melatonin on body mass and thermogenesis in red-backed vole (Eothenomys miletus) between Kunming and Dali regions. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:310-324. [PMID: 36650741 DOI: 10.1002/jez.2680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Melatonin (MEL) is an indole hormone synthesized and secreted by the pineal gland at night, which is involved in the regulation of body mass and thermogenesis in small mammals. To test the effects of exogenous MEL on body mass and thermogenic ability in two different red-backed vole (Eothenomys miletus) populations from two different regions (Kunming [KM] and Dali [DL]) with different annual variation in climatic variables, such as temperature, sunshine and rainfall. we traced the changes of energy balance in E. miletus from KM and DL, which were placed at 25 ± 1°C with photoperiod of 12 L:12 D, intraperitoneal injection of MEL was performed daily for 28 days. The results showed that body mass and food intake were significantly decreased, while resting metabolic rate (RMR) and nonshivering thermogenesis (NST) were significantly increased after MEL injection; Contents of total protein, mitochondrial protein, the activities of cytochrome C oxidase (COX) and α-glycerophosphate oxidase (α-PGO) in liver and brown adipose tissue (BAT) were enhanced; the activity of thyroxin 5'-deiodinase (T4 5'-DII) and uncoupling protein 1 (UCP1) in BAT were also increased. Serum leptin, triiodothyronine (T3 ) levels and T3 /T4 ratio were significantly increased, thyroxine (T4 ) levels was significantly decreased. Moreover, body mass and food intake in E. miletus from KM were higher than those from DL, but RMR and NST were lower than those from DL. Changes of body mass, food intake and thermogenic activity of KM were higher than those of DL when exposed to injection of MEL, indicating that E. miletus in KM were more sensitive to MEL. Furthermore, MEL was involved in the regulation of body mass and thermogenesis in E. miletus between KM and DL.
Collapse
Affiliation(s)
- Hui-Bao Chen
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zheng-Kun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wan-Long Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Kunming, China.,Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
4
|
Chen H, Zhang H, Jia T, Wang Z, Zhu W. Roles of leptin on energy balance and thermoregulation in Eothenomys miletus. Front Physiol 2022; 13:1054107. [PMID: 36589465 PMCID: PMC9800980 DOI: 10.3389/fphys.2022.1054107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Leptin is a hormone mainly synthesized and secreted by white adipose tissue (WAT), which regulates various physiological processes. To investigate the role of leptin in energy balance and thermoregulation in Eothenomys miletus, voles were randomly divided into leptin-injected and PBS-injected groups and placed at 25°C ± 1°C with a photoperiod of 12 L:12 D. They were housed under laboratory conditions for 28 days and compared in terms of body mass, food intake, water intake, core body temperature, interscapular skin temperature, resting metabolic rate (RMR), nonshivering thermogenesis (NST), liver and brown adipose tissue (BAT) thermogenic activity, and serum hormone levels. The results showed that leptin injection decreased body mass, body fat, food intake, and water intake. But it had no significant effect on carcass protein. Leptin injection increased core body temperature, interscapular skin temperature, resting metabolic rate, non-shivering thermogenesis, mitochondrial protein content and cytochrome C oxidase (COX) activity in liver and brown adipose tissue, uncoupling protein 1 (UCP1) content and thyroxin 5'-deiodinase (T45'-DII) activity in brown adipose tissue significantly. Serum leptin, triiodothyronine (T3), thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) concentrations were also increased significantly. Correlation analysis showed that serum leptin levels were positively correlated with core body temperature, body mass loss, uncoupling protein 1 content, thyroxin 5'-deiodinase activity, nonshivering thermogenesis, and negatively correlated with food intake; thyroxin 5'-deiodinase and triiodothyronine levels were positively correlated, suggesting that thyroxin 5'-deiodinase may play an important role in leptin-induced thermogenesis in brown adipose tissue. In conclusion, our study shows that exogenous leptin is involved in the regulation of energy metabolism and thermoregulation in E. miletus, and thyroid hormone may play an important role in the process of leptin regulating energy balance in E. miletus.
