1
|
Zhan L, He J, Meng S, Guo Z, Chen Y, Storey KB, Zhang J, Yu D. Mitochondrial Protein-Coding Gene Expression in the Lizard Sphenomorphus incognitus (Squamata:Scincidae) Responding to Different Temperature Stresses. Animals (Basel) 2024; 14:1671. [PMID: 38891717 PMCID: PMC11170996 DOI: 10.3390/ani14111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In the context of global warming, the frequency of severe weather occurrences, such as unexpected cold spells and heat waves, will grow, as well as the intensity of these natural disasters. Lizards, as a large group of reptiles, are ectothermic. Their body temperatures are predominantly regulated by their environment and temperature variations directly impact their behavior and physiological activities. Frequent cold periods and heat waves can affect their biochemistry and physiology, and often their ability to maintain their body temperature. Mitochondria, as the center of energy metabolism, are crucial for maintaining body temperature, regulating metabolic rate, and preventing cellular oxidative damage. Here, we used RT-qPCR technology to investigate the expression patterns and their differences for the 13 mitochondrial PCGs in Sphenomorphus incognitus (Squamata:Scincidae), also known as the brown forest skink, under extreme temperature stress at 4 °C, 8 °C, 34 °C, and 38 °C for 24 h, compared to the control group at 25 °C. In southern China, for lizards, 4 °C is close to lethal, and 8 °C induces hibernation, while 34/38 °C is considered hot and environmentally realistic. Results showed that at a low temperature of 4 °C for 24 h, transcript levels of ATP8, ND1, ND4, COI, and ND4L significantly decreased, to values of 0.52 ± 0.08, 0.65 ± 0.04, 0.68 ± 0.10, 0.28 ± 0.02, and 0.35 ± 0.02, respectively, compared with controls. By contrast, transcript levels of COIII exhibited a significant increase, with a mean value of 1.86 ± 0.21. However, exposure to 8 °C for 24 h did not lead to an increase in transcript levels. Indeed, transcript levels of ATP6, ATP8, ND1, ND3, and ND4 were significantly downregulated, to 0.48 ± 0.11, 0.68 ± 0.07, 0.41 ± 0.08, 0.54 ± 0.10, and 0.52 ± 0.07, respectively, as compared with controls. Exposure to a hot environment of 34 °C for 24 h led to an increase in transcript levels of COI, COII, COIII, ND3, ND5, CYTB, and ATP6, with values that were 3.3 ± 0.24, 2.0 ± 0.2, 2.70 ± 1.06, 1.57 ± 0,08, 1.47 ± 0.13, 1.39 ± 0.56, and 1.86 ± 0.12, respectively, over controls. By contrast, ND4L exhibited a significant decrease (to 0.31 ± 0.01) compared with controls. When exposed to 38 °C, the transcript levels of the 13 PCGs significantly increased, ranging from a 2.04 ± 0.23 increase in ND1 to a 6.30 ± 0.96 rise in ND6. Under two different levels of cold and heat stress, the expression patterns of mitochondrial genes in S. incognitus vary, possibly associated with different strategies employed by this species in response to low and high temperatures, allowing for rapid compensatory adjustments in mitochondrial electron transport chain proteins in response to temperature changes. Furthermore, this underscores once again the significant role of mitochondrial function in determining thermal plasticity in reptiles.
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Siqi Meng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Zhiqiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Yuxin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Yu S, Nie Y, Wang Z, Zhang L, Liu R, Liu Y, Zhang H, Zhu W, Zheng M, Diao J. Glyphosate-based herbicide (GBH) challenged thermoregulation in lizards (Eremias argus), compensatory warming could mitigate this effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165287. [PMID: 37419359 DOI: 10.1016/j.scitotenv.2023.165287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Chemical pollution and global warming are two major threats to reptiles, and these two factors can interact with each other. Glyphosate have attracted worldwide attention due to their ubiquitous occurrence, yet their impact on reptiles remains unknown. We designed a crossover experiment with different external GBH exposures (control/GBH) x different environmental temperatures (current climate treatment/warmer climate treatment) over 60 days to simulate environmental exposure in the Mongolian Racerunner lizard (Eremias argus). Preferred body temperature and active body temperature data were collected to calculate the accuracy of thermoregulation, while liver detoxification metabolic enzymes, oxidative stress system function, and the non-targeted metabolome of the brain tissue were assessed. Warmer-treated lizards adjusted their physiological levels and behavioral strategies in response to increased ambient temperatures and maintained body temperature homeostasis at moderate thermal perturbations. GBH-treated lizards suffered from oxidative damage to the brain tissue and abnormal histidine metabolism, thus their thermoregulatory accuracy reduced. Interestingly, at elevated ambient temperatures, GBH treatment did not affect on their thermoregulatory, possibly through several temperature-dependent detoxification mechanisms. Importantly, this data suggested that the subtle toxicological effects of GBH may threaten increasingly thermoregulation behavior of E. argus with species-wide repercussions, as climate change and exposure time extension.
