1
|
Izadi H, Tamanadar E, Khajehali J, Samadieh H. Rhizoglyphus robini, a pest mite of saffron, is unable to resist extracellular ice formation. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:29-41. [PMID: 37552405 DOI: 10.1007/s10493-023-00828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
The saffron mite, Rhizoglyphus robini Claparède (Acari, Astigmata: Acaridae), is one of the most important pests of saffron-producing regions in Iran. It causes yellowing and decreases saffron growth, and finally it destroys the bulbs. In this research, the cold tolerance and supercooling point (SCP) of the saffron mite were measured in three populations and two temperature regimes. Our results showed that the mean SCP of the saffron mite was approximately -14.6 °C without significant difference among the populations. On the contrary, acclimation of the mites significantly decreased their SCP to a mean of approximately -16.5 °C. Exposure of the mites for 24 h to 0 and -2.5 °C had no significant effect on the survival of the mites but when the mites were exposed to -5.0 °C for 24 h, survival of the three populations reached the lowest level of roughly 60%. By 24-h exposure to -7.5 °C, survival of the mites was almost negligible. As a large proportion of mortality was observed above the SCP, and LT50 > SCP, it can be inferred that the saffron mite is likely a chill-susceptible species. This suggests that the saffron mite lacks the ability to withstand extracellular ice formation. Overall, the results of the current study suggest no significant physiological differences between populations of the saffron mite.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Elahe Tamanadar
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Hosein Samadieh
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
2
|
Liu H, Wang X, Chen Z, Lu Y. Characterization of Cold and Heat Tolerance of Bactrocera tau (Walker). INSECTS 2022; 13:insects13040329. [PMID: 35447771 PMCID: PMC9030204 DOI: 10.3390/insects13040329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Insects are often stressed by adverse factors in their natural environment. Temperature is a crucial driver of insect activity, adaptability, and distribution, and therefore, it greatly impacts the invasive success of alien pests. Bactrocera tau (Walker) is an invasive polyphagous herbivore of vegetables and fruits, now a pest of global importance. This study provides useful information about B. tau’s cold- and heat tolerance to extremely low and high temperatures. Its different life stages (i.e., egg, larvae, pupae, and adult) had high survival rates under adverse temperatures spanning −5 to 0 °C and 39 to 42 °C. These findings suggest that B. tau possesses a wide temperature threshold range for survival, which likely contributes to its better establishment and expansion in new regions. Meanwhile, fitted curves were used to quantify B. tau’s tolerance potential as a function of both stress intensity (heat or cold) and exposure duration. The information generated in this study will contribute to our understanding of thermal tolerance in B. tau and could also provide insights for devising phytosanitary control approaches. Abstract Bactrocera tau (Walker) (Diptera: Tephritidae) is a serious, economically important invasive pest that has spread and been established in many regions worldwide. Temperature is a crucial abiotic factor governing insect activity, fitness, and geographical distribution. Yet, surprisingly, the tolerance of B. tau to extreme cold and heat stress remains unclear. Here, we measured the supercooling point (SCP) of different life stages of B. tau. Further, several life stages of B. tau (egg, 1st, 2nd, and 3rd instar larvae, 1-day-old pupae, and 3-day-old adult) were subjected to six low temperatures (−9, −7, −5, −3, −1, and 0 °C) and six high temperatures (39, 40, 41, 42, 43, and 44 °C) for various durations (0.5, 1.0, 2.0, and 4.0 h), and three-way survival–time–temperature relationships were investigated. We found that the SCPs differed significantly among different life stages of B. tau, being the lowest for SCP of eggs, at −25.82 ± 0.51 °C. There was no significant effect of sex on the mean SCPs of B. tau adults, except for 45- to 50-day-old flies. In addition, an interaction effect was uncovered between tested temperatures and exposure duration upon B. tau mortality at different life stages. Eggs exhibited the strongest cold tolerance, yet the weakest heat tolerance. The 3rd instar larvae were the most heat- and cold tolerant among larval stages, followed by the 2nd and 1st instar larvae. The upper limit of the chill injury zone (ULCIZ) for 3-day-old adult and 1-day-old pupae was −2.51 °C and −2.50 °C, respectively, while their corresponding lower limit of thermal injury zone (LLTIZ) was 39.39 °C and 38.29 °C. This paper presents valuable data to provide an integrated knowledge for understanding the cold and heat tolerance potential of B. tau and ensure the proper implementation of post-harvest phytosanitary protocols for this pest’s disinfestation.