Collapse
Affiliation(s)
- Huibao Chen
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
5
|
Roles of Ghrelin and Leptin in Body Mass Regulation under Food Restriction Based on the AMPK Pathway in the Red-Backed Vole, Eothenomys miletus, from Kunming and Dali Regions. Animals (Basel) 2022; 12:ani12233333. [PMID: 36496854 PMCID: PMC9739273 DOI: 10.3390/ani12233333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The phenotype plasticity of animals' physiological characteristics is an important survival strategy to cope with environmental changes, especially the change in climate factors. Small mammals that inhabit seasonally changing environments often face the stress of food shortage in winter. This study measured and compared the thermogenic characteristics and related physiological indicators in the adenosine-5'-monophosphate-activated protein kinase (AMPK) pathway in Eothenomys miletus between Kunming (KM, n = 18) and Dali (DL, n = 18) under food restriction and refeeding. The results showed that food restriction and the region have significant effects on body mass, the resting metabolic rate (RMR), hypothalamic neuropeptide gene expression, ghrelin levels in the stomach and serum, serum leptin level and the activity of AMPK, and malonyl CoA and carnitine palmitoyltransferase 1 (CPT-1) activity. Food restriction reduced the body mass, the gene expression of neuropeptide proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcription peptide (CART), and leptin level. However, the ghrelin concentration and AMPK activity increased. After refeeding, there was no difference in these physiological indexes between the food restriction and control groups. Moreover, the physiological indicators also showed regional differences, such as the body mass, POMC and CART gene expression, ghrelin concentration in the stomach and serum, and AMPK activity in DL changed more significantly. All these results showed that food restriction reduces energy metabolism in E. miletus. After refeeding, most of the relevant physiological indicators can return to the control level, indicating that E. miletus has strong phenotypic plasticity. Ghrelin, leptin, and the AMPK pathway play an important role in the energy metabolism of E. miletus under food restriction. Moreover, regional differences in physiological indicators under food restriction may be related to the different temperatures or food resources in different regions.
Collapse
|
6
|
Infestation and distribution of mites on the Yunnan red-backed vole (Eothenomys miletus) in Yunnan Province of southwest China between 2001 and 2015. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Costs of exploratory behavior: the energy trade-off hypothesis and the allocation model tested under caloric restriction. Sci Rep 2020; 10:4156. [PMID: 32139739 PMCID: PMC7058060 DOI: 10.1038/s41598-020-61102-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
In order to maintain the energy balance, animals often exhibit several physiological adjustments when subjected to a decrease in resource availability. Specifically, some rodents show increases in behavioral activity in response to food restriction; a response regarded as a paradox because it would imply an investment in locomotor activity, despite the lack of trophic resources. Here, we aim to explore the possible existence of trade-offs between metabolic variables and behavioral responses when rodents are faced to stochastic deprivation of food and caloric restriction. Adult BALB/c mice were acclimatized for four weeks to four food treatments: two caloric regimens (ad libitum and 60% restriction) and two periodicities (continuous and stochastic). In these mice, we analyzed: exploratory behavior and home-cage behavior, basal metabolic rate, citrate synthase and cytochrome oxidase c enzyme activity (in liver and skeletal muscle), body temperature and non-shivering thermogenesis. Our results support the model of allocation, which indicates commitments between metabolic rates and exploratory behavior, in a caloric restricted environment. Specifically, we identify the role of thermogenesis as a pivotal budget item, modulating the reallocation of energy between behavior and basal metabolic rate. We conclude that brown adipose tissue and liver play a key role in the development of paradoxical responses when facing decreased dietary availability.
Collapse
|
8
|
Zhang HJ, Wang ZK, Zhu WL. Metabolomics of Eothenomys miletus from five Hengduan Mountains locations in summer. Sci Rep 2019; 9:14924. [PMID: 31624370 PMCID: PMC6797714 DOI: 10.1038/s41598-019-51493-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/02/2019] [Indexed: 02/01/2023] Open
Abstract
Climatic characteristics of Hengduan Mountains region were diverse, and Eothenomys miletus was a native species throughout this region. To investigate adaptive strategies of E. miletus to environmental factors in different locations in this region, five locations were selected, including Deqin (DQ), Xianggelila (XGLL), Lijiang (LJ), Jianchuan (JC) and Ailaoshan (ALS). Then, body mass, visceral organ masses, and serum and liver metabolomes of E. miletus from each location were examined. The results showed that body mass was significantly different among these five sites. Liver mass was lower in ALS than in other locations. PLS-DA analysis, metabolite tree maps and heat maps of serum and liver metabolites showed that samples from DQ and XGLL clustered together, as did the samples from LJ, JC and ALS. Serum concentrations of lipid and amino acid metabolites, concentrations of TCA cycle intermediates, lipid metabolites and amino acid metabolites in livers from DQ and XGLL were higher than those from other three regions. However, the concentrations of glycolytic metabolites were lower in DQ and XGLL. All these results indicated that E. miletus adapts to changes in environmental temperature and altitude of this region by adjusting body mass and serum and liver metabolite concentrations.