Collapse
Affiliation(s)
- Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), Beijing 100125, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Mingqi Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
3
|
Pacheco-Fuentes H, Ton R, Griffith SC. Short- and long-term consequences of heat exposure on mitochondrial metabolism in zebra finches (Taeniopygia castanotis). Oecologia 2023; 201:637-648. [PMID: 36894790 PMCID: PMC10038956 DOI: 10.1007/s00442-023-05344-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Understanding the consequences of heat exposure on mitochondrial function is crucial as mitochondria lie at the core of metabolic processes, also affecting population dynamics. In adults, mitochondrial metabolism varies with temperature but can also depend on thermal conditions experienced during development. We exposed zebra finches to two alternative heat treatments during early development: "constant", maintained birds at ambient 35 °C from parental pair formation to fledglings' independence, while "periodic" heated broods at 40 °C, 6 h daily at nestling stage. Two years later, we acclimated birds from both experiments at 25 °C for 21 days, before exposing them to artificial heat (40 °C, 5 h daily for 10 days). After both conditions, we measured red blood cells' mitochondrial metabolism using a high-resolution respirometer. We found significantly decreased mitochondrial metabolism for Routine, Oxidative Phosphorylation (OxPhos) and Electron Transport System maximum capacity (ETS) after the heat treatments. In addition, the birds exposed to "constant" heat in early life showed lower oxygen consumption at the Proton Leak (Leak) stage after the heat treatment as adults. Females showed higher mitochondrial respiration for Routine, ETS and Leak independent of the treatments, while this pattern was reversed for OxPhos coupling efficiency (OxCE). Our results show that short-term acclimation involved reduced mitochondrial respiration, and that the reaction of adult birds to heat depends on the intensity, pattern and duration of temperature conditions experienced at early-life stages. Our study provides insight into the complexity underlying variation in mitochondrial metabolism and raises questions on the adaptive value of long-lasting physiological adjustments triggered by the early-life thermal environment.
Collapse
Affiliation(s)
| | - Riccardo Ton
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Shi S, Shao D, Yang L, Liang Q, Han W, Xue Q, Qu L, Leng L, Li Y, Zhao X, Dong P, Walugembe M, Kayang BB, Muhairwa AP, Zhou H, Tong H. Whole Genome Analyses Reveal Novel Genes Associated with Chicken Adaptation to Tropical and Frigid Environments. J Adv Res 2022; 47:13-25. [PMID: 35907630 PMCID: PMC10173185 DOI: 10.1016/j.jare.2022.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Investigating the genetic footprints of historical temperature selection can get insights to the local adaptation and feasible influences of climate change on long-term population dynamics. OBJECT Chicken is a significative species to study genetic adaptation on account of its similar domestication track related to human activity with the most diversified varieties. Yet, few studies have demonstrated the genetic signatures of its adaptation to naturally tropical and frigid environments. METHOD Here, we generated whole genome resequencing of 119 domesticated chickens in China including the following breeds which are in order of breeding environmental temperature from more tropical to more frigid: Wenchang chicken (WCC), green-shell chicken (GSC), Tibetan chicken (TBC), and Lindian chicken (LDC). RESULTS Our results showed WCC branched off earlier than LDC with an evident genetic admixture between WCC and LDC, suggesting their closer genetic relationship. Further comparative genomic analyses solute carrier family 33 member 1 (SLC33A1) and thyroid stimulating hormone receptor (TSHR) genes exhibited stronger signatures for positive selection in the genome of the more tropical WCC. Furthermore, genotype data from about 3,000 African local ecotypes confirmed that allele frequencies of single nucleotide polymorphisms (SNPs) in these 2 genes appeared strongly associated with tropical environment adaptation. In addition, the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) gene exhibited a strong signature for positive selection in the LDC genome, and SNPs with marked allele frequency differences indicated a significant relationship with frigid environment adaptation. CONCLUSION Our findings partially clarify how selection footprints from environmental temperature stress can lead to advantageous genomic adaptions to tropical and frigid environments in poultry and provide a valuable resource for selective breeding of chickens.