Collapse
Affiliation(s)
- Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China;
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
- Correspondence: (H.L.); (Y.L.)
| | - Xiaoyan Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| | - Zihan Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (H.L.); (Y.L.)
| |
Collapse
|
3
|
Ben-Yosef M, Verykouki E, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effects of Thermal Acclimation on the Tolerance of Bactrocera zonata (Diptera: Tephritidae) to Hydric Stress. Front Physiol 2021; 12:686424. [PMID: 34539427 PMCID: PMC8446596 DOI: 10.3389/fphys.2021.686424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Insects, similarly to other small terrestrial invertebrates, are particularly susceptible to climatic stress. Physiological adjustments to cope with the environment (i.e., acclimation) together with genetic makeup eventually determine the tolerance of a species to climatic extremes, and constrain its distribution. Temperature and desiccation resistance in insects are both conditioned by acclimation and may be interconnected, particularly for species inhabiting xeric environments. We determined the effect of temperature acclimation on desiccation resistance of the peach fruit fly (Bactrocera zonata, Tephritidae) – an invasive, polyphagous pest, currently spreading through both xeric and mesic environments in Africa and the Eurasian continent. Following acclimation at three constant temperatures (20, 25, and 30°C), the survival of adult flies deprived of food and water was monitored in extreme dry and humid conditions (<10 and >90% relative humidity, respectively). We found that flies acclimated at higher temperatures were significantly heavier, and contained more lipids and protein. Acclimation temperature significantly and similarly affected the survival of males and females at both high and low humidity conditions. In both cases, flies maintained at 30°C survived longer compared to 20 and 25°C – habituated counterparts. Regardless of the effect of acclimation temperature on survival, overall life expectancy was significantly shortened when flies were assayed under desiccating conditions. Additionally, our experiments indicate no significant difference in survival patterns between males and females, and that acclimation temperature had similar effects after both short (5–10 days) and long (11–20 days) acclimation periods. We conclude that acclimation at 30°C prolongs the survival of B. zonata, regardless of ambient humidity levels. Temperature probably affected survival through modulating feeding and metabolism, allowing for accumulation of larger energetic reserves, which in turn, promoted a greater ability to resist starvation, and possibly desiccation as well. Our study set the grounds for understanding the phenotypic plasticity of B. zonata from the hydric perspective, and for further evaluating the invasion potential of this pest.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Eleni Verykouki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
4
|
Borzoui E, Khaghani R, Nouri-Ganbalani G. Lethal and Sublethal Effects of Eucalyptus camaldulensis and Mentha piperita Essential Oils on the Khapra Beetle (Coleoptera: Dermestidae) in Terms of Feeding Inhibition, Oviposition, and Seed Damage. ENVIRONMENTAL ENTOMOLOGY 2021; 50:692-698. [PMID: 33764455 DOI: 10.1093/ee/nvab023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Trogoderma granarium Everts, the Khapra beetle, is a major pest of stored products, especially grains. In this study, fumigant toxicity and sublethal effects of Eucalyptus camaldulensis Dehnh. (Myrtaceae) and Mentha piperita L. (Lamiaceae) essential oils (EOs) were investigated against different growth stages of T. granarium. To assess the sublethal effects, insects were exposed to an LC20 or LC50 concentration of each essential oil, and the ability of these oils to deter feeding, oviposition, and damage to wheat seeds and overall mass were surveyed. At LC50 concentrations, M. piperita EO showed higher fumigant toxicity than E. camaldulensis EO against eggs, 2nd instar larvae, 4th instar larvae, and adults of T. granarium. Furthermore, the adults were more sensitive to the tested EOs than immatures. In free-choice tests, both larvae and adults showed a preference for control-treated wheat seeds than for seeds treated with an LC20 or LC50 concentration of EOs from E. camaldulensis or M. piperita. In a no-choice test, adult females exposed to EOs showed lower fecundity and fertility in comparison to control females not exposed to EOs. Treatment of wheat seeds with E. camaldulensis or M. piperita EOs resulted in a dose-specific reduction in the number of damaged seeds and seed weight loss when compared to control. According to our results, both tested EOs, especially EOs extracted from M. piperita, showed good potential for use in integrated pest management strategies against T. granarium.