Collapse
Affiliation(s)
- Hai-Ji Zhang
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zheng-Kun Wang
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China.,Yunnan Normal University, Engineering Research Center of Sustinable Development and Utilization of Biomass Energy Ministry of Education, Kunming, 650500, People's Republic of China.,Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, 650500, People's Republic of China
| | - Wan-Long Zhu
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China. .,Yunnan Normal University, Engineering Research Center of Sustinable Development and Utilization of Biomass Energy Ministry of Education, Kunming, 650500, People's Republic of China. .,Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
9
|
Zhu W, Hou D, Sun S, Wang Z. White Adipose Tissue Undergoes ‘browning’ in Tree Shrews (Tupaia belangeri) During Cold Acclimation. MAMMAL STUDY 2017. [DOI: 10.3106/041.042.0405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Shuran Sun
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science of Yunnan Normal University Kunming 650500, China
| | | |
Collapse
|
10
|
Genoud M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev Camb Philos Soc 2017; 93:404-438. [PMID: 28752629 DOI: 10.1111/brv.12350] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.
Collapse
Affiliation(s)
- Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,Division of Conservation Biology, Institute of Ecology and Evolution, Department of Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| | - Robert D Martin
- Integrative Research Center, The Field Museum, Chicago, IL, 60605-2496, U.S.A.,Institute of Evolutionary Medicine, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| |
Collapse
|
11
|
Zhang L, Yang F, Wang ZK, Zhu WL. Role of thermal physiology and bioenergetics on adaptation in tree shrew (Tupaia belangeri): the experiment test. Sci Rep 2017; 7:41352. [PMID: 28145515 PMCID: PMC5286505 DOI: 10.1038/srep41352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Ambient conditions, as temperature and photoperiod, play a key role in animals’ physiology and behaviors. To test the hypothesis that the maximum thermal physiological and bioenergetics tolerances are induced by extreme environments in Tupaia belangeri. We integrated the acclimatized and acclimated data in several physiological, hormonal, and biochemical markers of thermogenic capacity and bioenergetics in T. belangeri. Results showed that T. belangeri increased body mass, thermogenesis capacity, protein contents and cytochrome c oxidase (COX) activity of liver and brown adipose tissue in winter-like environments, which indicated that temperature was the primary signal for T. belangeri to regulate several physiological capacities. The associated photoperiod signal also elevated the physiological capacities. The regulations of critical physiological traits play a primary role in meeting the survival challenges of winter-like condition in T. belangeri. Together, to cope with cold, leptin may play a potential role in thermogenesis and body mass regulation, as this hormonal signal is associated with other hormones. The strategies of thermal physiology and bioenergetics differs between typical Palearctic species and the local species. However, the maximum thermal physiology and bioenergetic tolerance maybe is an important strategy to cope with winter-like condition of T. belangeri.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zheng-Kun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Wan-Long Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
12
|
Zhu WL, Zhang H, Cheng JL, Cai JH, Meng LH. Limits to Sustainable Energy Intake during Lactation inEothenomys miletus: Effects of Fur-Shaving and Litter Size. MAMMAL STUDY 2016. [DOI: 10.3106/041.041.0406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Peng PY, Guo XG, Song WY, Hou P, Zou YJ, Fan R, He XS. Communities of gamasid mites on Eothenomys miletus in southwest China. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Peng PY, Guo XG, Song WY, Hou P, Zou YJ, Fan R, He XS. Analysis of ectoparasites (chigger mites, gamasid mites, fleas and sucking lice) of the Yunnan red-backed vole (Eothenomys miletus) sampled throughout its range in southwest China. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:403-415. [PMID: 26345365 DOI: 10.1111/mve.12134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 06/05/2023]
Abstract
The Yunnan red-backed vole Eothenomys miletus (Rodentia: Cricetidae) is an endemic rodent species and reservoir host of zoonoses in southwest China. Based on a large host sample (2463 voles collected from 39 localities between 2001 and 2013), a general analysis of four categories of ectoparasite (fleas, sucking lice, chigger mites and gamasid mites) on E. miletus across its entire range of distribution was made. This analysis identified a total of 71 895 ectoparasites belonging to 320 species (30 species of flea, 9 of sucking louse, 106 of gamasid mite and 175 of chigger mite) with a high prevalence (87%), mean abundance (29.19) and mean intensity (33.69). Of the 18 vector species of zoonoses found on E. miletus, the flea Ctenophthalmus quadratus (Siphonaptera: Hystrichopsyllidae) and chigger mite Leptotrombidium scutellare (Trombidiformes: Trombiculidae) were the dominant species; these are the main vectors of zoonoses in China. All of the dominant parasite species showed an aggregated distribution pattern. Male voles harboured more species of parasite than females. Chigger mites represented the most abundant species group on voles and their prevalence was positively correlated with mean abundance (r = 0.73; P < 0.05). As a single rodent species, E. miletus has a high potential to harbour abundant ectoparasites with high species diversity and high rates of infestation. The sex of the vole affects ectoparasite infestation.