Collapse
Affiliation(s)
- Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Lingyun Yang
- Novogene Bioinformatics Institute, Beijing 10089, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing 10089, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Qian Xue
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Liang Qu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Li Leng
- College of Animal Science and technology, Northeast Agricultural University, Harbin, Heilongjiang, 150038, China
| | - Yishu Li
- Tropical Crop Germplasm Research Institute, Haikou, Hainan, 571101, China
| | - Xiaogang Zhao
- Agriculture and Animal Husbandry Rural and Science and Technology Bureau, Xiangcheng County, Ganzi Tibetan Autonomous Prefecture, Sichuan, 626000, China
| | - Ping Dong
- Agriculture and Animal Husbandry Rural and Science and Technology Bureau, Xiangcheng County, Ganzi Tibetan Autonomous Prefecture, Sichuan, 626000, China
| | - Muhammed Walugembe
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | - Boniface B Kayang
- Department of Animal Science, University of Ghana, Legon, Accra 233, Ghana
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Huaijun Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
5
|
Hewitt L, Small A. Welfare of Farmed Crocodilians: Identification of Potential Animal-Based Measures Using Elicitation of Expert Opinion. Animals (Basel) 2021; 11:ani11123450. [PMID: 34944227 PMCID: PMC8697985 DOI: 10.3390/ani11123450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary This study focuses on an elicitation of expert opinion to identify a toolbox of animal-based measures that can be used to assess the welfare of farmed crocodilians. This is the initial step towards identifying an animal-based assessment protocol that could be used to support the international outcome-based standard developed by the crocodilian farming industry. Potential measures were identified and aligned with the four animal welfare principles and twelve criteria developed by Welfare Quality®, focusing primarily on practical measures that could be used for monitoring farm processes or during external verification activities. The proposed measures were presented to a panel made up of animal welfare specialists (farmers, veterinarians and scientists) for judgment and scoring. Twenty-eight experts scored the proposed measures for validity (that being the relevancy to the welfare criterion and usefulness as a measure) and feasibility (that being how easy it is to observe and assess, for example, during an on-farm animal welfare assessment or routine monitoring). Future studies, involving the preliminary testing of the measures on a commercial crocodile farm, are planned to confirm validity and establish the reliability of the identified measures. Abstract Animal-based measures are the measure of choice in animal welfare assessment protocols as they can often be applied completely independently to the housing or production system employed. Although there has been a small body of work on potential animal-based measures for farmed crocodilians, they have not been studied in the context of an animal welfare assessment protocol. Potential animal-based measures that could be used to reflect the welfare state of farmed crocodilians were identified and aligned with the Welfare Quality® principles of good housing, good health, good feeding and appropriate behaviour. A consultation process with a panel of experts was used to evaluate and score the potential measures in terms of validity and feasibility. This resulted in a toolbox of measures being identified for further development and integration into animal welfare assessment on the farm. Animal-based measures related to ‘good feeding’ and ‘good health’ received the highest scores for validity and feasibility by the experts. There was less agreement on the animal-based measures that could be used to reflect ‘appropriate behaviour’. Where no animal-based measures were deemed to reliably reflect a welfare criterion nor be useful as a measure on the farm, additional measures of resources or management were suggested as alternatives. Future work in this area should focus on the reliability of the proposed measures and involve further evaluation of their validity and feasibility as they relate to different species of crocodilian and farming system.