Collapse
Affiliation(s)
- Ehsan Borzoui
- Department of Medical Parasitology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ramin Khaghani
- Department of Medical Parasitology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Gadir Nouri-Ganbalani
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
5
|
Masoudmagham A, Izadi H, Mohammadzadeh M. Expanded Supercooling Capacity With No Cryoprotectant Accumulation Underlies Cold Tolerance of the European Grapevine Moth. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:828-838. [PMID: 33624817 DOI: 10.1093/jee/toab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 06/12/2023]
Abstract
The European grapevine moth, Lobesia botrana (Denis et Schiffermuller), is a serious invasive pest that causes significant losses to the flowers and fruits of grapes in most of the world. This multivoltine pest passes the winter as the third-generation diapausing pupa. The current study was designed to compare nondiapausing (first and second generations) and diapausing pupae (third generation) and to investigate the relationship among cold tolerance, the supercooling point (SCP), and diapause development of the third-generation diapausing pupae. The lethal temperatures (LTs) for the three generations were determined using 24-h exposure at subzero temperatures. The mean SCP of the pupae was estimated at approx. -22.6°C, the lowest level of which (-23.7°C) was recorded in the well-developed diapausing pupae in February. The highest level of cold tolerance was also recorded in February. There were no significant differences among the temperatures required to kill 30, 50, and 90% of the pupae. The temperatures significantly decreased from October onward and reached the lowest levels in February during which the lowest SCP and the highest cold tolerance were observed in the diapausing pupae. No significant differences were found in the cryoprotectant levels, among the diapausing and nondiapausing pupae, and the diapause development. The highest activity of cAMP-dependent protein kinase (AMPK) was recorded in the late diapause in February. The findings suggested a relationship among SCP depression, cold tolerance enhancement, and diapause development. A bimodal cold-tolerance strategy (freeze-intolerant and freeze-tolerant) was found to be a feature of the pupae.
Collapse
Affiliation(s)
- Ashraf Masoudmagham
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mojgan Mohammadzadeh
- Pistachio Safety Research Center, Rafsanajn University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
6
|
Jiang T, Ma L, Liu XY, Xiao HJ, Zhang WN. Effects of starvation on respiratory metabolism and energy metabolism in the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). JOURNAL OF INSECT PHYSIOLOGY 2019; 119:103951. [PMID: 31563619 DOI: 10.1016/j.jinsphys.2019.103951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Intermittent food shortages are commonly encountered in the wild. To cope with the threat of starvation, insects initiate a suite of behavioral activities and physiological countermeasures. The cotton bollworm, Helicoverpa armigera, is a major agricultural pest worldwide, but how H. armigera modulates its metabolism under starvation remains ambiguous. In the present study, the respiratory rates (V̇O2; ml g-1 h-1) from the third-larval instar to the pupal stage were first determined. Our results highlighted a transient rise during the larval-larval molt and larval-pupal transition, followed by a sharp decline in the pupal stage and, finally, an upward trend before eclosion. When subjected to food deprivation, the starved larvae experienced a significant decline in the rates of O2 consumed and CO2 produced, as well as in respiratory quotient (RQ) values, indicative of severe metabolic depression during starvation and a shift of metabolic substrates with prolonged starvation. For metabolic substrate analysis, an apparent decline in triglyceride and glycogen contents was observed in the starved larvae, and the hemolymph trehalose content was significantly reduced throughout starvation. In addition, comparative transcriptome analysis showed that 48 h of larval starvation caused substantial transcriptional regulations in several energetically costly processes, wherein the marked up-regulations were detected in the pathways of glycolysis and fatty acid metabolism. Overall, our work makes a comprehensive study on the respiratory rate and energy metabolism in the starved H. armigera larvae, and provides a deep insight into the physiological adaptive strategies to alleviate nutritional stress.
