1
|
Saidi A, Gauvin C. Towards real-time thermal stress prediction systems for workers. J Therm Biol 2022; 113:103405. [PMID: 37055098 DOI: 10.1016/j.jtherbio.2022.103405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 02/04/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Exposure to extreme temperatures in workplaces implies serious physical hazards to workers. In addition, a poorly acclimatized worker can have reduced performance and alertness. It may therefore be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of standards and regulations with some work environments and a lack of thermal exchange in many personal protective equipment, heat stress remains among the most common physical risks in many industrial sectors. Furthermore, conventional methods of measuring physiological parameters in order to calculate personal thermophysiological constraints are not practical to use during work tasks. However, the emergence of wearable technologies can contribute to real-time measurement of body temperature and the biometric signals needed to assess thermophysiological constraints while actively working. Thus, the present study was carried out in order to scrutinize the current knowledge of these types of technologies by analyzing the available systems and the advances made in previous studies, as well as to discuss the efforts required to develop devices for the prevention of the occurrence of heat stress in real time.
Collapse
Affiliation(s)
- Alireza Saidi
- Institut de recherche Robert-Sauvé en Santé et en Sécurité du Travail, IRSST, Canada.
| | - Chantal Gauvin
- Institut de recherche Robert-Sauvé en Santé et en Sécurité du Travail, IRSST, Canada
| |
Collapse
|
2
|
Del Ferraro S, Falcone T, Morabito M, Messeri A, Bonafede M, Marinaccio A, Gao C, Molinaro V. A potential wearable solution for preventing heat strain in workplaces: The cooling effect and the total evaporative resistance of a ventilation jacket. ENVIRONMENTAL RESEARCH 2022; 212:113475. [PMID: 35588774 DOI: 10.1016/j.envres.2022.113475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 05/14/2023]
Abstract
The increase in average seasonal temperatures has an impact in the occupational field, especially for those sectors whose work activities are performed outdoors (agricultural, road and construction sectors). Among the adaptation measures and solutions developed to counteract occupational heat strain, personal cooling garments represent a wearable technology designed to remove heat from the human body, enhancing human performance. This study aims to investigate the effectiveness and the cooling power of a specific cooling garment, i.e. a ventilation jacket, by quantifying the evaporative heat losses and the total evaporative resistance both when worn alone and in combination with a work ensemble, at three adjustments of air ventilation speed. Standardised "wet" tests in a climatic chamber were performed on a sweating manikin in isothermal conditions considering three clothing ensembles (single jacket, work ensemble and a combination of both) and three adjustments of fan velocity. Results showed a significant increase (p < 0.001) in evaporative heat loss values when the fan velocity increased, particularly within the trunk zones for all the considered clothing ensembles, showing that fans enhanced the dissipation by evaporation. The cooling power, quantified in terms of percent changes of evaporative heat loss, showed values exceeding 100% when fans were on, in respect to the condition of fans-off, for the trunk zones except for the Chest. A significant (p < 0.01) decrease (up to 42.3%) in the total evaporative resistance values of the jacket, coupled with the work ensemble, was found compared to the fans-off condition. Results confirmed and quantified the cooling effect of the ventilation jacket which enhanced the evaporative heat losses of the trunk zones, helping the body to dissipate heat and showing the potential for a heat adaptation measure to be developed.
Collapse
Affiliation(s)
- Simona Del Ferraro
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Ergonomics and Physiology, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Tiziana Falcone
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Ergonomics and Physiology, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy; Unit of Advanced Robotics and Human-Centred Technologies, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Marco Morabito
- Institute of BioEconomy (IBE), National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy; Centre of Bioclimatology, University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy.
| | - Alessandro Messeri
- Tuscany Region, LaMMA Consortium - Weather Forecaster and Researcher at Laboratory of Monitoring and Environmental Modelling for Sustainable Development, 50019, Sesto Fiorentino, Florence, Italy; Fondazione per il Clima e la Sostenibilità, Via G.Caproni 8, 50145, Florence, Italy.
| | - Michela Bonafede
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Occupational and Environmental Epidemiology, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Alessandro Marinaccio
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Occupational and Environmental Epidemiology, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Chuansi Gao
- Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Lund, Sweden.