Collapse
Affiliation(s)
- Leisha Hewitt
- Roseworthy Campus, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
- Correspondence:
| | - Alison Small
- CSIRO Agriculture and Food, Armidale, NSW 2350, Australia;
| |
Collapse
|
6
|
Clyde-Brockway CE, Ferreira CR, Flaherty EA, Paladino FV. Lipid profiling suggests species specificity and minimal seasonal variation in Pacific Green and Hawksbill Turtle plasma. PLoS One 2021; 16:e0253916. [PMID: 34280208 PMCID: PMC8289036 DOI: 10.1371/journal.pone.0253916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.
Collapse
Affiliation(s)
- Chelsea E. Clyde-Brockway
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Christina R. Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States of America
| | - Elizabeth A. Flaherty
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
| | - Frank V. Paladino
- Department of Biology, Purdue University-Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
7
|
Ton R, Stier A, Cooper CE, Griffith SC. Effects of Heat Waves During Post-natal Development on Mitochondrial and Whole Body Physiology: An Experimental Study in Zebra Finches. Front Physiol 2021; 12:661670. [PMID: 33986695 PMCID: PMC8110927 DOI: 10.3389/fphys.2021.661670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Human-induced climate change is increasing the frequency, duration, and intensity of heat waves and exposure to these extreme temperatures impacts individual physiology and performance (e.g., metabolism, water balance, and growth). These traits may be susceptible to thermal conditions experienced during embryonic development, but experiments focusing on post-natal development are scant. Documented effects of heat waves on whole-body metabolism may reflect changes in mitochondrial function, but most studies do not measure physiological traits at both the cellular and whole organism levels. Here, we exposed nests of zebra finches to experimentally simulated heat waves for 18 days after hatching and measured body mass, growth rate, whole-body metabolic rate, body temperature, wet thermal conductance, evaporative water loss, and relative water economy of chicks at three ages corresponding to ectothermic (day 5), poikilothermic (day 12), and homoeothermic (day 50) stages. Additionally, we measured mitochondrial bioenergetics of blood cells 80 days post-hatch. While early-life exposure to heat wave conditions did not impact whole body metabolic and hygric physiology, body temperature was lower for birds from heated compared with control nests at both 12 and 50 days of age. There was also an effect of nest heating at the cellular level, with mitochondria from heated birds having higher endogenous and proton-leak related respiration, although oxidative phosphorylation, maximum respiratory capacity, and coupling efficiency were not impacted. Our results suggest that early-life exposure to high ambient temperature induces programming effects on cellular-level and thermal physiology that may not be apparent for whole-animal metabolism.
Collapse
Affiliation(s)
- Riccardo Ton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christine E. Cooper
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Simon C. Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
8
|
Burraco P, Orizaola G, Monaghan P, Metcalfe NB. Climate change and ageing in ectotherms. GLOBAL CHANGE BIOLOGY 2020; 26:5371-5381. [PMID: 32835446 DOI: 10.1111/gcb.15305] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Human activity is changing climatic conditions at an unprecedented rate. The impact of these changes may be especially acute on ectotherms since they have limited capacities to use metabolic heat to maintain their body temperature. An increase in temperature is likely to increase the growth rate of ectothermic animals, and may also induce thermal stress via increased exposure to heat waves. Fast growth and thermal stress are metabolically demanding, and both factors can increase oxidative damage to essential biomolecules, accelerating the rate of ageing. Here, we explore the potential impact of global warming on ectotherm ageing through its effects on reactive oxygen species production, oxidative damage, and telomere shortening, at the individual and intergenerational levels. Most evidence derives primarily from vertebrates, although the concepts are broadly applicable to invertebrates. We also discuss candidate mechanisms that could buffer ectotherms from the potentially negative consequences of climate change on ageing. Finally, we suggest some potential applications of the study of ageing mechanisms for the implementation of conservation actions. We find a clear need for more ecological, biogeographical, and evolutionary studies on the impact of global climate change on patterns of ageing rates in wild populations of ectotherms facing warming conditions. Understanding the impact of warming on animal life histories, and on ageing in particular, needs to be incorporated into the design of measures to preserve biodiversity to improve their effectiveness.