Collapse
Affiliation(s)
- Ting Jiang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Long Ma
- College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiang-Ya Liu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai-Jun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wan-Na Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Izadi H, Mohammadzadeh M, Mehrabian M. Cold Tolerance of the Tribolium castaneum (Coleoptera: Tenebrionidae), Under Different Thermal Regimes: Impact of Cold Acclimation. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1983-1988. [PMID: 31083719 DOI: 10.1093/jee/toz089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The red flour beetle, Tribolium castaneum (Herbst), is a serious pest of stored product worldwide. Cold tolerance or cold hardiness is an important ecophysiological trait related directly to survival, fitness, and distribution of insects. In this study, the effects of four thermal regimes, i.e., control (C), cold acclimation (CA), rapid cold hardening (RCH), and fluctuating-acclimation (FA), were examined for their effects on cold tolerance, supercooling point (SCP), lower lethal temperature (LLT), and chill-coma recovery time (CCRT) of the red flour beetle. In addition, changes in cryoprotectant (trehalose, sorbitol, and myo-inositol) levels were investigated under each thermal treatment. The results documented a substantial enhancement in the SCP, cold hardiness, and cryoprotectant levels of the adults of T. castaneum under CA regimes. The lowest SCP, highest trehalose and myo-inositol contents, and, subsequently, the greatest survival rate were observed in cold-acclimated beetles. In addition, coordination between cryoprotectant level, SCP, and cold tolerance of the pest was observed. The highest and lowest CCRT were observed at control and CA, respectively. In RCH regime with the highest impact, LLT reached the lowest level of -22°C. As most of the mortality of T. castaneum occurred at a temperature above the SCP, so this pest could be considered as a chill-susceptible insect.
Collapse
Affiliation(s)
- H Izadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - M Mohammadzadeh
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - M Mehrabian
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
8
|
Zhang DW, Xiao ZJ, Zeng BP, Li K, Tang YL. Insect Behavior and Physiological Adaptation Mechanisms Under Starvation Stress. Front Physiol 2019; 10:163. [PMID: 30890949 PMCID: PMC6411660 DOI: 10.3389/fphys.2019.00163] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
Intermittent food shortages are commonly encountered in the wild. During winter or starvation stress, mammals often choose to hibernate while insects-in the form of eggs, mature larvae, pupae, or adults opt to enter diapause. In response to food shortages, insects may try to find sufficient food to maintain normal growth and metabolism through distribution of populations or even migration. In the face of hunger or starvation, insect responses can include changes in behavior and/or maintenance of a low metabolic rate through physiological adaptations or regulation. For instance, in order to maintain homeostasis of the blood sugar, trehalose under starvation stress, other sugars can be transformed to sustain basic energy metabolism. Furthermore, as the severity of starvation increases, lipids (especially triglycerides) are broken down to improve hunger resistance. Starvation stress simultaneously initiates a series of neural signals and hormone regulation processes in insects. These processes involve neurons or neuropeptides, immunity-related genes, levels of autophagy, heat shock proteins and juvenile hormone levels which maintain lower levels of physiological metabolic activity. This work focuses on hunger stress in insects and reviews its effects on behavior, energy reserve utilization, and physiological regulation. In summary, we highlight the diversity in adaptive strategies of insects to hunger stress and provides potential ideas to improve hunger resistance and cold storage development of natural enemy insects. This gist of literature on insects also broadens our understanding of the factors that dictate phenotypic plasticity in adjusting development and life histories around nutritionally optimal environmental conditions.
Collapse
Affiliation(s)
- Dao-Wei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | | | | | | | | |
Collapse
|
9
|
|