| | - Vincenzo Molinaro
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Ergonomics and Physiology, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| |
Collapse
|
3
|
Saidi A, Gauvin C, Ladhari S, Nguyen-Tri P. Advanced Functional Materials for Intelligent Thermoregulation in Personal Protective Equipment. Polymers (Basel) 2021; 13:3711. [PMID: 34771268 PMCID: PMC8587695 DOI: 10.3390/polym13213711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The exposure to extreme temperatures in workplaces involves physical hazards for workers. A poorly acclimated worker may have lower performance and vigilance and therefore may be more exposed to accidents and injuries. Due to the incompatibility of the existing standards implemented in some workplaces and the lack of thermoregulation in many types of protective equipment that are commonly fabricated using various types of polymeric materials, thermal stress remains one of the most frequent physical hazards in many work sectors. However, many of these problems can be overcome with the use of smart textile technologies that enable intelligent thermoregulation in personal protective equipment. Being based on conductive and functional polymeric materials, smart textiles can detect many external stimuli and react to them. Interconnected sensors and actuators that interact and react to existing risks can provide the wearer with increased safety, protection, and comfort. Thus, the skills of smart protective equipment can contribute to the reduction of errors and the number and severity of accidents in the workplace and thus promote improved performance, efficiency, and productivity. This review provides an overview and opinions of authors on the current state of knowledge on these types of technologies by reviewing and discussing the state of the art of commercially available systems and the advances made in previous research works.
Collapse
Affiliation(s)
- Alireza Saidi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, QC H3A 3C2, Canada;
| | - Chantal Gauvin
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, QC H3A 3C2, Canada;
| | - Safa Ladhari
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
| |
Collapse
|
4
|
Chicas R, Xiuhtecutli N, Dickman NE, Flocks J, Scammell MK, Steenland K, Hertzberg V, McCauley L. Cooling Interventions Among Agricultural Workers: Qualitative Field-Based Study. HISPANIC HEALTH CARE INTERNATIONAL 2021; 19:174-181. [PMID: 33601922 PMCID: PMC8363586 DOI: 10.1177/1540415321993429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Agricultural workers perform intense labor outside in direct sunlight and in humid environmental conditions exposing them to a high risk of heat-related illness (HRI). To implement effective cooling interventions in occupational settings, it is important to consider workers' perceptions. To date, an analysis of agricultural workers' experience and perception of cooling devices used in the field while working has not been published. METHODS Qualitatively data from 61 agricultural workers provided details of their perceptions and experiences with cooling interventions. RESULTS The participants in the bandana group reported the bandana was practical to use at work and did not interfere with their work routine. Cooling vest group participants agreed that the vest was effective at cooling them, but the practicality of using the vest at work was met with mixed reviews. CONCLUSION The findings of this qualitative study support and extend existing research regarding personal cooling and heat prevention research interventions with vulnerable occupational groups. Personal cooling gear was well received and utilized by the agricultural workers. Sustainable heat prevention studies and governmental protection strategies for occupational heat stress are urgently needed to reduce the risk of heat-related morbidity, mortality, and projected climate change health impacts on outdoor workers.