Collapse
Affiliation(s)
- P-Y Peng
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention), Dali, Yunnan, China
| | - X-G Guo
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention), Dali, Yunnan, China
| | - W-Y Song
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention), Dali, Yunnan, China
| | - P Hou
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention), Dali, Yunnan, China
| | - Y-J Zou
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention), Dali, Yunnan, China
| | - R Fan
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention), Dali, Yunnan, China
| | - X-S He
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention), Dali, Yunnan, China
| |
Collapse
|
15
|
Ectoparasitic chigger mites on large oriental vole (Eothenomys miletus) across southwest, China. Parasitol Res 2015; 115:623-32. [DOI: 10.1007/s00436-015-4780-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
16
|
Wan-long Z, Zheng-kun W. Seasonal changes in body mass, serum leptin levels and hypothalamic neuropeptide gene expression in male Eothenomys olitor. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:83-9. [PMID: 25700741 DOI: 10.1016/j.cbpa.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
The present study examined seasonal changes in body mass and energy metabolism in the Chaotung vole (Eothenomys olitor) and the physiological mechanisms underpinning these changes. Seasonal changes in the following parameters were measured in male E. olitor, body mass, food intake, thermogenesis, enzyme activity, masses of tissues and organs, hormone concentrations and expression of hypothalamic arcuate nucleus energy balance genes including neuropeptide Y (NPY), agouti-related protein (AgRP), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART). Body mass was constant over the year, but the masses of tissues and organs differed significantly between seasons. There were significant changes in body fat mass and serum leptin levels over the four seasons. E. olitor showed significant seasonal changes in food intake and thermogenesis, uncoupling protein 1 (UCP1) content, enzyme activity, and serum tri-iodothyronine (T3) and thyroxine (T4) levels. Moreover, mRNA expression in the hypothalamus showed significant seasonal changes. All of our results suggested that E. olitor had constant body mass over the year, which was inconsistent with the prediction of the 'set-point' hypothesis. However, body fat mass and serum leptin levels were significantly different among the four seasons, providing support for the 'set-point' hypothesis. The changes in leptin, NPY, AgRP, POMC, and CART mRNA levels may play a role in the regulation of energy intake in E. olitor. Furthermore, the role of leptin and hypothalamic neuropeptide gene in the regulation of energy metabolism and body mass may be different in animals that are acclimated to different seasons.
Collapse
Affiliation(s)
- Zhu Wan-long
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Wang Zheng-kun
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science of Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
17
|
Zhu WL, Mu Y, Zhang H, Gao WR, Zhang L, Wang ZK. Effects of random food deprivation on body mass, behavior and serum leptin levels inEothenomys miletus(Mammalia: Rodentia: Cricetidae). ACTA ACUST UNITED AC 2014. [DOI: 10.1080/11250003.2014.902511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Zhu WL, Yang G, Zhang L, Wang ZK. Effects of photoperiod and temperature on the body mass, thermogenesis, and serum leptin levels of Apodemus draco (Rodentia: Muridae) in the Hengduan Mountain region, China. Zool Stud 2013. [DOI: 10.1186/1810-522x-52-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri): The roles of photoperiod and cold. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Zhang L, Zhu W, Wang Z. Role of photoperiod on hormone concentrations and adaptive capacity in tree shrews, Tupaia belangeri. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:253-9. [PMID: 22955104 DOI: 10.1016/j.cbpa.2012.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 01/23/2023]
Abstract
Environmental factors, such as photoperiod and temperature, play an important role in the regulation of an animal's physiology and behavior. In the present study, we examined the effects of short photoperiod (SD, 8L:16D) on body mass as well as on several physiological, hormonal, and biochemical measures indicative of thermogenic capacity, to test our hypothesis that short photoperiod stimulates increases thermogenic capacity and energy intake in tree shrews. At the end, these tree shrews (SD) had a significant higher body mass, energy intake, cytochrome C oxidase (COX) activity and uncoupling protein-1 (UCP1) content, serum tri-iodothyronine (T(3)) and thyroxine (T(4)) compared to LD (16L:8D) tree shrews. However, there were no significant differences in serum leptin and melatonin between the two groups. Together, these data suggest tree shrews employ a strategy of maximizing body growth and increasing energy intake in response to cues associated with short photoperiod.