Collapse
Affiliation(s)
- Pablo Burraco
- Institute of Biodiversity, Animal Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Principado Asturias), Mieres-Asturias, Spain
- Zoology Unit, Department of Organisms and Systems Biology, University of Oviedo, Oviedo-Asturias, Spain
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
López-Luna MA, González-Soberano J, González-Jáuregui M, Escobedo-Galván AH, Suárez-Domínguez EA, Rangel-Mendoza JA, Morales-Mávil JE. Nest-site selection and nest size influence the incubation temperature of Morelet's crocodiles. J Therm Biol 2020; 91:102624. [PMID: 32716873 DOI: 10.1016/j.jtherbio.2020.102624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/25/2022]
Abstract
In oviparous tetrapods, the nesting-site selection by females is related to the habitat characteristics, which influences nest incubation temperature. Females can directly influence the incubation temperature by choosing certain construction materials or by building nests of different sizes. There are few studies focusing on these aspects in crocodilians that build mound nests. The aim of this study was to determine whether the nest size, its exposure to solar radiation, and the environmental temperature influence the incubation temperature of Morelet's crocodile (Crocodylus moreletii) nests. Artificial nests of two sizes (small and large) were constructed with similar characteristics to natural nests and placed in two locations differing in exposure to solar radiation (shaded and sunny). We used temperature and relative humidity data loggers to record the incubation temperature inside each nest every hour during the species' natural nesting period. Likewise, we recorded the ambient temperature every hour where the experiments were set up with temperature data loggers. We found that nest size and its exposure to solar radiation affected the incubation temperature, with smaller nests in shaded locations having lower incubation temperatures than larger nests in sunny locations. We discuss the importance of nest-site selection and maintenance behaviour of the mound nest by female crocodiles on the incubation temperature of the nest.
Collapse
Affiliation(s)
- Marco A López-Luna
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo, Col. Industrial Ánimas, 91190, Xalapa-Enríquez, Veracruz, Mexico; División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cárdenas km 0.5, 86039, Villahermosa, Tabasco, Mexico.
| | - Jesús González-Soberano
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cárdenas km 0.5, 86039, Villahermosa, Tabasco, Mexico.
| | - Mauricio González-Jáuregui
- Laboratorio de Contaminantes Orgánicos Persistentes. Instituto de Ecología, Pesquerías y Oeanografía del Golfo de México, Campus 6, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, 24029, San Francisco de Campeche, Campeche, Mexico.
| | - Armando H Escobedo-Galván
- Centro Universitario de la Costa, Universidad de Guadalajara, Av. Universidad 203, 48280, Puerto Vallarta, Jalisco, Mexico.
| | - Emilio A Suárez-Domínguez
- Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, 91090, Xalapa-Enríquez, Veracruz, Mexico.
| | - Judith A Rangel-Mendoza
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cárdenas km 0.5, 86039, Villahermosa, Tabasco, Mexico.
| | - Jorge E Morales-Mávil
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo, Col. Industrial Ánimas, 91190, Xalapa-Enríquez, Veracruz, Mexico.
| |
Collapse
|
10
|
Heck CT, Varricchio DJ, Gaudin TJ, Woodward HN, Horner JR. Ontogenetic changes in the long bone microstructure in the nine-banded armadillo (Dasypus novemcinctus). PLoS One 2019; 14:e0215655. [PMID: 31022247 PMCID: PMC6483220 DOI: 10.1371/journal.pone.0215655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022] Open
Abstract
Analysis of ontogenetic changes in long bone microstructure aid in vertebrate life history reconstructions. Specifically, osteohistological examination of common fauna can be used to infer growth strategies of biologically uncommon, threatened, or extinct vertebrates. Although nine-banded armadillo biology has been studied extensively, work on growth history is limited. Here we describe long bone microstructure in tibiae and femora of a limited ontogenetic series of nine- banded armadillos (Dasypus novemcinctus) to elucidate patterns of bone growth. The cortex of the smallest individual is composed of compacted coarse cancellous bone (CCCB) and woven tissue. Extensive cortical drift is driven by periosteal erosion and further compaction of trabeculae resulting in an increase in the amount of CCCB. The cortex of the largest specimens is primarily CCCB with thickened endosteal bone and thin outer cortices of lamellar and parallel-fibered tissue. The outer cortices of the largest individuals are interpreted as an external fundamental system (EFS) indicating a cessation of appositional bone growth corresponding to skeletal maturity (i.e. asymptotic or adult size). The EFS forms in femora prior to tibiae, indicating femoral growth rates begin decreasing earlier than tibial in D. novemcinctus. Growth trends in common fauna like the nine-banded armadillo can be used as a foundation for understanding life histories of related, but uncommon or extinct, species of cingulates.