Collapse
Affiliation(s)
- Roxana Chicas
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Nezahualcoyotl Xiuhtecutli
- Anthropology Department, Tulane University, New Orleans, LA, USA
- Farmworker Association of Florida, Apopka, FL, USA
| | - Nathan Eric Dickman
- Humanities & Fine Arts Division, University of the Ozarks, Clarksville, AR, USA
| | - Joan Flocks
- Center for Governmental Responsibility, Levin College of Law, University of Florida, Gainesville, FL, USA
| | - Madeleine K. Scammell
- Department of Environmental Health, School of Public Health, Boston University, MA, USA
| | - Kyle Steenland
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Vicki Hertzberg
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Linda McCauley
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Chicas R, Xiuhtecutli N, Dickman NE, Scammell ML, Steenland K, Hertzberg VS, McCauley L. Cooling intervention studies among outdoor occupational groups: A review of the literature. Am J Ind Med 2020; 63:988-1007. [PMID: 32886396 PMCID: PMC7745167 DOI: 10.1002/ajim.23175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The purpose of this systematic review is to examine cooling intervention research in outdoor occupations, evaluate the effectiveness of such interventions, and offer recommendations for future studies. This review focuses on outdoor occupational studies conducted at worksites or simulated occupational tasks in climatic chambers. METHODS This systematic review was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed, Embase, and Web of Science were searched to identify original research on intervention studies published in peer-reviewed journals that aimed at reducing heat stress or heat-related illness from January 2000 to August 2020. RESULTS A systematic search yielded a total of 1042 articles, of which 21 met the inclusion criteria. Occupations with cooling intervention studies included agriculture (n = 5), construction (n = 5), industrial workers (n = 4), and firefighters (n = 7). The studies focused on multiple types of cooling interventions cooling gear (vest, bandanas, cooling shirts, or head-cooling gel pack), enhanced heat dissipation clothing, forearm or lower body immersion in cold water, water dousing, ingestion of a crushed ice slush drink, electrolyte liquid hydration, and modified Occupational Safety and Health Administration recommendations of drinking water and resting in the shade. CONCLUSION Current evidence indicates that using multiple cooling gears along with rest cycles may be the most effective method to reduce heat-related illness. Occupational heat-related illnesses and death may be mitigated by targeted cooling intervention and workplace controls among workers of vulnerable occupational groups and industries.
Collapse
Affiliation(s)
- Roxana Chicas
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | | | | | - Madeleine L. Scammell
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kyle Steenland
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Vicki S. Hertzberg
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Linda McCauley
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Safety and Efficacy of CarbonCool Half-Body Vest for HAZMAT Decontamination Crews Wearing Personal Protective Equipment: A Pilot Study. Prehosp Disaster Med 2020; 35:645-650. [PMID: 32928328 DOI: 10.1017/s1049023x20001144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Personal protective equipment (PPE) are essential for medical personnel responding to hazardous materials (HAZMAT) incidents. However, their impermeable design causes increased physiological strain and reduced thermoregulation, limiting work times and causing heat-related illnesses (HRI). Use of wearable cooling devices slow heat accumulation and have been shown to reduce thermal and cardiovascular strain in such situations. METHODS This was a prospective clinical evaluation to determine the tolerability and effectiveness of the CarbonCool cooling system - a half-body cooling vest - in participants undergoing a HAZMAT decontamination recertification. Physiological measurements (heart rate [HR], weight, temperature, and blood pressure) and participant feedback were obtained. The main outcome of interest was participants' tolerability of the cooling vest. RESULTS A total of 23 healthy participants were recruited, with 10 randomized to the intervention group and 13 in the control group. Mean age in the control and intervention group was 35.5 years old (SD = 7.8) and 30.0 years old (SD = 6.2), respectively. Qualitative feedback obtained from participants regarding safety, mobility, and cooling efficacy was largely positive. Difference of before-after temperature and HR was 0.3°C (SD = 0.8) and 11.5bpm (SD = 13.6) in the control group compared to 0.0°C (SD = 0.5) and 0.0bpm (SD = 6.4) for the intervention group. CONCLUSION This clinical evaluation showed that the CarbonCool cooling vest is safe and tolerable in participants wearing PPE. Further trials with sample size powered to detect physiological outcomes are needed to assess the effect of the cooling vest on a subject's endurance to heat stress.
Collapse
|
7
|
Wang F, Ke Y, Udayraj, Yang B, Xu P, Noor N. Effect of cooling strategies on overall performance of a hybrid personal cooling system incorporated with phase change materials (PCMs) and electric fans. J Therm Biol 2020; 92:102655. [PMID: 32888559 DOI: 10.1016/j.jtherbio.2020.102655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
The effect of four cooling strategies on cooling performance of a hybrid personal cooling system (HPCS) incorporated with phase change materials (PCMs) and electric fans in a hot environment (i.e., Tair = 36 ± 0.5 °C, RH = 59 ± 5%) was investigated. Twelve healthy young male participants underwent four 90-min trials comprising 70 min walking and 20 min resting periods. Cooling strategies adopted in this work were CON (control), PCM-control (PCMs were removed at the end of exercise), Fan-control (fans were switched OFF during the initial 20 min) and PCM&Fan-control (fans were turned ON after 20 min exercising and PCMs were removed after the 70-min exercise). Results demonstrated that the control of electric fans could suppress the mean skin temperature rise to 34.0 °C by over 15 min and also cut down the energy consumption of the HPCS from 15.6 W h to 12.1 W h over the entire 90-min trials. Thus, it is recommended that fans should be turned off at the beginning of hot exposure and switched on once participants felt warm. Our findings also showed that the removal of fully melted PCM packs from the HPCS could enhance the evaporative cooling effect brought about by air circulation. The removal of melted PCMs significantly reduced the physical load by 37.3% and ratings of perceived exertion (RPE) were decreased by 3.5-4.2 RPE units. This could also help quickly restore the PCM energy for future usage. In summary, cooling strategies demonstrated in this work could improve HPCS's overall cooling performance on workers while working in the studied hot environment.