Collapse
Affiliation(s)
- Lin Zhang
- School of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China.
| | | | | |
Collapse
|
21
|
Zhu WL, Huang CM, Zhang LIN, Cai JH, Wang ZK. Changes of energy metabolism, thermogenesis and body mass in the tree shrew (Tupaia belangeri chinensisTupaiidae, Scandebtia) during cold exposure. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.650227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Wan-long Z, Jin-hong C, Xiao L, Zheng-kun W. Adaptive characters of energy metabolism, thermogenesis and body mass in Eothenomys miletus during cold exposure and rewarming. ANIM BIOL 2012. [DOI: 10.1163/157075611x618200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Environmental cues play important roles in the regulation of an animal’s physiology and behavior. The purpose of the present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake and thermogenic capacity, associated with changes in serum leptin levels inEothenomys miletus. We found thatE. miletusincreased resting metabolic rate (RMR) and energy intake and decreased body mass when exposed to cold while it showed a significant increase in body mass after rewarming. The increase in body mass after rewarming was associated with the higher energy intake compared with the control. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) increased in the cold and reversed after rewarming. Serum leptin levels decreased in the cold while increased after rewarming, associated with the opposite changes in energy intake. Further, serum leptin levels were positively correlated with body mass and body fat mass. Together, these data supported our hypothesis that ambient temperature was a cue to induce changes in body mass and metabolism. Serum leptin, as a starvation signal in the cold and satiety signal in rewarming, was involved in the processes of thermogenesis and body mass regulation inE. miletus.
Collapse
Affiliation(s)
- Zhu Wan-long
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| | - Cai Jin-hong
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| | - Lian Xiao
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| | - Wang Zheng-kun
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| |
Collapse
|
23
|
Wan-long Z, Sheng-chang Y, Lin Z, Zheng-kun W. Seasonal variations of body mass, thermogenesis and digestive tract morphology in Apodemus chevrieri in Hengduan mountain region. ANIM BIOL 2012. [DOI: 10.1163/157075612x650140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Seasonal changes in an animal’s morphology, physiology, and behavior are considered to be an adaptive strategy for survival and reproductive success. We hypothesize that Apodemus chevrieri will change their thermogenesis seasonally and serum leptin will change with body mass or body fat mass. Seasonal variations in body mass (BM), basal metabolic rate (BMR), nonshivering thermogenesis (NST), digestive tract morphology, serum leptin and uncoupling protein 1 (UCP1) were measured in wild-trapped A. chevrieri in Hengduan mountain region. The results showed that the body weight of A. chevrieri was lowest in winter and highest in summer. Decreased BM in the winter was accompanied by increased energy intake and enhanced NST and UCP1 as well as by decreased body fat mass, adjusted digestive tract morphology and reduced levels of circulating leptin. Further, serum leptin were positively correlated with body weight and body fat mass, and negatively correlated with energy intake and UCP1 contents. These data suggest that wild A. chevrieri do not depend on a decrease in BM, but instead increase their thermogenic capacity to cope with cold stress. Leptin may be involved in the seasonal regulation in energy balance and thermogenesis in field A. chevrieri.
Collapse
Affiliation(s)
- Zhu Wan-long
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Yang Sheng-chang
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Zhang Lin
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Wang Zheng-kun
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
24
|
Zhu WL, Jia T, Cai JH, Xiao L, Wang ZK. The effect of cold-acclimation on energy strategies of Apodemus draco in Hengduan Mountain region. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2011.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Zhu WL, Cai JH, Xiao L, Wang ZK. Effects of photoperiod on energy intake, thermogenesis and body mass in Eothenomys miletus in Hengduan Mountain region. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Variations in thermal physiology and energetics of the tree shrew (Tupaia belangeri) in response to cold acclimation. J Comp Physiol B 2011; 182:167-76. [DOI: 10.1007/s00360-011-0606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
27
|
Thermogenesis, energy intake and serum leptin in Apodemus chevrieri in Hengduan Mountains region during cold acclimation. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|