Collapse
Affiliation(s)
- Christian Thomas Heck
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - David J Varricchio
- Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Timothy J Gaudin
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States of America
| | - Holly N Woodward
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - John R Horner
- Chapman University, Orange, California, United States of America
| |
Collapse
|
11
|
Differential plasticity of membrane fatty acids in northern and southern populations of the eastern newt (Notophthalmus viridescens). J Comp Physiol B 2019; 189:249-260. [PMID: 30673816 DOI: 10.1007/s00360-019-01203-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Seasonal changes in membrane composition and metabolic activity allow many temperate ectotherms to contend with changes in body temperature, but few studies have investigated whether the plasticity of these traits has diverged within a single species. Therefore, we studied the effects of thermal acclimation on the membrane fatty acid composition and the activities of cytochrome c oxidase (CCO) and citrate synthase (CS) in the skeletal muscle and liver of eastern newts from Maine and Florida. Newts were acclimated to either 6 °C or 28 °C for 12 weeks prior to experiments. Cold acclimation resulted in a lower saturated fatty acid (SFA) content in the muscle membranes of both populations. SFA content in liver was lower in cold compared to warm-acclimated newts from Florida, but acclimation did not affect SFA content in liver membranes of the Maine population. In liver, cold acclimation resulted in a higher monounsaturated fatty acid (MUFA) content in the Florida population and a higher polyunsaturated fatty acid (PUFA) content in the Maine population. Regardless of acclimation conditions, the muscle and liver membranes of the Maine population had higher SFA and PUFA contents compared to those of the Florida population. MUFA content of muscle and liver membranes was higher in the Florida population compared to the Maine population. The effect of acclimation on CCO and CS activity was tissue-specific. In muscle, CCO and CS activities were higher in cold compared to warm-acclimated newts in both populations, and CS and CCO activities were higher in the Maine compared to the Florida population. In liver, CCO and CS activity were unaffected by acclimation in the Florida population, but activity was lower in cold compared to warm-acclimated Maine newts. These results demonstrate that the phenotypic plasticity of these traits in response to seasonal change has diverged between northern and southern populations.
Collapse
|
12
|
Price ER, Sirsat TS, Sirsat SKG, Curran T, Venables BJ, Dzialowski EM. The membrane pacemaker hypothesis: novel tests during the ontogeny of endothermy. J Exp Biol 2018; 221:jeb.174466. [DOI: 10.1242/jeb.174466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023]
Abstract
The ‘membrane pacemaker’ hypothesis proposes a biochemical explanation for among-species variation in resting metabolism, based on the positive correlation between membrane docosahexaenoic acid (DHA) and metabolic rate. We tested this hypothesis using a novel model, altricial red-winged blackbird nestlings, predicting that the proportion of DHA in muscle and liver membranes should increase with the increasing metabolic rate of the nestling as it develops endothermy. We also used a dietary manipulation, supplementing the natural diet with fish oil (high DHA) or sunflower oil (high linoleic acid) to alter membrane composition and then assessed metabolic rate. In support of the membrane pacemaker hypothesis, DHA proportions increased in membranes from pectoralis muscle, muscle mitochondria, and liver during post-hatch development. By contrast, elevated dietary DHA had no effect on resting metabolic rate, despite causing significant changes to membrane lipid composition. During cold challenges, higher metabolic rates were achieved by birds that had lower DHA and higher linoleic acid in membrane phospholipids. Given the mixed support for this hypothesis, we conclude that correlations between membrane DHA and metabolic rate are likely spurious, and should be attributed to a still-unidentified confounding variable.
Collapse
Affiliation(s)
- Edwin R. Price
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| | - Tushar S. Sirsat
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
- Current address: Department of Biology, State University of New York Potsdam, Potsdam NY 13676, USA
| | - Sarah K. G. Sirsat
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
- Current address: Department of Biology, State University of New York Potsdam, Potsdam NY 13676, USA
| | - Thomas Curran
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| | - Barney J. Venables
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| | - Edward M. Dzialowski
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| |
Collapse
|