Collapse
Affiliation(s)
- Faming Wang
- School of Architecture and Art, Central South University, Changsha, China.
| | - Ying Ke
- Jiangsu Non-material Culture Heritage Research Base, Jiangnan University, Wuxi, China
| | - Udayraj
- Department of Mechanical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, 492015, India
| | - Bin Yang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Pengjun Xu
- School of Design Art, Xiamen University of Technology, Xiamen, China
| | - Nuruzzaman Noor
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Weather and labor productivity in construction: a literature review and taxonomy of studies. INTERNATIONAL JOURNAL OF PRODUCTIVITY AND PERFORMANCE MANAGEMENT 2020. [DOI: 10.1108/ijppm-12-2019-0577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeClimate change and global warming have increased concerns over the influence of weather on workers' health and productivity in construction projects. A significant number of studies can be found in the weather and productivity interplay area. The purpose of this paper is to review the recently published papers in this area to explore the trends of research and topics discussed and to determine knowledge gaps and directions for future research.Design/methodology/approachRecent papers published between 2014 and 2019 were synthesized, reviewed and analyzed using bibliometric and text mining analysis.FindingsThe results revealed the trends of publications, the main authors contributed to this area and countries that attracted most of the research papers. Based on the review, this study presented a taxonomy of studies consisting of seven clusters, namely productivity management, seasons, weather factors, participants' conditions, uniform and clothing, work time and health and safety.Originality/valueThis review paper sheds a light into the topics discussed in this area, the interrelationship between the topics and the significant topics that should be continued in the future. Global warming concerns necessitate the need for more studies in tropical countries and countries that are expected to expose to high temperatures and heat stress, which greatly impact labor productivity. The paper highlighted the need to understand how weather influences workers' psychological conditions and subsequently their productivity.
Collapse
|
9
|
Experimental Study on the Efficacy of a Novel Personal Cooling Vest Incorporated with Phase Change Materials and Fans. MATERIALS 2020; 13:ma13081801. [PMID: 32290375 PMCID: PMC7215597 DOI: 10.3390/ma13081801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
In recent years, personal cooling has aroused much attention because it can achieve both localized high-level thermal comfort and build energy savings. In this study, a novel hybrid personal cooling vest (PCV) incorporated with phase change materials (PCMs) and ventilation fans was developed, and its efficacy was investigated by human trials in a hot-humid climate chamber. Three generally accepted indices (thermal load, Q; thermal sensation, TS; and physiological strain index, PSI) and a new proposed index (cumulative heat storage, CHS) during human trials were comparatively studied between the two human trial groups, i.e., the PCV group (wearing the PCV) and the CON group (without PCV). Results found that TS, PSI, and CHS were significantly reduced by the PCV, which suggests that the PCV can significantly improve both the perceptual and physiological strain. In addition, a strong linear relationship (r2 = 0.8407) was found between the proposed index of CHS with PSI, which indicates the applicability and reliability of CHS for assessing physiological heat strain.
Collapse
|
10
|
Zheng Q, Ke Y, Wang H. Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2020; 28:118-128. [PMID: 32276569 DOI: 10.1080/10803548.2020.1730618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cooling workwear using phase change materials (PCMs) was designed for miners in hot underground mines. A new arrangement of PCM packs was introduced that used 15 °C PCMs as the inner layer and 23 °C PCMs as the outer layer (15&23). Its performance was investigated using thermal manikin and human subject tests by comparison with clothing without PCMs (CON), with 15 °C PCMs (15&15) and with melted PCMs (mPCM) in a climate chamber (30 °C, 80% relative humidity). The PCM cooling workwear significantly increased the manikin heat loss, attenuated the rise of skin temperatures and improved thermal sensation and comfort. The cooling duration was extended in 15&23 as compared with 15&15. The added PCMs did not affect the perceptual exertion and body mobility. In summary, cooling workwear using PCMs with different temperatures can be an effective option for miners' personal cooling in a hot and humid environment.
Collapse
Affiliation(s)
- Qing Zheng
- Jiangsu Non-material Culture Heritage Research Base, Jiangnan University, China
| | - Ying Ke
- Jiangsu Non-material Culture Heritage Research Base, Jiangnan University, China.,Present address: Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, China
| | - Hongfu Wang
- Jiangsu Non-material Culture Heritage Research Base, Jiangnan University, China
| |
Collapse
|
11
|
Experimental Study of an Enhanced Phase Change Material of Paraffin/Expanded Graphite/Nano-Metal Particles for a Personal Cooling System. MATERIALS 2020; 13:ma13040980. [PMID: 32098301 PMCID: PMC7078843 DOI: 10.3390/ma13040980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/02/2022]
Abstract
A composite phase change material (PCM) was prepared by incorporating paraffin (PA) with expanded graphite (EG) and nano-metal particles to improve the thermal conductivity and reduce the leakage performance of PA once it melts and, consequently, develop a more efficient PCM for a personal phase change cooling system. A series of experiments was carried out by a scanning electron microscope, a differential scanning calorimeter, a hot-disk thermal analyzer, and leakage tests on the composite PCM with various mass fractions of EG and metals (i.e., Cu, Al, Ni, and Fe). Through comprehensive consideration of the thermal conductivity, leakage, and homogeneity, a composite PCM with the optimal proportion (PA-EG11%-Cu1.9%) was screened out. Its thermal conductivity was significantly improved nine times, while the phase change enthalpy showed a minimal decrease. In addition, the relationships of the composite PCM with its temperature and density were systematically investigated. The experimental results are important for determining the proper package density of PCM for application into a personal cooling system because its weight is crucial for the system design and benefits the performance comparison of various PCMs prepared under various conditions. Lastly, the heat storage efficiency of the PA–EG–Cu material was investigated using heat storage tests. Cooling performance clearly improved compared to the PCM without nano-particles added.
Collapse
|
12
|
Wang F, Song W, Ke Y, Xu P, Chow CSW, Noor N. Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation. ERGONOMICS 2019; 62:928-939. [PMID: 30885053 DOI: 10.1080/00140139.2019.1596318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/27/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
A novel design of personal cooling clothing incorporating additional insulation sandwiched between phase change materials (PCMs) and clothing outer layer is proposed. Performance of four personal cooling systems including clothing with only PCMs, clothing with PCMs and insulation (PCM + INS), clothing with PCMs and ventilation fans (HYB), and clothing with PCMs, ventilation fans and insulation (HYB + INS) was investigated. Effect of additional insulation on clothing cooling performance in terms of human physiological and perceptual responses was also examined. Human trials were carried out in a hot environment (i.e. 36 °C, RH = 59%). Results showed that significantly lower mean skin/torso temperatures were registered in HYB + INS as compared to HYB. In contrast, no significant effect of the use of insulation on both skin and body temperatures between PCM and PCM + INS was observed. Also, no significant difference in thermal sensations, thermal comfort, and skin wetness sensation was registered between cooling systems with and without additional insulation. Practitioner Summary: Hybrid personal cooling clothing has shown the ability to provide a relatively cool microclimate around the wearer' body while working in hot environments. The present work addresses the importance of cooling energy saving for PCMs in a hot environment. This work contributes to optimising cooling performance of hybrid personal cooling systems.
Collapse
Affiliation(s)
- Faming Wang
- a Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| | - Wenfang Song
- c School of Art and Design , Guangdong University of Technology , Guangzhou , China
| | - Ying Ke
- d School of Textile and Clothing , Jiangnan University , Wuxi , China
| | - Pengjun Xu
- e Faculty of Clothing and Design , Minjiang University , Fuzhou , China
| | - Cathy Sin Wei Chow
- a Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| | - Nuruzzaman Noor
- a Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| |
Collapse
|